Making Plural Separate Devices Patents (Class 438/110)
  • Patent number: 8093102
    Abstract: An electronic device can include a first die having a first terminal at a first front side, and a second die having a second terminal at a second front side and a through via. In one aspect, a process of forming the electronic device includes supplying a second substrate including a die location of the second die. The process can also include attaching the second substrate to a handling substrate and singulating the second die from the second substrate before removing the handling substrate. In another aspect, the handling substrate can include a rigid substrate. The process can include orienting the front side of the first die and a back side of the second substrate front-to-back with respect to each other. In yet another aspect, the first terminal is electrically connected to the through via and the second terminal. In one embodiment, the electronic device can include a third die.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: January 10, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Ajay Somani
  • Patent number: 8093085
    Abstract: A method of forming a suspension object on a monolithic substrate is provided. A silicon base layer of the monolithic substrate has a circuit layer composed of at least one wet etching region, at least one circuit region, and at least one microstructure region. The wet etching region is used to partition the circuit region and the microstructure region, and extends downwards to a surface of the silicon base layer, so as to form an etching path for etching the silicon base layer from above the substrate. Next, an upper surface and a lower surface of the silicon base layer are respectively etched through dry etching, such that the microstructure region is suspended.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: January 10, 2012
    Assignee: Memsor Corporation
    Inventor: Siew Seong Tan
  • Patent number: 8089143
    Abstract: An integrated circuit package system is provided in which an interposer of predetermined thickness including a central cavity is formed. Additionally, one or more contacts are formed around the central cavity on the interposer. The interposer is employed for connecting first and second packages.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: January 3, 2012
    Assignee: Stats Chippac Ltd.
    Inventor: Myung Kil Lee
  • Patent number: 8084297
    Abstract: A method of implementing a capacitor in an integrated circuit package is disclosed. The method comprises coupling the capacitor to a first surface of a substrate of the integrated circuit package; positioning an integrated circuit die over the capacitor, wherein the integrated circuit die has a first plurality of solder bumps and a second plurality of solder bumps separated by a region having no solder bumps; coupling the integrated circuit die to the first surface of the substrate over the capacitor, wherein the region having no solder bumps is positioned over the capacitor; and encapsulating the integrated circuit die and the capacitor.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: December 27, 2011
    Assignee: Xilinx, Inc.
    Inventors: Mukul Joshi, Kumar Nagarajan
  • Patent number: 8080436
    Abstract: A method of manufacturing a light emitting device includes: a first step of forming on a supporting substrate made of a stainless steel, a plurality of conductive members each including a first region containing Au and a second region containing a metallic member having a diffusion coefficient with respect to a metal in the stainless steel smaller than a diffusion coefficient of Au with respect to the metal in the stainless steel, a second step of forming a base member made of a light-blocking resin on the supporting substrate between the conductive members, a third step of bonding a light emitting element on an upper surface of a conductive member through an adhesive member, a fourth step of covering the light emitting element with an optically transmissive sealing member, and a fifth step of removing the supporting substrate and individually separating the light emitting devices.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: December 20, 2011
    Assignee: Nichia Corporation
    Inventor: Takafumi Sugiyama
  • Patent number: 8080447
    Abstract: A method of manufacturing a semiconductor device, including the following steps, forming a resin layer on a surface of a semiconductor chip, the surface is provided with a bump formed thereon, the resin layer having photosensitivity and adhesiveness, exposing an upper surface of the bump by removing a part of the resin layer right above the bump by exposing and then developing the resin layer, and bonding the semiconductor chip provided with a resin film formed of the resin layer face-down to a substrate, the bump of the semiconductor chip and a conductive section of the substrate being electrically connected by the resin film functioning as an adhesive.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: December 20, 2011
    Assignee: Seiko Epson Corporation
    Inventor: Nobuaki Hashimoto
  • Patent number: 8076164
    Abstract: An integrated circuit includes a first die and a second die positioned in a package. The first die has a redistribution layer formed on the die and including a plurality of relocated bond pads. The relocated bond pads are positioned near an inner edge of the first die that is adjacent to an inner edge of the second die. Each relocated bond pad is coupled to a corresponding bond pad on the second die through a respective bonding wire. The first die further includes a plurality of original bond pads. The redistribution layer further includes at least one intermediate bond pad electrically interconnected through a respective conductive trace to a corresponding original bond pad. Each intermediate bond pad is electrically connected to a corresponding relocated bond pad through a respective bond wire.
    Type: Grant
    Filed: May 5, 2010
    Date of Patent: December 13, 2011
    Assignee: Marvell International Technology Ltd.
    Inventor: Randall D. Briggs
  • Patent number: 8076183
    Abstract: A method is disclosed for attaching an interconnection plate to semiconductor die within leadframe package. A base leadframe is provided with die pad for attaching semiconductor die. An interconnection plate is provided for attachment to the base leadframe and semiconductor die. Add a base registration feature onto base leadframe and a plate registration feature onto interconnection plate with the registration features designed to match each other such that, upon approach of the interconnection plate to base leadframe, the two registration features would engage and guide each other causing concomitant self-aligned attachment of the interconnection plate to base leadframe. Next, the interconnection plate is brought into close approach to base leadframe to engage and lock plate registration feature to base registration feature hence completing attachment of the interconnection plate to semiconductor die and forming a leadframe package.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: December 13, 2011
    Assignee: Alpha and Omega Semiconductor, Inc.
    Inventors: Yan Xun Xue, Jun Lu, Le Shi, Liang Zhao
  • Patent number: 8071426
    Abstract: A leadframe for use in fabricating a no lead semiconductor package contains connecting bars between individual electrical contact pads. For embodiments having a die pad, the leadframe further includes connecting bars between the contact pads and the die pad. The lower surfaces of the connecting bars are coplanar with the lower surfaces of the contact pads and/or the die pad, and the upper surfaces of the connecting bars are recessed with respect to the upper surfaces of the contact pads and/or the die pad. The semiconductor package is fabricated by encapsulating the die and the leadframe in a molding compound and then removing the connecting bars. The leadframe is typically formed by half etching a metal sheet to form the connecting bars. The connecting bars are removed from the encapsulated package by a selected cutting, sawing, or etching means, based on a predetermined pattern.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: December 6, 2011
    Assignee: Utac Thai Limited
    Inventors: Saravuth Sirinorakul, Somchai Nondhasitthichai
  • Patent number: 8071428
    Abstract: A semiconductor device and method. One embodiment provides an encapsulation plate defining a first main surface and a second main surface opposite to the first main surface. The encapsulation plate includes multiple semiconductor chips. An electrically conductive layer is applied to the first and second main surface of the encapsulation plate at the same time.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: December 6, 2011
    Assignee: Infineon Technologies AG
    Inventors: Jens Pohl, Markus Brunnbauer, Irmgard Escher-Poeppel, Thorsten Meyer
  • Publication number: 20110291301
    Abstract: A method for producing semiconductor components and a component obtainable by such a method is disclosed. The method comprises the following steps: fixing a conductive film on a carrier; adhesively bonding semiconductor chips onto the conductive film using an adhesive layer, wherein active surfaces of the semiconductor chips, the active surfaces having connection contacts, are situated on that side of the chips which faces the film; overmolding the chips adhesively bonded onto the conductive film with a molding compound; and releasing the conductive film with the overmolded chips from the carrier. In this case, the adhesive layer is structured in such a way that at least connection contacts of the semiconductor chips are free of the adhesive layer and are kept free of the molding compound.
    Type: Application
    Filed: May 27, 2011
    Publication date: December 1, 2011
    Applicant: Robert Bosch GmbH
    Inventors: Mathias Bruendel, Frieder Haag, Ulrike Scholz
  • Patent number: 8067274
    Abstract: In this manufacturing method of a semiconductor device, a metal plate having a plurality of projection electrodes in each of a plurality of semiconductor device formation areas is prepared. Next, the projection electrodes of each of the semiconductor formation areas are aligned corresponding to external connection electrodes of each semiconductor construction, and each semiconductor construction is separately arranged on the projection electrodes in the semiconductor device formation areas. Next, an insulating layer formation sheet is arranged on the metal plate, and the metal plate and the insulating layer formation sheet are joined by heat pressing. Then, the metal plate is patterned and a plurality of upper layer wirings that connect to the projection electrodes is formed.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: November 29, 2011
    Assignee: Casio Computer Co., Ltd.
    Inventors: Ichiro Mihara, Takeshi Wakabayashi
  • Patent number: 8067268
    Abstract: A method for manufacturing of a stacked integrated circuit package system includes: providing a base integrated circuit package having a base encapsulation with a cavity therein and a base interposer exposed by the cavity; mounting an intermediate integrated circuit package over the base interposer; and mounting a top integrated circuit package over the intermediate integrated circuit package.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: November 29, 2011
    Assignee: Stats Chippac Ltd.
    Inventors: Flynn Carson, Jong-Woo Ha, BumJoon Hong, SeongMin Lee
  • Patent number: 8062930
    Abstract: The present invention relates to a manufacturing process of a sub-module having an electromagnetic shield. Initially, a meta-module having circuitry for two or more sub-modules is formed. An overmold body is placed over the circuitry for all of the sub-modules. The overmold body of the meta-module is sub-diced to expose a metallic layer grid around each of the sub-modules. Next, an electromagnetic shield is applied to the exterior surface of the overmold body of each of the sub-modules and in contact with the metallic layer grid. The meta-module is then singulated to form modules having two or more sub-modules.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: November 22, 2011
    Assignee: RF Micro Devices, Inc.
    Inventors: Milind Shah, Donald Joseph Leahy, T. Scott Morris
  • Patent number: 8062461
    Abstract: The disclosure is directed to method for manufacturing an electro-optical device. In one example, a method comprises forming a plurality of scribe lines in a substrate; forming cracks in the substrate which pass from the scribe lines through the substrate; and forming a plurality of dicing lines in the substrate along the scribe lines and the cracks. In one example, the dicing lines are formed at a depth that is less than a thickness of the substrate. This abstract is intended only to aid those searching patents, and is not intended to be used to interpret or limit the scope or meaning of the claims in any manner.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: November 22, 2011
    Assignee: Seiko Epson Corporation
    Inventor: Kazushige Watanabe
  • Patent number: 8062929
    Abstract: A semiconductor device has a plurality of similar sized semiconductor die each with a plurality of bond pads formed over a surface of the semiconductor die. An insulating layer is formed around a periphery of each semiconductor die. A plurality of conductive THVs is formed through the insulating layer. A plurality of conductive traces is formed over the surface of the semiconductor die electrically connected between the bond pads and conductive THVs. The semiconductor die are stacked to electrically connect the conductive THVs between adjacent semiconductor die. The stacked semiconductor die are mounted within an integrated cavity of a substrate or leadframe structure. An encapsulant is deposited over the substrate or leadframe structure and the semiconductor die. A thermally conductive lid is formed over a surface of the substrate or leadframe structure. The stacked semiconductor die are attached to the thermally conductive lid.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: November 22, 2011
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Byung Tai Do, Heap Hoe Kuan, Seng Guan Chow
  • Publication number: 20110278741
    Abstract: A semiconductor device has conductive pillars formed over a carrier. A first semiconductor die is mounted over the carrier between the conductive pillars. An encapsulant is deposited over the first semiconductor die and carrier and around the conductive pillars. A recess is formed in a first surface of the encapsulant over the first semiconductor die. The recess has sloped or stepped sides. A first interconnect structure is formed over the first surface of the encapsulant. The first interconnect structure follows a contour of the recess in the encapsulant. The carrier is removed. A second interconnect structure is formed over a second surface of the encapsulant and first semiconductor die. The first and second interconnect structures are electrically connected to the conductive pillars. A second semiconductor die is mounted in the recess. A third semiconductor die is mounted over the recess and second semiconductor die.
    Type: Application
    Filed: May 14, 2010
    Publication date: November 17, 2011
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Linda Pei Ee Chua, Byung Tai Do, Reza A. Pagaila
  • Patent number: 8058103
    Abstract: A method for cutting a semiconductor substrate having a front face formed with functional devices together with a die bonding resin layer. A wafer having a front face formed with functional devices is irradiated with laser light while positioning a light-converging point within the wafer with the rear face of the wafer acting as a laser light incident face, so as to form a starting point region for cutting due to a modified region within the wafer along a cutting line. When an expansion film is attached to the rear face by way of a die bonding resin layer after forming the starting point region and then expanded, a fracture can be generated from the starting point region which reaches the front face and rear face, consequently, the wafer and die bonding resin layer can be cut along the cutting line.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: November 15, 2011
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Kenshi Fukumitsu, Fumitsugu Fukuyo, Naoki Uchiyama, Ryuji Sugiura, Kazuhiro Atsumi
  • Patent number: 8058101
    Abstract: A method of making a microelectronic assembly includes providing a microelectronic package having a substrate, a microelectronic element overlying the substrate and at least two conductive elements projecting from a surface of the substrate, the at least two conductive elements having surfaces remote from the surface of the substrate. The method includes compressing the at least two conductive elements so that the remote surfaces thereof lie in a common plane, and after the compressing step, providing an encapsulant material around the at least two conductive elements for supporting the microelectronic package and so that the remote surfaces of the at least two conductive elements remain accessible at an exterior surface of the encapsulant material.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: November 15, 2011
    Assignee: Tessera, Inc.
    Inventors: Belgacem Haba, Teck-Gyu Kang, Ilyas Mohammed, Ellis Chau
  • Patent number: 8058105
    Abstract: A method of fabricating a packaging structure includes cutting a panel of packaging substrate into a plurality of packaging substrate blocks each having a plurality of packaging substrate units; mounting and packaging a semiconductor chip on each of the packaging substrate unit to form package blocks each having multiple packaging structure units; and cutting package blocks to form a plurality of package units. In the method, the alignment difference between the packaging structure units in each package block is minimized by appropriately cutting and forming substrate blocks to achieve higher precision and better yield, and also packaging of semiconductor chips can be performed on all package units in the substrate blocks, thereby integrating fabrication with packaging at one time to improve production efficiency and reduce the overall costs as a result.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: November 15, 2011
    Assignee: Unimicron Technology Corporation
    Inventor: Shih-Ping Hsu
  • Patent number: 8053275
    Abstract: A semiconductor device includes a package substrate having a front surface and a backside surface; an electrode pad formed on the front surface; an outer connection pad formed on the backside surface and electrically connected to the electrode pad; a semiconductor chip mounted on the front surface and having an electrode electrically connected to the electrode pad; a sealing resin layer having a through hole formed with a die-molding and reaching the electrode pad for sealing the semiconductor chip; and a through electrode filled in the through hole with a conductive material and having one end portion electrically connected to the electrode pad and the other end portion exposed from the sealing resin layer.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: November 8, 2011
    Assignee: Oki Semiconductor Co., Ltd
    Inventor: Hidenori Hasegawa
  • Patent number: 8053898
    Abstract: A method and apparatus for off-chip ESD protection, the apparatus includes an unprotected IC 22 stacked on an ESD protection chip 24 and employing combinations of edge wrap 32 and through-silicon via connectors 44 for electrical connection from an external connection lead 34 on a chip carrier 84 or system substrate 64, to an ESD protection circuit, and to an I/O trace 46 of the unprotected IC 22. In one embodiment the invention provides an ESD-protected stack 50 of unprotected IC chips 52, 54 that has reduced hazard of mechanical and ESD-damage in subsequent handling for assembly and packaging. The method includes a manufacturing method 170 for mass producing embedded edge wrap connectors 32, 38 during the chip manufacturing process.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: November 8, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Phil P. Marcoux
  • Patent number: 8048717
    Abstract: A method and system and for fabricating 3D (three-dimensional) SIC (stacked integrated chip) semiconductor devices. The system includes a vacuum chamber, a vacuum-environment treatment chamber, and a bonding chamber, though in some embodiments the same physical enclosure may serve more than one of these functions. A vacuum-environment treatment source in communication with the vacuum-environment treatment chamber provides a selected one or more of a hydrogen (H2)-based thermal anneal, an H2-based plasma treatment, or an ammonia (NH3)-based plasma treatment. In another embodiment, a method includes placing a semiconductor chip in a vacuum environment, performing a selected vacuum-environment treatment, and bonding the chip to a base wafer. A plurality of chips formed as dice on a semiconductor wafer may, of course, be simultaneously treated and bonded in this way as well, either before or after dicing.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: November 1, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Shi Liu, Chen-Hua Yu, Yuh-Jier Mii, Yuan-Chen Sun
  • Patent number: 8048718
    Abstract: A partly finished product of a semiconductor device includes a resin body encapsulating a semiconductor chip, first and second leads extended outwardly from the resin body, a dam bar connected between said first and second leads, and an excess resin portion protruding from the resin body between the first and second leads and the dam bar. The excess resin portion is cut off at two limited portions, and thereby two groove portions are formed in the excess resin portion. An apparatus for cutting the dam bar includes a punch having a cutting edge for cutting connection portions between the first and second leads and the dam bar and for cutting off the two limited portions of the excess resin portion. Since the cut region of the excess resin portion becomes smaller, a stress imparted to the resin body and/or the semiconductor chip through the excess resin portion can be smaller.
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: November 1, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Toshinori Kiyohara, Yoshiharu Kaneda, Yoshikazu Takada
  • Patent number: 8043876
    Abstract: Disclosed are a light emitting diode package and a manufacturing method thereof. According to an embodiment of the present invention, the method includes: manufacturing a package main body having a plurality of cavities, the cavities being formed in a line on one surface, through molding by putting thermoplastic polymer into a previously produced mold; forming an electrode passing through the package main body; mounting a light emitting diode chip on a basal surface of the each cavity formed in the package main body; connecting electrically the light emitting diode chip and the electrode by using a bonding means; and sealing the light emitting diode chip and the bonding means by using a molding resin.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: October 25, 2011
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Hwa-Young Lee, Ho-Joon Park, Jin Cheol Kim, Sang-Jun Yoon, Geum-Hee Yun, Jun-Rok Oh
  • Patent number: 8039311
    Abstract: A semiconductor package system includes: providing a semiconductor die with bonding pad on the semiconductor die; attaching the semiconductor die to an intermediate layer; attaching one end of a bonding wire to the bonding pad; forming a bonding ball at the other end of the bonding wire, the bonding ball being fully or partially embedded in the intermediate layer; encapsulating the semiconductor die, the bonding pad, the bonding wire, and a portion of the bonding ball with a mold compound; removing the intermediate layer, resulting in the bonding ball protruding from the exposed mold compound bottom surface; and conditioning the bonding ball.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: October 18, 2011
    Assignee: STATS ChipPAC Ltd.
    Inventors: Heap Hoe Kuan, Rui Huang, Seng Guan Chow
  • Patent number: 8039313
    Abstract: A semiconductor device and method for producing such a device is disclosed. One embodiment provides a semiconductor functional wafer having a first and second main surface. Component production processes are performed for producing a component functional region at the first main surface, wherein the component production processes produce an end state that is stable up to at least a first temperature. A carrier substrate is fitted to the first main surface. Access openings are produced to the first main surface. At least one further component production process is performed for producing patterned component functional regions at the first main surface of the functional wafer in the access openings. The end state produced in this process is stable up to a second temperature, which is less than the first temperature.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: October 18, 2011
    Assignee: Infineon Technologies AG
    Inventors: Friedrich Kroener, Francisco Javier Santos Rodriguez, Carsten von Koblinski
  • Patent number: 8039310
    Abstract: A semiconductor method comprises a method for making a device comprising: a base; a semiconductor chip provided on the base which includes a first main surface 20a on which a plurality of electrode pads is provided, a surface protecting film provided on the first main surface, a second main surface which opposes the first main surface, and a plurality of side surfaces between the surface of the surface protecting film and the second main surface; an insulating extension portion formed so as to surround the side surfaces of the semiconductor chip; a plurality of wiring patterns electrically connected to the electrode pads, respectively and extended from the electrode pads to the surface of the extension portion; a sealing portion formed on the wiring patterns such that a part of each of the wiring patterns is exposed; and a plurality of external terminals provided on the wiring patterns in a region including the upper side of the extension portion.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: October 18, 2011
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Kiyonori Watanabe
  • Patent number: 8039384
    Abstract: A semiconductor device has a vertically offset BOT interconnect structure. The vertical offset is achieved by forming different height first and second conductive layer above a substrate. A first patterned photoresist layer is formed over the substrate. A first conductive layer is formed in the first patterned photoresist layer. The first patterned photoresist layer is removed. A second patterned photoresist layer is formed over the substrate. A second conductive layer is formed in the second patterned photoresist layer. The height of the second conductive layer, for example 25 micrometers, is greater than the height of the first conductive layer which is 5 micrometers. The first and second conductive layers are interposed between each other close together to minimize pitch and increase I/O count while maintaining sufficient spacing to avoid electrical shorting after bump formation. An interconnect structure is formed over the first and second conductive layers.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: October 18, 2011
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, KiYoun Jang, HunTeak Lee
  • Patent number: 8039312
    Abstract: A capped micro-electro-mechanical systems (MEMS) device is formed using a device wafer and a cap wafer. The MEMS device is located on a frontside of the device wafer. A frontside of a cap wafer is attached to the frontside of the device wafer. A first stressor layer having a tensile stress is applied to a backside of the cap wafer after attaching the frontside of the cap wafer to the frontside of the device wafer. The first stressor layer and the cap wafer are patterned to form an opening through the first stressor layer and the cap wafer after applying the first stressor layer. A conductive layer is applied to the backside of the cap wafer, including through the opening to the frontside of the device wafer.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: October 18, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Veera M. Gunturu, Shivcharan V. Kamaraju, Lisa H. Karlin
  • Patent number: 8034663
    Abstract: Exemplary embodiments provide methods and systems for assembling electronic devices, such as integrated circuit (IC) chips, using a release member having a phase change material. Specifically, IC elements/components can be selectively received, stored, inspected, repaired, and/or released in a scalable manner during the assembly of IC chips by inducing phase change of the phase change material. The release member can be glass with the IC elements grown on the glass. In some embodiments, the release member can be used for a low cost placement of the IC elements in combination with an intermediate transfer layer.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: October 11, 2011
    Assignee: Eastman Kodak Company
    Inventors: Roger S. Kerr, Timothy J. Tredwell, Seung-Ho Baek
  • Publication number: 20110241215
    Abstract: A reconstituted wafer includes a rigid mass with a flat surface and a base surface disposed parallel planar to the flat surface. A plurality of dice are embedded in the rigid mass. The plurality of dice include terminals that are exposed through coplanar with the flat surface. A process of forming the reconstituted wafer includes removing some of the rigid mass to expose the terminals, while retaining the plurality of dice in the rigid mass. A process of forming an apparatus includes separating one apparatus from the reconstituted wafer.
    Type: Application
    Filed: April 2, 2010
    Publication date: October 6, 2011
    Inventors: Robert L. Sankman, John S. Guzek
  • Patent number: 8030131
    Abstract: A module having a semiconductor chip with a first contact element on a first main surface and a second contact element on a second main surface is disclosed. The semiconductor chip is arranged on a carrier. An insulating layer and a wiring layer cover the second main surface and the carrier.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: October 4, 2011
    Assignee: Infineon Technologies AG
    Inventors: Ralf Otremba, Xaver Schloegel, Klaus Schiess, Tien Lai Tan
  • Publication number: 20110223692
    Abstract: A method for packaging a semiconductor device. The method includes: providing a dielectric layer over the semiconductor device; determining patterns and placement of material on the dielectric layer to provide a predetermined magnetic or electric effect for the device, such effects being provided on the device from such patterned and placed material solely by electrical or magnetic waves coupled between such material and the device; and forming the material in the determined patterns and placement to provide the predetermined effects.
    Type: Application
    Filed: May 23, 2011
    Publication date: September 15, 2011
    Applicant: Raytheon Company
    Inventors: Michael G. Adlerstein, Francois Y. Colomb
  • Patent number: 8017417
    Abstract: Embodiments of the present invention provide an LED having a Wavelength Shift Layer (WSL) and method of manufacture. Specifically, under embodiment of the present invention, a WSL layer is applied over an LED chip. The WSL itself typically comprises two layers: an adhesion layer applied over a set (at least one) of LED chips, and a conformal coating over the adhesion layer. The adhesion layer provides improved adhesive effect of the conformal coating to the LED chip(s). The conformal coating is comprised of a particular phosphor ratio that is determined based on a wavelength measurement of the underlying LED chip(s). Specifically, under the present invention, a wavelength of a light output by an LED chip(s) (e.g., blue or ultra-violet (UV)) is measured (e.g., at the wafer level). Typically, the phosphor ratio of is comprised of at least one of the following colors: yellow, green, or red. Regardless, this conformal coating is applied over a glue layer that itself is applied over the LED chip.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: September 13, 2011
    Assignee: Lightizer Korea Co.
    Inventor: Byoung gu Cho
  • Patent number: 8017442
    Abstract: A method fabricates a packaging structure, including cutting a complete panel of packaging substrates with a large area into a plurality of packaging substrate blocks each having a plurality of packaging substrate units; mounting a semiconductor chip on each of the packaging substrate units and securing the semiconductor chip to the packaging substrate unit with a molding material, to form a plurality of packaging structure blocks each having a plurality of packaging structure units; and cutting the packaging structure block into a plurality of packaging structure units. Accordingly, each of the packaging structure unit has a moderate area, the alignment difference between the packaging structure units in each of the packaging structure blocks can be reduced, and the semiconductor chips for all the packaging substrate units in each of the packaging substrate blocks can be packaged at one time. Therefore, the yield is increased and the overall cost is reduced.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: September 13, 2011
    Assignee: Unimicron Technology Corporation
    Inventor: Shih-Ping Hsu
  • Patent number: 8017443
    Abstract: A light transmissive cover for a device comprising: a cover member of light transmissive material; and a junction member joined to the cover member, the junction member being a member used to be joined to the body of the device and having a light interrupting film on the inner surface thereof. A device provided with a light transmissive cover, the device being provided with a cover member of light transmissive material joined to the body of device via a junction member so as to cover at least a part of the device, and having a light interrupting film on the inner surface of the junction member is also disclosed. In addition, methods for manufacturing them disclosed.
    Type: Grant
    Filed: January 3, 2006
    Date of Patent: September 13, 2011
    Assignee: Shinko Electric Industries Co., Ltd
    Inventor: Akinori Shiraishi
  • Publication number: 20110217799
    Abstract: A method for the separation of multiple dies during semiconductor fabrication is described. On an upper surface of a semiconductor wafer containing multiple dies, metal layers are deposited everywhere except where a block of stop electroplating material exists. The stop electroplating material is obliterated, and a barrier layer is formed above the entire remaining structure. A sacrificial metal element is added above the barrier layer, and then the substrate is removed. After the semiconductor material between the individual dies is eradicated, any desired bonding pads and patterned circuitry are added to the semiconductor surface opposite the sacrificial metal element, a passivation layer is added to this surface, and then the sacrificial metal element is removed. Tape is added to the now exposed barrier layer, the passivation layer is removed, the resulting structure is flipped over, and the tape is expanded to separate the individual dies.
    Type: Application
    Filed: May 17, 2011
    Publication date: September 8, 2011
    Inventors: Chen-Fu Chu, Trung Tri Doan, Hao-Chun Cheng, Feng-Hsu Fan, Fu-Hsien Wang
  • Publication number: 20110215461
    Abstract: A method for manufacturing a semiconductor device according to one embodiment of the present invention includes a step of covering a plurality of base plates in which respective semiconductor chips are mounted, by means of a sealing resin such that a plurality of base plates are spaced apart from each other, and a step of cutting the sealing resin between a plurality of base plates.
    Type: Application
    Filed: March 3, 2011
    Publication date: September 8, 2011
    Inventor: Toshitsune IIJIMA
  • Patent number: 8012798
    Abstract: A method for manufacturing a semiconductor device includes forming a first opening in a substrate to expose an interconnect structure, forming a seed film on the substrate, forming a first projecting electrode buried inside the first opening protruding outward from the substrate, forming a first metal film on the first projecting electrode, attaching a first supporting substrate to the substrate with a first adhesion layer, forming a second opening in the substrate to expose the interconnect structure, forming a second projecting electrode buried inside the second opening and protruding outward from the substrate, forming a second metal film on the second projecting electrode, attaching a second supporting substrate to the substrate with a second adhesion layer, removing the first supporting substrate, the first adhesion layer, and an exposed part of the seed film, removing the second supporting substrate and the second adhesion layer, and cutting the substrate into the plurality of chips.
    Type: Grant
    Filed: May 5, 2010
    Date of Patent: September 6, 2011
    Assignee: Elpida Memory, Inc.
    Inventor: Toru Miyazaki
  • Patent number: 8012799
    Abstract: A method for packaging a semiconductor die or assembling a semiconductor device that includes a heat spreader begins with attaching the heat spreader to a film and dispensing a mold compound in granular form onto the film such that the mold compound at least partially covers the film and the heat spreader. The film with the attached heat spreader is placed in a first mold section. A substrate having a semiconductor die attached and electrically coupled to it are placed in a second mold section and then the first and second mold sections are mated such that the die is covered by the heat spreader. The granular mold compound is then melted so that the mold compound covers the die and sides of the heat spreader. The first and second mold sections then are separated. The film, which adheres to the substrate, is removed to expose a top surface of the heat spreader, and thus a semiconductor device is formed.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: September 6, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Ruzaini Ibrahim, Seng Kiong Teng
  • Patent number: 8012804
    Abstract: A method and system for providing energy assisted magnetic recording (EAMR) heads including EAMR transducers are described. The method and system include aligning a laser bar to the EAMR heads on a substrate. The laser bar includes lasers in locations corresponding to a portion of the EAMR transducers. The method and system also include bonding the laser bar to the substrate and removing a portion of the laser bar to separate the plurality of lasers. The substrate is separated into the EAMR heads.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: September 6, 2011
    Assignee: Western Digital (Fremont), LLC
    Inventors: Lei Wang, Shing Lee
  • Patent number: 8008121
    Abstract: A semiconductor package has a first conductive via formed through a substrate. The substrate with first conductive via is mounted to a first carrier. A first semiconductor die is mounted to a first surface of the substrate. A first encapsulant is deposited over the first die and first carrier. The first carrier is removed. The first die and substrate with the first encapsulant is mounted to a second carrier. A second semiconductor die is mounted to a second surface of the substrate opposite the first surface of the substrate. A second encapsulant is deposited over the second die. The second carrier is removed. A bump is formed over the second surface of the substrate. A conductive layer can be mounted over the first die. A second conductive via can be formed through the first encapsulant and electrically connected to the first conductive via. The semiconductor packages are stackable.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: August 30, 2011
    Assignee: STATS ChipPAC, Ltd.
    Inventors: DaeSik Choi, JongHo Kim, HyungMin Lee
  • Patent number: 8008127
    Abstract: A plurality of IC regions are formed on a semiconductor wafer, which is cut into individual chips incorporating ICs, wherein wiring layers and insulating layers are sequentially formed on a silicon substrate. In order to reduce height differences between ICs and scribing lines, a planar insulating layer is formed to cover the overall surface with respect to ICs, seal rings, and scribing lines. In order to avoid occurrence of breaks and failures in ICs, openings are formed to partially etch insulating layers in a step-like manner so that walls thereof are each slanted by prescribed angles ranging from 20° to 80°. For example, a first opening is formed with respect to a thin-film element section, and a second opening is formed with respect to an external-terminal connection pad.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: August 30, 2011
    Assignee: Yamaha Corporation
    Inventor: Hiroshi Naito
  • Publication number: 20110204513
    Abstract: A device includes a semiconductor chip having contact pads arranged on a first main face of the semiconductor chip. A first material has an elongation to break of greater than 35% covering the first main face of the semiconductor chip. An encapsulation body covers the semiconductor chip. A metal layer is electrically coupled to the contact pads of the semiconductor chip and extends over the encapsulation body.
    Type: Application
    Filed: February 25, 2010
    Publication date: August 25, 2011
    Inventors: Thorsten Meyer, Ludwig Heitzer, Dominic Maier
  • Patent number: 8003515
    Abstract: A description is given of a device, including a semiconductor chip, a first metal layer laterally extending over the semiconductor chip, the first metal layer having a first thickness. A dielectric layer laterally extends over the first metal layer, and a second metal layer laterally extends over the dielectric layer, the second metal layer having a second thickness that is at least four times larger than the first thickness.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: August 23, 2011
    Assignee: Infineon Technologies AG
    Inventors: Thorsten Meyer, Andreas Bahr
  • Patent number: 8003534
    Abstract: An apparatus and method for holding a semiconductor device in a wafer. A bar is connected to the wafer. A first sidewall comprises a first end and a second, and is connected to the bar at its first end. A first tab comprises a first end and a second end, and is connected to the second end of the first sidewall at its first end and connected to the first side of the semiconductor device at its second end. The thickness of the first tab is less than the thickness of the bar and the thickness of the first sidewall.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: August 23, 2011
    Assignee: Applied Nanostructures, Inc.
    Inventor: Ami Chand
  • Publication number: 20110198743
    Abstract: A method includes providing a carrier having a first cavity, providing a dielectric foil with a metal layer attached to the dielectric foil, placing a first semiconductor chip in the first cavity of the carrier, and applying the dielectric foil to the carrier.
    Type: Application
    Filed: February 16, 2010
    Publication date: August 18, 2011
    Inventors: Ivan Nikitin, Joachim Mahler
  • Patent number: 7999348
    Abstract: A semiconductor on insulator (SOI) wafer includes a semiconductor substrate having first and second main surfaces opposite to each other. A dielectric layer is disposed on at least a portion of the first main surface of the semiconductor substrate. A device layer has a first main surface and a second main surface. The second main surface of the device layer is disposed on a surface of the dielectric layer opposite to the semiconductor substrate. A plurality of intended die areas are defined on the first main surface of the device layer. The plurality of intended die areas are separated from one another. A plurality of die access trenches are formed in the semiconductor substrate from the second main surface. Each of the plurality of die access trenches are disposed generally beneath at least a respective one of the plurality of intended die areas.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: August 16, 2011
    Assignee: Icemos Technology Ltd.
    Inventors: Robin Wilson, Conor Brogan, Hugh J. Griffin, Cormac MacNamara
  • Patent number: 7993973
    Abstract: The present invention provides a structure combining an IC integrated substrate and a carrier, which comprises a carrier and an IC integrated substrate formed on the carrier. The interface between the IC integrated substrate and the carrier has a specific area at which the interface adhesion is different from that at the remaining area of the interface. The present invention also provides a method of manufacturing the above structure and a method of manufacturing electronic devices using the above structure.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: August 9, 2011
    Assignee: Princo Corp.
    Inventor: Chih-kuang Yang