Inverted Transistor Structure Patents (Class 438/158)
  • Publication number: 20130313530
    Abstract: There are provided an oxide TFT, a method for fabricating a TFT, an array substrate for a display device having a TFT, and a method for fabricating the display device. The oxide thin film transistor includes: a gate electrode formed on a substrate; a gate insulating layer formed on the entire surface of the substrate including the gate electrode; an active layer pattern formed on the gate insulating layer above the gate electrode and completely overlapping the gate electrode; an etch stop layer pattern formed on the active layer pattern and the gate insulating layer; and a source electrode and a drain electrode formed on the gate insulating layer including the etch stop layer pattern and the active layer pattern and spaced apart from one another, and overlapping both sides of the etch stop layer pattern and the underlying active layer pattern.
    Type: Application
    Filed: December 28, 2012
    Publication date: November 28, 2013
    Applicant: LG Display Co., Ltd.
    Inventors: HyunSik Seo, MoonGoo Kim, BongChul Kim, JeongHoon Lee, ChangIl Ryoo
  • Publication number: 20130313556
    Abstract: An array substrate for a liquid crystal display and a method for manufacturing the same are disclosed. The array substrate for a liquid crystal display includes a source electrode and a drain electrode and an organic insulating film positioned on the source electrode and the drain electrode. The organic insulating layer includes a first contact hole exposing the drain electrode, and having a stepped level difference formed on the sloping surface of the first contact hole.
    Type: Application
    Filed: May 10, 2013
    Publication date: November 28, 2013
    Inventors: Jinpil Kim, Kiyoung Jung, Keumkyu Min, Sangsu Jang
  • Patent number: 8591650
    Abstract: It is an object to provide a method for forming a crystalline semiconductor film in which a transition layer is not formed or which includes a thinner transition layer than that in a crystalline semiconductor film which is formed by conventional method, and a method for manufacturing a thin film transistor to which the above method is applied. A semiconductor film including hydrogen is formed over a substrate or over an insulating film formed over a substrate. The semiconductor film including hydrogen undergoes surface wave plasma treatment, which is performed in a gas including hydrogen and/or a rare gas, to generate a crystal nucleus in the semiconductor film including hydrogen. The crystal nucleus is grown to form a crystalline semiconductor film by employing a plasma CVD method.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: November 26, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Satoshi Toriumi
  • Publication number: 20130309821
    Abstract: A method of manufacturing a thin film transistor array substrate includes forming a gate pattern on a substrate, forming a gate insulating film on the substrate, forming a source/drain pattern and a semiconductor pattern on the substrate, forming first, second, and third passivation films successively on the substrate. Over the above multi-layered passivation film forming a first photoresist pattern including a first portion formed on part of the drain electrode and on the pixel region, and a second portion. The second portion is thicker than the first portion. Then, patterning the third passivation film using the first photoresist pattern, forming a second photoresist pattern by removing the first portion of the first photoresist pattern, forming a transparent electrode film on the substrate, removing the second photoresist pattern and the transparent electrode film disposed on the second photoresist pattern, and forming a transparent electrode pattern on the second passivation layer.
    Type: Application
    Filed: April 25, 2013
    Publication date: November 21, 2013
    Applicant: Samsung Display Co., Ltd.
    Inventors: Hyeong-Suk YOO, Ho-Jun LEE, Sung-Ryul KIM, O-Sung SEO, Hong-Kee CHIN
  • Publication number: 20130309822
    Abstract: An insulating layer which releases a large amount of oxygen is used as an insulating layer in contact with a channel region of an oxide semiconductor layer, and an insulating layer which releases a small amount of oxygen is used as an insulating layer in contact with a source region and a drain region of the oxide semiconductor layer. By releasing oxygen from the insulating layer which releases a large amount of oxygen, oxygen deficiency in the channel region and an interface state density between the insulating layer and the channel region can be reduced, so that a highly reliable semiconductor device having small variation in electrical characteristics can be manufactured. The source region and the drain region are provided in contact with the insulating layer which releases a small amount of oxygen, thereby suppressing the increase of the resistance of the source region and the drain region.
    Type: Application
    Filed: July 24, 2013
    Publication date: November 21, 2013
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yuta Endo, Kosei Noda, Toshinari Sasaki
  • Publication number: 20130299837
    Abstract: In a thin-film semiconductor device, a semiconductor layer has a bandgap energy of 1.6 eV or less, an insulating layer formed above the semiconductor layer includes: a first insulating layer region placed outside of a first contact opening and above one end of a gate electrode; a second insulating layer region placed outside of a second contact opening and above the other end of the gate electrode which opposes the one end; and a third insulating layer region being rectangular and placed between the first contact opening and the second contact opening.
    Type: Application
    Filed: July 12, 2013
    Publication date: November 14, 2013
    Inventors: Hiroshi HAYASHI, Takahiro KAWASHIMA, Genshiro KAWACHI
  • Publication number: 20130302951
    Abstract: A method for forming a surrounding stacked gate fin FET nonvolatile memory structure includes providing a silicon-on-insulator (SOI) substrate of a first conductivity type, patterning a fin active region on a region of the substrate, forming a tunnel oxide layer on the fin active region, and depositing a first gate electrode of a second conductivity type on the tunnel oxide layer and upper surface of the substrate. The method further includes forming a dielectric composite layer on the first gate electrode, depositing a second gate electrode on the dielectric composite layer, patterning the first and second gate electrodes to define a surrounding stacked gate area, forming a spacer layer on a sidewall of the stacked gate electrode, and forming elevated source/drain regions in the fin active region on both sides of the second gate electrode.
    Type: Application
    Filed: July 12, 2013
    Publication date: November 14, 2013
    Inventors: De Yuan Xiao, Lily Jiang, Gary Chen, Roger Lee
  • Publication number: 20130299838
    Abstract: A thin-film transistor (TFT) array substrate and manufacturing method thereof are disclosed herein. A first metal layer is deposited on a substrate, and a first mask is utilized for patterning the first metal layer to form a gate. A gate insulative layer and a semiconductive layer are deposited on the substrate, and a second mask is utilized to pattern the semiconductive layer except which above the gate is retained. A transparent conductive layer and a second metal layer are disposed on the substrate, and a multi-stage mask adjustment is used for patterning the transparent conductive layer and the second metal layer to form a source, a drain and a common electrode. A reflective layer is formed with the second metal layer on the common electrode.
    Type: Application
    Filed: May 9, 2012
    Publication date: November 14, 2013
    Applicant: SHENZHEN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Hua Huang, Pei Jia
  • Patent number: 8581257
    Abstract: The circuit board (1) of the present invention includes a plurality of transistor elements provided on a single insulating substrate (2) for respective pixels that are two-dimensionally arranged or respective pixels in a group of a predetermined number of the pixels. At least one of the plurality of transistor elements is an oxide TFT (10) having a channel layer (11) formed by an oxide semiconductor, and at least another of the plurality of transistor elements is an a-Si TFT (20) having a channel layer (21) formed by, for example, an amorphous silicon semiconductor. Each of the oxide TFT (10) and the a-Si TFT (20) is a bottom-gate transistor.
    Type: Grant
    Filed: January 17, 2011
    Date of Patent: November 12, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Atsuhito Murai, Shinya Tanaka, Hideki Kitagawa, Hajime Imai, Mitsunori Imade, Tetsuo Kikuchi, Kazunori Morimoto, Junya Shimada, Jun Nishimura
  • Publication number: 20130292682
    Abstract: In a thin film transistor substrate (10) having an island-like channel protection layer (15a) covering a channel portion of an oxide semiconductor layer (14), a source electrode (16S) and a drain electrode (16D) are formed of an aluminum alloy film or a multilayer film including an aluminum alloy film.
    Type: Application
    Filed: January 10, 2012
    Publication date: November 7, 2013
    Applicant: SHARP KABUSHIKI KAISHA
    Inventor: Sumio Katoh
  • Publication number: 20130292768
    Abstract: A method of fabricating an array substrate includes forming a first metal layer, a gate insulating material layer and an oxide semiconductor material layer on a substrate; heat-treating the substrate having the oxide semiconductor material layer at a temperature of about 300 degrees Celsius to about 500 degrees Celsius; patterning the oxide semiconductor material layer, the gate insulating material layer and the first metal layer, thereby forming a gate electrode, a gate insulating layer and an oxide semiconductor layer; forming a gate line connected to the gate electrode and made of low resistance metal material; forming source and drain electrodes, a data line and a pixel electrode, the source and drain electrodes and the data line having a double-layered structure of a transparent conductive material layer and a low resistance metal material layer, the pixel electrode made of the transparent conductive material layer.
    Type: Application
    Filed: May 2, 2013
    Publication date: November 7, 2013
    Applicant: LG Display Co., Ltd.
    Inventors: Ki-Sul Cho, Jin-Chae Jeon
  • Publication number: 20130295731
    Abstract: A manufacturing method of a thin film transistor (TFT) includes forming a gate electrode including a metal that can be combined with silicon to form silicide on a substrate and forming a gate insulation layer by supplying a gas which includes silicon to the gate electrode at a temperature below about 280° C. The method further includes forming a semiconductor on the gate insulation layer, forming a data line and a drain electrode on the semiconductor and forming a pixel electrode connected to the drain electrode.
    Type: Application
    Filed: July 12, 2013
    Publication date: November 7, 2013
    Inventors: BYOUNG-JUNE KIM, Jae-Ho Choi, Chang-Oh Jeong, Sung-Hoon Yang, Je-Hun Lee, Do-Hyun Kim, Hwa-Yeul Oh, Yong-Mo Choi
  • Patent number: 8574952
    Abstract: A method for manufacturing a semiconductor device is provided. The method includes the steps of: (1) coating a solution containing an organic semiconductor material on a water-repellent surface of a water-repellent stamp substrate; (2) drying the thus coated organic semiconductor material-containing solution on the water-repellent surface to crystallize the organic semiconductor material in contact with the water-repellent surface, thereby forming a semiconductor layer; (3) thermally treating the semiconductor layer formed on the stamp substrate; and (4) pressing the stamp substrate at a side, in which the thermally treated organic semiconductor layer is formed, against a surface of a substrate to be transferred so that the organic semiconductor layer is transferred to the surface of the substrate to be transferred.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: November 5, 2013
    Assignee: Sony Corporation
    Inventor: Akihiro Nomoto
  • Patent number: 8574971
    Abstract: An approach for patterning and etching without a mask is provided in a manufacturing a thin-film transistor, a gate electrode, a gate insulating layer, a semiconductor layer, an ohmic contact layer and source metal layer of a substrate. A first photoresist pattern including a first photo pattern and a second photo pattern is formed using a digital exposure device by generating a plurality of spot beams, the first photo pattern is formed to a first region of the base substrate and has a first thickness, and the second photo pattern is formed to a second region adjacent to the first region, and has a second thickness and a width in a range of about 50% to about 60% of a diameter of the spot beam. The source metal layer is patterned to form a source electrode and a drain electrode, and the source electrode and the drain electrode are spaced apart from each other in the first region of an active pattern.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: November 5, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Sang-Hyun Yun, Cha-Dong Kim, Jung-In Park, Hi-Kuk Lee
  • Patent number: 8575605
    Abstract: An organic light-emitting display device includes: a substrate having a transistor region and a thin-film transistor having a gate electrode, a source/drain electrode and an active layer sequentially formed on the transistor region, wherein a portion of the source/drain electrode is between the active layer and substrate.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: November 5, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventor: Seong-Kweon Heo
  • Patent number: 8575608
    Abstract: An embodiment is a thin film transistor which includes a gate electrode layer, a gate insulating layer provided so as to cover the gate electrode layer; a first semiconductor layer entirely overlapped with the gate electrode layer; a second semiconductor layer provided over and in contact with the first semiconductor layer and having a lower carrier mobility than the first semiconductor layer; an impurity semiconductor layer provided in contact with the second semiconductor layer; a sidewall insulating layer provided so as to cover at least a sidewall of the first semiconductor layer; and a source and drain electrode layers provided in contact with at least the impurity semiconductor layer. The second semiconductor layer may consist of parts which are apart from each other over the first semiconductor layer.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: November 5, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shinya Sasagawa, Akihiro Ishizuka, Shinobu Furukawa, Motomu Kurata
  • Publication number: 20130285061
    Abstract: An organic film-forming polymer has a Tg of at least 70° C. and comprises a backbone comprising recurring units of Structure (A) shown in this application. These organic film-forming polymers can be used as dielectric materials in various devices with improved properties such as improved mobility.
    Type: Application
    Filed: April 25, 2012
    Publication date: October 31, 2013
    Inventors: Deepak Shukla, Douqlas R. Robello, Mark R. Mis, Wendy G. Ahearn, Dianne M. Meyer
  • Publication number: 20130285142
    Abstract: Narrow-body FETs, such as, FinFETs and trigates, exhibit superior short-channel characteristics compared to thick-body devices, such as planar bulk Si FETs and planar partially-depleted SOI (PDSOI) FETs. A common problem, however, with narrow-body devices is high series resistance that often negates the short-channel benefits. The high series resistance is due to either dopant pile-up at the SOI/BOX interface or dopant diffusion into the BOX. This disclosure describes a novel narrow-body device geometry that is expected to overcome the high series resistance problem.
    Type: Application
    Filed: April 27, 2012
    Publication date: October 31, 2013
    Applicant: International Business Machines Corporation
    Inventors: Josephine B. Chang, Michael A. Guillorn, Amlan Majumdar, Lidija Sekaric
  • Publication number: 20130285063
    Abstract: The present invention discloses a thin-film transistor (TFT) array substrate and a manufacturing method thereof. Depositing a transparent conductive layer and a first metal layer on a substrate, which is patterned by a multi-tone mask (MTM) to form a gate, a common electrode and a reflecting layer; depositing a gate insulation layer, which is patterned by a first mask to remain the gate insulation layer on the gate; depositing a semiconductor layer, which is patterned by a second mask to remain the semiconductor layer on the gate; and depositing a second metal layer, which is patterned by a third mask to form a source and a drain.
    Type: Application
    Filed: May 9, 2012
    Publication date: October 31, 2013
    Applicant: SHENZHEN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Hua Huang, Pei Jia
  • Publication number: 20130285058
    Abstract: The present invention discloses a thin-film transistor (TFT) array substrate and a manufacturing method thereof. Depositing a transparent conductive layer and a first metal layer in turn on a substrate patterned by a first multi-tone mask (MTM) to form a gate, a common electrode and a reflecting layer; depositing a gate insulation layer and a semiconductor layer patterned by a second MTM to remain the semiconductor layer on the gate; and depositing a second metal layer patterned by a third MTM to form a source and a drain.
    Type: Application
    Filed: May 9, 2012
    Publication date: October 31, 2013
    Applicant: SHENZHEN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO. LTD.
    Inventors: Hua Huang, Pei Jia
  • Patent number: 8569120
    Abstract: An object is to provide a method for manufacturing a thin film transistor having favorable electric characteristics, with high productivity. A gate electrode is formed over a substrate and a gate insulating layer is formed over the gate electrode. A first semiconductor layer is formed over the gate insulating layer by generating plasma using a deposition gas containing silicon or germanium, hydrogen, and a rare gas. Next, a second semiconductor layer including an amorphous semiconductor and a microcrystal semiconductor is formed in such a manner that the first semiconductor layer is partially grown as a seed crystal by generating plasma using a deposition gas containing silicon or germanium, hydrogen, and a gas containing nitrogen. Then, a semiconductor layer to which an impurity imparting one conductivity is added is formed and a conductive film is formed. Thus, a thin film transistor is manufactured.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: October 29, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Erika Takahashi, Takayuki Kato, Hidekazu Miyairi, Yasuhiro Jinbo, Mitsuhiro Ichijo, Tomokazu Yokoi
  • Patent number: 8569115
    Abstract: A compliant bipolar micro device transfer head array and method of forming a compliant bipolar micro device transfer array from an SOI substrate are described. In an embodiment, a compliant bipolar micro device transfer head array includes a base substrate and a patterned silicon layer over the base substrate. The patterned silicon layer may include first and second silicon interconnects, and first and second arrays of silicon electrodes electrically connected with the first and second silicon interconnects and deflectable into one or more cavities between the base substrate and the silicon electrodes.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: October 29, 2013
    Assignee: LuxVue Technology Corporation
    Inventors: Dariusz Golda, Andreas Bibl
  • Publication number: 20130280867
    Abstract: The present invention provides a method for manufacturing a highly reliable semiconductor device with a small amount of leakage current. In a method for manufacturing a thin film transistor, etching is conducted using a resist mask to form a back channel portion in the thin film transistor, the resist mask is removed, a part of the back channel is etched to remove etching residue and the like left over the back channel portion, whereby leakage current caused by the residue and the like can be reduced. The etching step of the back channel portion can be conducted by dry etching using non-bias.
    Type: Application
    Filed: June 24, 2013
    Publication date: October 24, 2013
    Inventors: Hidekazu MIYAIRI, Shinya SASAGAWA, Akihiro ISHIZUKA
  • Publication number: 20130277678
    Abstract: A thin-film semiconductor device manufacturing method according to the present disclosure includes: preparing a substrate; forming a gate electrode above the substrate; forming a gate insulating film above the substrate; forming an amorphous film (amorphous silicon film) above the substrate; forming a crystalline film (crystalline silicon film) including a first crystal and a second crystal, by crystallizing the amorphous film, the first crystal (i) containing subgrains formed with different crystal orientations in a single crystal and (ii) including a subgrain boundary formed by plural crystal planes between the subgrains, the second crystal having an average crystal grain size smaller than an average crystal grain size of the first crystal; thinning the crystalline film; and forming a source electrode and a drain electrode above the substrate.
    Type: Application
    Filed: June 14, 2013
    Publication date: October 24, 2013
    Inventors: Sei OOTAKA, Hiroshi YOSHIOKA, Takahiro KAWASHIMA, Hikaru NISHITANI
  • Publication number: 20130271690
    Abstract: A semiconductor device (1001) includes a thin-film transistor (103) including a gate electrode (3a), source and drain electrodes (13as, 13ad), and an oxide semiconductor layer (7), and a source bus line (13s). The source electrode, the source bus line and the drain electrode include a first metallic element and the oxide semiconductor layer includes a second metallic element. When viewed along a normal to its substrate, at least respective portions of the source electrode, the source bus line, and the drain electrode overlap with the oxide semiconductor layer. A low reflecting layer (4s, 4d) which includes the first and second metallic elements and which has a lower reflectance to visible radiation than the source electrode has been formed between the source electrode and the oxide semiconductor layer, between the source bus line and the oxide semiconductor layer, and between the drain line and the oxide semiconductor layer.
    Type: Application
    Filed: December 20, 2011
    Publication date: October 17, 2013
    Applicant: SHARP KABUSHIKI KAISHA
    Inventor: Hiroshi Matsukizono
  • Publication number: 20130273700
    Abstract: Disclosed herein are techniques for fabricating a 3D stacked memory device having word line (WL) select gates. The bodies of the WL select gates may be formed from the same material (e.g., highly doped polysilicon) that the word lines are formed. Desired doping profiles in a body of a WL select gate may be achieved by various techniques such as counter-doping. The WL select gates may include TFTs that formed by etching holes in the layer in which word lines are formed. Gate electrodes and gate dielectrics may be formed in the holes. Bodies may be formed in the polysilicon outside of the holes.
    Type: Application
    Filed: January 2, 2013
    Publication date: October 17, 2013
    Applicant: SANDISK TECHNOLOGIES INC.
    Inventors: Peter Rabkin, Masaaki Higashitani
  • Patent number: 8557621
    Abstract: A method for manufacturing a thin film transistor array panel, including: sequentially forming a first silicon layer, a second silicon layer, a lower metal layer, and an upper metal layer on a gate insulating layer and a gate line; forming a first film pattern on the upper metal layer; forming a first lower metal pattern and a first upper metal pattern that includes a protrusion, by etching the upper metal layer and the lower metal layer; forming first and second silicon patterns by etching the first and second silicon layers; forming a second film pattern by ashing the first film pattern; forming a second upper metal pattern by etching the first upper metal pattern; forming a data line and a thin film transistor by etching the first lower metal pattern and the first and second silicon patterns; and forming a passivation layer and a pixel electrode on the resultant.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: October 15, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jong-Hyun Choung, Yang Ho Bae, Jean Ho Song, O Sung Seo, Sun-Young Hong, Hwa Yeul Oh, Bong-Kyun Kim, Nam Seok Suh, Dong-Ju Yang, Wang Woo Lee
  • Patent number: 8558230
    Abstract: A thin film transistor (TFT) substrate and a method of fabricating the same are provided. The thin film transistor substrate may have low resistance characteristics and may have reduced mutual diffusion and contact resistance between an active layer pattern and data wiring. The thin film transistor substrate may include gate wiring formed on an insulating substrate. Oxide active layer patterns may be formed on the gate wiring and may include a first substance. Data wiring may be formed on the oxide active layer patterns to cross the gate wiring and may include a second substance. Barrier layer patterns may be disposed between the oxide active layer patterns and the data wiring and may include a third substance.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: October 15, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Dong-Hoon Lee, Je-Hun Lee, Do-Hyun Kim, Hee-Tae Kim, Chang-Oh Jeong, Pil-Sang Yun, Ki-Won Kim
  • Patent number: 8557687
    Abstract: A microcrystalline semiconductor film having a high crystallinity is formed. Further, a thin film transistor having preferable electric characteristics and high reliability and a display device including the thin film transistor are manufactured with high mass productivity. A step in which a deposition gas containing silicon or germanium is introduced at a first flow rate and a step in which the deposition gas containing silicon or germanium is introduced at a second flow rate are repeated while hydrogen is introduced at a fixed rate, so that the hydrogen and the deposition gas containing silicon or germanium are mixed, and a high-frequency power is supplied. Therefore, a microcrystalline semiconductor film is formed over a substrate.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: October 15, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Ryota Tajima, Tetsuhiro Tanaka, Ryo Tokumaru, Hidekazu Miyairi, Mitsuhiro Ichijo, Taichi Nozawa
  • Patent number: 8557643
    Abstract: A device with reduced gate resistance includes a gate structure having a first conductive portion and a second conductive portion formed in electrical contact with the first conductive portion and extending laterally beyond the first conductive portion. The gate structure is embedded in a dielectric material and has a gate dielectric on the first conductive portion. A channel layer is provided over the first conductive portion. Source and drain electrodes are formed on opposite end portions of a channel region of the channel layer. Methods for forming a device with reduced gate resistance are also provided.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: October 15, 2013
    Assignee: International Business Machines Corporation
    Inventors: Shu-Jen Han, Alberto Valdes Garcia
  • Publication number: 20130264570
    Abstract: A thin film transistor and a method for fabricating the same are disclosed. The thin film transistor includes: a gate electrode formed on a substrate and having a plurality of horizontal electrode parts spaced apart at regular intervals; a gate insulating film formed over the entire surface of the substrate including the gate electrode; an active pattern formed on the gate insulating film above the plurality of horizontal electrode parts; an etch stop film pattern formed above the active pattern and the gate insulating film so as to overlap top portions of the active pattern and the gate electrode and; a source electrode formed on the active pattern, the gate insulating film, and the etch stop film pattern so as to overlap top portions of adjacent horizontal electrode parts; and a drain electrode formed on the active pattern, the gate insulating film, and the etch stop film pattern so as to overlap top portions of horizontal electrode parts located on the outermost ends.
    Type: Application
    Filed: December 26, 2012
    Publication date: October 10, 2013
    Applicant: LG Display Co., Ltd.
    Inventors: KiSul CHO, MiKyung PARK, JaeYeong CHOI
  • Patent number: 8552430
    Abstract: A thin-film transistor array substrate is disclosed. In one embodiment, the transistor includes a capacitor including a lower electrode disposed on the same layer as an active layer and an upper electrode disposed on the same layer as a gate electrode. The transistor may also include a first insulating layer disposed between the active layer and the gate electrode and between the lower and upper electrodes, the first insulating layer not being disposed on a perimeter of the lower electrode. The transistor may further include a second insulating layer between the first insulating layer and the source and drain electrodes, the second insulating layer not being disposed on perimeters of the upper and lower electrodes.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: October 8, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jong-Hyun Park, Chun-Gi You, Sun Park, Yul-Kyu Lee, Sang-Ho Moon
  • Patent number: 8551827
    Abstract: An organic light emitting diode display device and a method of manufacturing thereof, the device including a substrate, the substrate including a pixel part and a circuit part; a first semiconductor layer and a second semiconductor layer on the pixel part of the substrate; a gate insulating layer on an entire surface of the substrate; gate electrodes on the gate insulating layer, the gate electrodes corresponding to the first semiconductor layer and the second semiconductor layer, respectively; source/drain electrodes insulated from the gate electrodes, the source/drain electrodes being connected to the first and second semiconductor layers, respectively; a first electrode connected to the source/drain electrodes of the first semiconductor layer; an organic layer on the first electrode; a second layer on the organic layer; and a metal catalyst layer under the first semiconductor layer.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: October 8, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Yong-Hwan Park, Kyu-Sik Cho, Sang-Ho Moon, Byoung-Kwon Choo, Min-Chul Shin, Tae-Hoon Yang, Bo-Kyung Choi, Won-Kyu Lee, Yun-Gyu Lee, Joon-Hoo Choi
  • Publication number: 20130256670
    Abstract: A thin film transistor is disclosed. The drain and source electrode layer of the thin film transistor is disposed on the substrate, in which the drain and source electrode layer is divided into a drain region and a source region. The semiconductor layer and the first insulating layer are disposed on the drain and source electrode layer, in which the first insulating layer has an upper limit of thickness. The second insulating layer is disposed on the semiconductor layer and the first insulating layer, in which the second insulating layer has a lower limit of thickness. The gate electrode layer is disposed on the second insulating layer. The passivation layer is disposed on the gate electrode layer, and the pixel electrode layer is disposed on the passivation layer.
    Type: Application
    Filed: January 28, 2013
    Publication date: October 3, 2013
    Applicant: E Ink Holdings Inc.
    Inventors: Wei-Chou LAN, Ted-Hong SHINN
  • Publication number: 20130256798
    Abstract: A thin film transistor includes: a gate electrode and a pair of source-drain electrodes provided on a substrate; an oxide semiconductor layer provided between the gate electrode and the pair of source-drain electrodes, the oxide semiconductor layer forming a channel; a protection film provided over whole of a surface above the substrate; and a gate insulating film provided on a gate electrode side of the oxide semiconductor layer, the gate insulating film having end faces part or all of which are covered with the pair of source-drain electrodes or with the protection film.
    Type: Application
    Filed: March 25, 2013
    Publication date: October 3, 2013
    Applicant: Sony Corporation
    Inventor: Tomoatsu Kinoshita
  • Publication number: 20130256666
    Abstract: A thin film transistor and a manufacturing method thereof are provided. The thin film transistor includes a gate, an oxide channel layer, a gate insulating layer, a source, a drain and a dielectric layer. The gate is disposed on a substrate. The oxide channel layer, disposed on the substrate, is stacked with the gate. A material of the oxide channel layer includes a metal element. The metal element content shows a gradient distribution along a thickness direction of the oxide channel layer. The gate insulation layer is disposed between the gate and the oxide channel layer. The source and the drain are disposed in parallel to each other, and connected to the oxide channel layer. Sides of the source and the drain, facing away from the substrate, are covered by the dielectric layer.
    Type: Application
    Filed: March 18, 2013
    Publication date: October 3, 2013
    Applicants: WINTEK CORPORATION, Dongguan Masstop Liquid Crystal Display Co., Ltd.
    Inventors: Hui-Yu Chang, Ming-Chang Yu, Chang-Ching Chiou, Hsi-Rong Han
  • Patent number: 8546197
    Abstract: A method of manufacturing a thin film transistor includes: forming a gate electrode on a substrate; forming a gate insulating layer on the gate electrode; forming an organic semiconductor layer on the gate insulating layer; forming an organic semiconductor pattern by selectively removing part of the organic semiconductor layer by means of a laser ablation method; and forming source and drain electrodes on the organic semiconductor pattern.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: October 1, 2013
    Assignee: Sony Corporation
    Inventors: Noriyuki Kawashima, Hidehisa Murase, Mao Katsuhara
  • Patent number: 8546161
    Abstract: Etching of a semiconductor layer including a part over a gate wiring and formation of a contact hole for connection between a pixel electrode and a drain electrode are performed by one-time photolithography step and one-time etching step; thus, the number of photolithography steps is reduced. The exposed part of the gate wiring is covered by an insulating layer, and this insulating layer also functions as a spacer for maintaining a space for a liquid crystal layer. By the reduction in the number of photolithography steps, a liquid crystal display device can be provided at lower cost and higher productivity. Using an oxide semiconductor for the semiconductor layer can realize a liquid crystal display device with low power consumption and high reliability.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: October 1, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama, Hiroyuki Miyake
  • Patent number: 8546181
    Abstract: A highly reliable semiconductor device is provided. A semiconductor device is manufactured at a high yield, so that high productivity is achieved. In a semiconductor device including a transistor in which a gate electrode layer, a gate insulating film, an oxide semiconductor film containing indium, and an insulating layer provided on and in contact with the oxide semiconductor film so as to overlap with the gate electrode layer are stacked and a source electrode layer and a drain electrode layer are provided in contact with the oxide semiconductor film and the insulating layer, the chlorine concentration and the indium concentration on a surface of the insulating layer are lower than or equal to 1×1019/cm3 and lower than or equal to 2×1019/cm3, respectively.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: October 1, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8546182
    Abstract: An object is, in a thin film transistor in which an oxide semiconductor is used as an active layer, to prevent change in composition, film quality, an interface, or the like of an oxide semiconductor region serving as an active layer, and to stabilize electrical characteristics of the thin film transistor. In a thin film transistor in which a first oxide semiconductor region is used as an active layer, a second oxide semiconductor region having lower electrical conductivity than the first oxide semiconductor region is formed between the first oxide semiconductor region and a protective insulating layer for the thin film transistor, whereby the second oxide semiconductor region serves as a protective layer for the first oxide semiconductor region; thus, change in composition or deterioration in film quality of the first oxide semiconductor region can be prevented, and electrical characteristics of the thin film transistor can be stabilized.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: October 1, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kengo Akimoto, Toshinari Sasaki, Hideaki Kuwabara
  • Publication number: 20130252384
    Abstract: A method of forming a thin film transistor array panel includes: forming a first insulating layer on a substrate; forming an amorphous carbon layer on the first insulating layer; forming a second insulating layer on the amorphous carbon layer; forming an opening in the amorphous carbon layer by patterning the second insulating layer and the amorphous carbon layer; and forming a trench in the first insulating layer by etching the first insulating layer, the etching the first insulating layer using the amorphous carbon layer including the opening as a mask.
    Type: Application
    Filed: July 24, 2012
    Publication date: September 26, 2013
    Applicant: SAMSUNG DISPLAY CO., LTD.
    Inventors: Yong-Hwan RYU, Dae Ho KIM, Hong Sick PARK, Shin Il CHOI
  • Patent number: 8541257
    Abstract: A method for forming an electronic device having a semiconducting active layer comprising a polymer, the method comprising aligning the chains of the polymer parallel to each other by bringing the polymer into a liquid-crystalline phase.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: September 24, 2013
    Assignee: Cambridge University Technical Services Limited
    Inventors: Henning Sirringhaus, Richard Henry Friend, Richard John Wilson
  • Patent number: 8541268
    Abstract: A thin film transistor and a method for manufacturing the same are provided. A top-gate thin film transistor is fabricated by a process using two gray-tone photomasks and a lift-off method. Therefore, the method can save cost of photomasks and processes comparing to a conventional fabrication method.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: September 24, 2013
    Assignee: Chunghwa Picture Tubes, Ltd.
    Inventors: Chan-Chang Liao, Hsien-Kun Chiu, Wei-Pang Yen, Chao-Huan Hsu
  • Patent number: 8541266
    Abstract: In a method for manufacturing a transistor including an oxide semiconductor layer, a gate electrode is formed and then an aluminum oxide film, a silicon oxide film, and the oxide semiconductor film are successively formed in an in-line apparatus without being exposed to the air and are subjected to heating and oxygen adding treatment in the in-line apparatus. Then, the transistor is covered with another aluminum oxide film and is subjected to heat treatment, so that the oxide semiconductor film from which impurities including hydrogen atoms are removed and including a region containing oxygen at an amount exceeding that in the stoichiometric composition ratio. The transistor including the oxide semiconductor film is a transistor having high reliability in which the amount of change in threshold voltage of the transistor by the bias-temperature stress (BT test) can be reduced.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: September 24, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8541258
    Abstract: A thin film transistor (TFT) using an oxide semiconductor as an active layer, a method of manufacturing the TFT, and a flat panel display device having the TFT include source and drain electrodes formed on a substrate; an active layer formed of an oxide semiconductor disposed on the source and drain electrodes; a gate electrode; and an interfacial stability layer formed on at least one of top and bottom surfaces of the active layer. In the TFT, the interfacial stability layer is formed of an oxide having a band gap of 3.0 to 8.0 eV. Since the interfacial stability layer has the same characteristics as a gate insulating layer and a passivation layer, chemically high interface stability is maintained. Since the interfacial stability layer has a band gap equal to or greater than that of the active layer, charge trapping is physically prevented.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: September 24, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Min-Kyu Kim, Jong-Han Jeong, Tae-Kyung Ahn, Jae-Kyeong Jeong, Yeon-Gon Mo, Jin-Seong Park, Hyun-Joong Chung, Kwang-Suk Kim, Hui-Won Yang
  • Patent number: 8536578
    Abstract: A thin film transistor includes nanowires. More specifically, the thin film transistor includes nanowires aligned between and extending to opposite facing lateral surfaces of source/drain electrodes on a substrate. The nanowires extend in a direction parallel to a major surface defining the substrate to form a semiconductor channel layer. Also disclosed herein is a method for fabricating the thin film transistor.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: September 17, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung Nam Cha, Byong Gwon Song, Jae Eun Jang
  • Patent number: 8535975
    Abstract: An organic light emitting diode (OLED) display and a method for manufacturing the same are provided. The OLED display includes a substrate, an active layer and a capacitor lower electrode positioned on the substrate, a gate insulating layer positioned on the active layer and the capacitor lower electrode, a gate electrode positioned on the gate insulating layer at a location corresponding to the active layer, a capacitor upper electrode positioned on the gate insulating layer at a location corresponding to the capacitor lower electrode, a first electrode positioned to be separated from the gate electrode and the capacitor upper electrode, an interlayer insulating layer positioned on the gate electrode, the capacitor upper electrode, and the first electrode, a source electrode and a drain electrode positioned on the interlayer insulating layer, and a bank layer positioned on the source and drain electrodes.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: September 17, 2013
    Assignee: LG Display Co., Ltd.
    Inventors: Hyunho Kim, Seokwoo Lee, Heedong Choi, Sangjin Lee, Seongmoh Seo
  • Publication number: 20130234169
    Abstract: In a method of manufacturing a thin film transistor, a gate electrode is formed on a first surface of a base substrate, a oxide semiconductor layer, insulation layer and photo resist layer are formed an the fast surface of the base substrate having the gate electrode. The insulation layer and the oxide semiconductor layer are patterned using a first photo resist pattern to form an etch-stopper and an active pattern. A source and a drain electrode are formed on the base substrate having the active pattern and the etch-stopper, the source electrode and the drain electrode are overlapped with both ends of the etch-stopper and spaced apart from each other. Therefore, a manufacturing cost may be decreased by omitting a mask when forming the active pattern and the etch-stopper.
    Type: Application
    Filed: September 14, 2012
    Publication date: September 12, 2013
    Applicant: SAMSUNG DISPLAY CO., LTD.
    Inventors: Bo-Sung KIM, Jun-Ho SONG, Doo-Na KIM, Kang-Moon JO, Tae-Young CHOI, Masataka KANO, Yeon-Taek JEONG
  • Publication number: 20130236998
    Abstract: A method for manufacturing an array substrate of a transflective LCD includes: (1) providing a substrate; (2) forming a transparent electrode layer on the substrate and forming a first metal layer on the transparent electrode layer; (3) applying a first photo-masking operation to form a gate terminal and a pixel electrode; (4) forming an insulation layer on the gate terminal and the pixel electrode; (5) applying a second photo-masking operation to form a gate insulation layer on the insulation layer; (6) forming a semiconductor layer on the gate insulation layer and forming a second metal layer on the semiconductor layer and the pixel electrode; and (7) applying a third photo-masking operation to form a channel layer on the semiconductor layer and also forming a drain terminal, a source terminal, and a reflector section on the second metal layer, so as to form a thin-film transistor.
    Type: Application
    Filed: March 11, 2012
    Publication date: September 12, 2013
    Applicant: Shenzhen China Star Optoelectronics Technology Co. Ltd.
    Inventor: Pei Jia
  • Patent number: RE44531
    Abstract: A thin film transistor includes a gate, a gate insulator layer, a channel layer, a source, a drain, and an ohmic contact layer. The gate insulator layer covers the gate; the channel layer is disposed on the gate insulator layer above the gate; the source and the drain are disposed on the channel layer; the ohmic contact layer is disposed between the channel layer and the source and drain. The ohmic contact layer is constituted by a number of film layers. As mentioned above, the thin film transistor has an ohmic contact layer constituted by a number of film layers. When the thin film transistor is turned off, the current leakage thereof is lowered than that of a conventional thin film transistor.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: October 8, 2013
    Assignee: Intellectual Ventures Fund 82 LLC
    Inventors: Min-Ching Hsu, Yung-Lung Mo