Including Device Responsive To Nonelectrical Signal Patents (Class 438/24)
  • Publication number: 20120069257
    Abstract: A liquid crystal display device with a built-in touch screen comprising a substrate having a pixel region, a thin film transistor formed at the pixel region, the thin film transistor including at least an active layer, a gate electrode, an insulating layer, and a data electrode, a first passivation layer formed on the thin film transistor, a first contact hole formed through a portion of the first passivation layer to expose the data electrode, a common electrode formed on at least one portion of the first passivation layer including inside the first contact hole, the common electrode operable to sense touch, a conductive line formed on at least one portion of the first passivation layer including inside the first contact hole, a second passivation layer formed on the common electrode and the conductive line, a second contact hole formed through a portion of the second passivation layer to expose the conductive line corresponding to the data electrode, and a pixel electrode electrically connected with the con
    Type: Application
    Filed: August 4, 2011
    Publication date: March 22, 2012
    Inventors: Kum Mi Oh, Han Seok Lee
  • Patent number: 8137998
    Abstract: A light-emitting device comprises a lattice structure to minimize the horizontal waveguide effect by reducing light traveling distance in the light-absorption medium of the light-emitting devices, and to enhance light extraction from the light-emitting layer. The lattice structure includes sidewalls and/or rods embedded in the light-absorption medium and dividing the light-absorption medium into a plurality of area units. The area units are completely isolated or partially separated from each other by the sidewalls. Also provided is a method of fabricating a light-emitting device that comprises a lattice structure, which lattice structure includes sidewalls and/or rods embedded in the light-absorption medium and dividing the light-absorption medium into a plurality of area units.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: March 20, 2012
    Assignee: Invenlux Limited
    Inventors: Chunhui Yan, Jianping Zhang
  • Publication number: 20120063717
    Abstract: Method of producing a photonic device including at least one light source and at least one photodetector on a structure including a waveguide layer, this method comprising the following steps: a) growing successively on a substrate (10), a photodetection structure (11) and a light source structure (12), the photodetection structure and the light source structure being made of a stack of layers, the light source layers being stacked on top of the photodetector layers and both structures sharing one of these layers.
    Type: Application
    Filed: February 1, 2010
    Publication date: March 15, 2012
    Applicants: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Laurent Grenouillet, Jean-Marc Fedeli, Liu Liu, Regis Orobtchouk, Philippe Regreny, Gunther Roelkens, Pedro Rojo-Romeo, Dries Van Thourhout
  • Publication number: 20120061689
    Abstract: A light-emitting device and a method for manufacturing the same are provided. The light-emitting device comprises a substrate, a light-emitting element and a light-electricity-transforming element. The substrate has a first region and a second region which are non-overlapping. The light-emitting element is disposed over the substrate and located in the second region. The light-electricity-transforming element is disposed over the substrate and located in the first region. At least a portion of a side wall of the light-electricity-transforming element corresponds to at least a portion of a side wall of the light-emitting element, so that at least a side light from the light-emitting element is received and transformed into an electricity power by the light-electricity-transforming device.
    Type: Application
    Filed: December 22, 2010
    Publication date: March 15, 2012
    Inventors: Jing-Yi YAN, Jung-Jie Huang, Shu-Tang Yeh, Yen-Shih Huang, Hung-Chien Lin
  • Publication number: 20120051383
    Abstract: An advanced, back-illuminated, silicon avalanche photodiode (APD) design is presented using silicon-on-sapphire with a novel crystalline aluminum nitride (AlN) antireflective layer between the silicon and R-plane sapphire. The substrate supports optical and electrical integration of a high quantum efficiency silicon APD with a gallium nitride (GaN)-VCSEL diode in each pixel to form a novel, compact, emitter-detector pixel for passive and active 2-D and 3-D high resolution, imaging focal plane arrays. Silicon mesa pixels are anisotropically etched with a central inverted mesa frustum cavity. The APD detector is fabricated in the silicon mesa and the GaN-VCSEL diode is grown epitaxially in the center of the mesa. A sapphire microlens below each pixel collimates the VCSEL beam and focuses optical returns into the APD detector. APDs share a common front-side anode, and VCSELs share a common cathode. The APD cathode is electrically connected to the VCSEL diode anode in each emitter-detector pixel.
    Type: Application
    Filed: August 24, 2010
    Publication date: March 1, 2012
    Inventor: Alvin Gabriel Stern
  • Publication number: 20120033284
    Abstract: A semiconductor optical modulation device includes a substrate; a first semiconductor cladding layer of a first conductivity type disposed on the substrate; an optical waveguide layer disposed on the first semiconductor cladding layer, the optical waveguide layer including a first semiconductor optical confinement layer, a second semiconductor optical confinement layer, and an insulating layer disposed between the first semiconductor optical confinement layer and the second semiconductor optical confinement layer, the insulating layer being made of aluminum oxide; a second semiconductor cladding layer of a second conductivity type disposed on the optical waveguide layer; a first electrode electrically connected to the first semiconductor cladding layer; and a second electrode electrically connected to the second semiconductor cladding layer.
    Type: Application
    Filed: July 21, 2011
    Publication date: February 9, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Chie FUKUDA
  • Patent number: 8110420
    Abstract: A method of fabricating a light emitting diode array, comprising: providing a temporary substrate; forming a first light emitting stack and a second light emitting stack on the temporary substrate; forming a first insulating layer covering partial of the first light emitting stack; forming a wire on the first insulating layer and electrically connecting to the first light emitting stack and the second light emitting stack; forming a second insulating layer fully covering the first light emitting stack, the wire and partial of the second light emitting stack; forming a metal connecting layer on the second insulating layer and electrically connecting to the second light emitting stack; forming a conductive substrate on the metal connecting layer; removing the temporary substrate; and forming a first electrode connecting to the first light emitting stack.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: February 7, 2012
    Assignee: Epistar Corporation
    Inventor: Chao-Hsing Chen
  • Patent number: 8106429
    Abstract: Disclosed is an image sensor. The image sensor includes a semiconductor substrate including a lower interconnection, a plurality of upper interconnection sections protruding upward from the semiconductor substrate, a first trench disposed between the upper interconnection sections such that the upper interconnection sections are spaced apart from each other, a bottom electrode disposed on an outer peripheral surfaces of the upper interconnection sections, a first conductive layer disposed on an outer peripheral surface of the bottom electrode, an intrinsic layer disposed on the semiconductor substrate including the first conductive layer and the first trench, and having a second trench on the first trench, a second conductive layer disposed on the intrinsic layer and having a third trench on the second trench, a light blocking part disposed in the third trench, and a top electrode disposed on the light blocking part and the second conductive layer.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: January 31, 2012
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Tae Gyu Kim
  • Patent number: 8097502
    Abstract: Provided is a semiconductor light emitting device and a method of manufacturing the semiconductor light emitting device. The semiconductor light emitting device includes a substrate, at least two light emitting cells located on the substrate and formed by stacking semiconductor material layers, a reflection layer and a transparent insulating layer sequentially stacked between the light emitting cells, and a transparent electrode covering the upper surface of the light emitting cells.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: January 17, 2012
    Assignee: Samsung LED Co., Ltd.
    Inventor: Jeong-wook Lee
  • Patent number: 8097898
    Abstract: The outer peripheral portion of a substrate is provided with a first peripheral edge and a second peripheral edge. The first peripheral edge is provided on the edge portion of a first upper surface of the substrate on which a light-emitting diode element is mounted. The second peripheral edge is formed either on an extension of an imaginary line connecting an edge of the light-emitting facet of the light-emitting diode element and the first peripheral edge or inwardly of the extension. The second peripheral edge is located at a position where the first peripheral edge blocks direct light from the light-emitting diode element. This configuration prevents the second upper surface of the substrate provided between the first peripheral edge and the second peripheral edge from becoming deteriorated due to the direct light.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: January 17, 2012
    Assignee: Citizen Electronics Co., Ltd.
    Inventor: Nodoka Oishi
  • Publication number: 20120006976
    Abstract: Disclosed are various embodiments of a single track reflective optical encoder featuring current amplifiers disposed in the signal generating circuit thereof. Voltage amplifiers and their associated feedback resistors are eliminated in the various embodiments disclosed herein, resulting in decreased die size and improved encoder signal accuracy and performance, especially at high speeds The single track optical encoder configurations disclosed herein permit very high resolution reflective optical encoders in small packages to be provided. Methods of making and using such optical encoders are also disclosed.
    Type: Application
    Filed: July 7, 2010
    Publication date: January 12, 2012
    Applicant: Avago Technologies ECBU(Singapore) Pte, Ltd.
    Inventors: Chung Min Thor, Gim Eng Chew
  • Publication number: 20120007105
    Abstract: In a silicon-based light emitting diode-photodiode (LED-PD) arrangement, the LED is implemented as an avalanche LED (ALED) and the ALED and PD are integrated into a common integrated circuit. The ALED is formed around a cross-shaped PD and is separated from the PD by a deep trench region.
    Type: Application
    Filed: July 12, 2010
    Publication date: January 12, 2012
    Inventor: Vladislav Vashchenko
  • Patent number: 8093612
    Abstract: An organic EL display device forms an organic EL layer on a pixel portion by a transfer method without using a sophisticated optical system. A patterned light reflection layer is formed on a donor substrate. A light absorption layer is formed on the light reflection layer. An organic EL material layer is formed on the light absorption layer. An element substrate on which banks, lower electrodes and the like are formed is arranged to face a donor substrate in an opposed manner. When light is radiated to the donor substrate from a flash lamp or the like, only portions of the optical absorption layer where the light reflection layers are not formed are heated, and such portions of the organic EL material layer are evaporated and applied to a lower electrode formed on the element substrate. Due to such steps, the organic EL layer can be formed by a transfer method without using a sophisticated optical system.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: January 10, 2012
    Assignees: Hitachi Displays, Ltd., Panasonic Liquid Crystal Display Co., Ltd.
    Inventor: Masahiro Tanaka
  • Patent number: 8093082
    Abstract: A method of fabricating a photoelectric device of Group III nitride semiconductor, where the method comprises the steps of: forming a first Group III nitride semiconductor layer on a surface of a temporary substrate; patterning the first Group III nitride semiconductor layer using photolithography and etching processes; forming a second Group III nitride semiconductor layer on the patterned first Group III nitride semiconductor layer; forming a conductive layer on the second Group III nitride semiconductor layer; and releasing the temporary substrate by removing the first Group III nitride semiconductor layer to obtain a composite of the second Group III nitride semiconductor layer and the conductive layer.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: January 10, 2012
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventors: Shih Cheng Huang, Po Min Tu, Ying Chao Yeh, Wen Yu Lin, Peng Yi Wu, Chih Peng Hsu, Shih Hsiung Chan
  • Patent number: 8090229
    Abstract: A MEMS-based display device is described, wherein an array of interferometric modulators are configured to reflect light through a transparent substrate. The transparent substrate is sealed to a backplate and the backplate may contain electronic circuitry fabricated on the backplane. The electronic circuitry is placed in electrical communication with the array of interferometric modulators and is configured to control the state of the array of interferometric modulators.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: January 3, 2012
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventor: Karen Tyger
  • Patent number: 8071413
    Abstract: The present invention discloses an MEMS sensor and a method for making the MEMS sensor. The MEMS sensor according to the present invention includes: a substrate including an opening; a suspended structure located above the opening; and an upper structure, a portion of which is at least partially separated from a portion of the suspended structure; wherein the suspended structure and the upper structure are separated from each other by a step including metal etch.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: December 6, 2011
    Assignee: PixArt Imaging Incorporation, R.O.C.
    Inventor: Chuan Wei Wang
  • Patent number: 8058082
    Abstract: A light-emitting diode (LED) device is provided. The LED device has raised semiconductor regions formed on a substrate. LED structures are formed over the raised semiconductor regions such that bottom contact layers and active layers of the LED device are conformal layers. The top contact layer has a planar surface. In an embodiment, the top contact layers are continuous over a plurality of the raised semiconductor regions while the bottom contact layers and the active layers are discontinuous between adjacent raised semiconductor regions.
    Type: Grant
    Filed: August 11, 2008
    Date of Patent: November 15, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Wen-Chih Chiou, Ding-Yuan Chen, Chia-Lin Yu, Hung-Ta Lin
  • Publication number: 20110272606
    Abstract: The present disclosure includes methods, devices, and systems for zinc oxide diodes for optical interconnections. One system includes a ZnO emitter confined within a circular geometry in an oxide layer on a silicon substrate. An optical waveguide is formed in the oxide layer and has an input coupled to the ZnO emitter. A detector is coupled to an output of the optical waveguide.
    Type: Application
    Filed: July 18, 2011
    Publication date: November 10, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Leonard Forbes, Kie Y. Ahn
  • Patent number: 8049231
    Abstract: Emissive quantum photonic imagers comprised of a spatial array of digitally addressable multicolor pixels. Each pixel is a vertical stack of multiple semiconductor laser diodes, each of which can generate laser light of a different color. Within each multicolor pixel, the light generated from the stack of diodes is emitted perpendicular to the plane of the imager device via a plurality of vertical waveguides that are coupled to the optical confinement regions of each of the multiple laser diodes comprising the imager device. Each of the laser diodes comprising a single pixel is individually addressable, enabling each pixel to simultaneously emit any combination of the colors associated with the laser diodes at any required on/off duty cycle for each color. Each individual multicolor pixel can simultaneously emit the required colors and brightness values by controlling the on/off duty cycles of their respective laser diodes.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: November 1, 2011
    Assignee: Ostendo Technologies, Inc.
    Inventors: Hussein S. El-Ghoroury, Robert G. W. Brown, Dale A. McNeill, Huibert DenBoer, Andrew J. Lanzone
  • Publication number: 20110241006
    Abstract: Provided is a liquid crystal display device (1) comprising a substrate (2), a base coating film (3) disposed on the substrate (2), a base insulating film (4) disposed on the base coating film (3), and a semiconductor film (20) disposed on the base insulating film (4) and made of a polysilicon film. Below the semiconductor film (20), a light-shielding film (28) is formed, which is embedded in the base coating film (3).
    Type: Application
    Filed: August 25, 2009
    Publication date: October 6, 2011
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Masahiro Mitani, Yutaka Takafuji
  • Patent number: 8030729
    Abstract: A device disclosed herein includes a first layer, a second layer, and a first plurality of nanowires established between the first layer and the second layer. The first plurality of nanowires is formed of a first semiconductor material. The device further includes a third layer, and a second plurality of nanowires established between the second and third layers. The second plurality of nanowires is formed of a second semiconductor material having a bandgap that is the same as or different from a bandgap of the first semiconductor material.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: October 4, 2011
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Nathaniel Quitoriano, Theodore I. Kamins
  • Patent number: 8030101
    Abstract: A method of manufacturing a low defect density GaN material comprising at least two steps of growing epitaxial layers of GaN with differences in growing conditions, (a.) a first step of growing an epitaxial layer GaN on an epitaxially competent layer under first growing conditions selected to induce island features formation, followed by (b.) a second step of growing an epitaxial layer of GaN under second growing conditions selected to enhance lateral growth until coalescence.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: October 4, 2011
    Assignee: Saint-Gobain Cristaux et Detecteurs
    Inventors: Eric Frayssinet, Bernard Beaumont, Jean-Pierre Faurie, Pierre Gibart
  • Patent number: 8012775
    Abstract: The present invention provides a method of forming an optically triggered switch. Embodiments of the method include forming a silicon layer, forming one or more trenches in the silicon layer, and forming one or more silicon diodes in the silicon layer. Embodiments of the method also include forming a first thyristor in the silicon layer such that the first thyristor is physically and electrically isolated from the silicon diode(s) by the trench(es). The first thyristor is configured to turn on in response to electromagnetic radiation generated by the silicon diode(s).
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: September 6, 2011
    Assignee: Zarlink Semiconductor (US), Inc.
    Inventor: Thomas Joseph Krutsick
  • Publication number: 20110212554
    Abstract: The present invention, in one embodiment, provides a method of forming an organic electric device that includes providing a plurality of carbon nanostructures; and dispersing the plurality of carbon nanostructures in a polymeric matrix to provide a polymeric composite, wherein when the plurality of carbon nanostructures are present at a first concentration an interface of the plurality of carbon nanostructures and the polymeric matrix is characterized by charge transport when an external energy is applied, and when the plurality of carbon nanostructures are present at a second concentration the interface of the plurality of carbon nanostructures and the polymeric matrix are characterized by exciton dissociation when an external energy is applied, wherein the first concentration is less than the second concentration.
    Type: Application
    Filed: April 8, 2011
    Publication date: September 1, 2011
    Applicants: UT-BATTELLE LLC, UNIVERSITY OF TENNESSEE RESEARCH FOUNDATION
    Inventors: David Bruce Geohegan, Ilia N. Ivanov, Alexander A. Puretzky, Stephen Jesse, Bin Hu, Matthew Garrett, Bin Zhao
  • Patent number: 8008099
    Abstract: An LED package structure with concave area for positioning heat-conducting substance includes a substrate unit, a heat-conducting adhesive unit, a light-emitting unit, a conductive unit and a package unit. The substrate unit has a substrate body, a concave space formed on the substrate body, and a plurality of positive and negative pads exposed on the substrate body. The heat-conducting adhesive unit has a heat-conducting adhesive layer positioned in the concave space. The light-emitting unit has a plurality of LED chips disposed on the heat-conducting adhesive layer and received in the concave space. The conductive unit has a plurality of wires. Each LED chip is electrically connected between each positive pad and each negative pad. The package unit has a translucent package resin body disposed on the substrate body in order to cover the LED chips and the wires.
    Type: Grant
    Filed: September 12, 2009
    Date of Patent: August 30, 2011
    Assignee: Paragon Semiconductor Lighting Technology Co., Ltd.
    Inventor: Chia-Tin Chung
  • Publication number: 20110207250
    Abstract: Light is illuminated from a back-surface side of a silicon substrate 4. A back-illuminated type imaging device 100 reads out, from a front-surface side of the silicon substrate 4, charges that are generated in the silicon substrate 4 in response to the illuminated light, so as to perform imaging. The back-illuminated type imaging device 100 includes pad portions 17 formed on the back surface of the semiconductor substrate 4, and a plurality of pillars 9 that are formed in the semiconductor substrate 4, are made of a conductive material and electrically connect wiring portions 12 formed on the front surface of the semiconductor substrate 4 and the pad portions 17 to each other.
    Type: Application
    Filed: May 4, 2011
    Publication date: August 25, 2011
    Inventor: Shinji UYA
  • Patent number: 8003995
    Abstract: A semiconductor optical device where the leak current due to the double injection of carriers may be suppressed and a simplified process to form the device are disclosed. The device 10 provides, on the n-type InP substrate, a mesa and a burying region formed so as to bury the mesa. The mesa includes the first cladding layer, the active layer, the tunnel junction layer and the second cladding layer on the n-type InP substrate in this order. The tunnel junction layer comprises an n-type layer coming in contact with the active layer and a p-type layer between the active layer and the n-type layer. The n-type layer has a carrier concentration higher than that of the second cladding layer, while, the p-type layer may have the band gap energy greater than that of the second cladding layer.
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: August 23, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Michio Murata
  • Patent number: 8003996
    Abstract: The present invention relates to a semiconductor component and an associated production method, said component emitting at least two defined wavelengths with a defined intensity ratio. It is an object of the present invention to specify an optical semiconductor component and an associated production method, said component emitting at least two defined wavelengths with a defined intensity ratio. In this case, the intention is that both the wavelengths and the intensity ratio can be set extremely precisely.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: August 23, 2011
    Assignee: Forschungsverbund Berlin E.V.
    Inventors: Markus Weyers, Martin Zorn
  • Publication number: 20110188533
    Abstract: The invention includes a single chip having multiple different devices integrated thereon for a common purpose. The chip includes a substrate having a peripheral area, a mid-chip area, and a central area. A plurality of FETs are formed in the peripheral area with each FET having a layer of single crystal rare earth material in at least one of a conductive channel, a gate insulator, or a gate stack. A plurality of photonic devices including light emitting diodes or vertical cavity surface emitting lasers are formed in the mid-chip area with each photonic device having an active layer of single crystal rare earth material. A plurality of photo detectors are formed in the central area.
    Type: Application
    Filed: February 4, 2010
    Publication date: August 4, 2011
    Inventor: MICHAEL LEBBY
  • Patent number: 7989822
    Abstract: This invention details how a low cost opto coupler can be made on Silicon On Insulator (SOI) using conventional integrated circuit processing methods. Specifically, metal and deposited insulating materials are use to realize a top reflector for directing light generated by a silicon PN junction diode to a silicon PN junction photo diode detector. The light generator or LED can be operated either in the avalanche mode or in the forward mode. Also, side reflectors are described as a means to contain the light to the LED-photo detector pair. Furthermore, a serpentine junction PN silicon LED is described for the avalanche mode of the silicon LED. For the forward mode, two LED structures are described in which hole and electrons combine in lightly doped regions away from heavily doped regions thereby increasing the LED conversion efficiency.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: August 2, 2011
    Inventor: Eugene Robert Worley
  • Publication number: 20110180815
    Abstract: An optical transmission board includes a base having light transmissibility, and an amorphized part provided in a lens-like shape in the base, the lens-like shape part having a different refractive index from the rest of the base.
    Type: Application
    Filed: January 25, 2011
    Publication date: July 28, 2011
    Applicant: FUJITSU LIMITED
    Inventor: Tetsuya MIYATAKE
  • Patent number: 7981705
    Abstract: In a method of manufacturing a vertical type light-emitting diode, a multilayered structure of group III nitride semiconductor compounds is epitaxy deposited on an irregular surface of a substrate. The substrate is then removed to expose an irregular surface of the multilayered structure corresponding to the irregular surface of the substrate. A portion of the exposed irregular surface of the multilayered structure is then etched for forming an electrode contact surface on which an electrode layer is subsequently formed. With this method, no specific planarized region is required on the irregular surface of the substrate. As a result, planarization treatment of the substrate is not necessary. The same substrate with the irregular surface can be reused for fabricating vertical and horizontal light-emitting diodes.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: July 19, 2011
    Assignee: Tekcore Co., Ltd.
    Inventors: Wei-Jung Chung, Shih-Hung Lee, Cheng-Hsien Li, Wen-Hsien Lin, Nien-Tze Yeh
  • Patent number: 7977126
    Abstract: A method for manufacturing an organic light emitting device including a photo diode and a transistor includes forming a first semiconductor layer and a second semiconductor layer on separate portions of a buffer layer formed on the substrate; forming a gate metal layer on the first semiconductor layer, the gate metal layer covering a central region of the first semiconductor layer; forming a high-concentration P doping region and a high-concentration N doping region in the first semiconductor layer by injecting impurities into regions of the first semiconductor layer not covered by the gate metal layer to form the photodiode; forming a source and drain region and a channel region in the second semiconductor layer; and removing the gate metal layer from the central region of the first semiconductor layer by etching and simultaneously forming a gate electrode by etching, the gate electrode being insulated from the channel region of the second semiconductor layer, to form the transistor.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: July 12, 2011
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Yun-gyu Lee, Hye-hyang Park, Ki-ju Im, Byoung-deog Choi
  • Patent number: 7977691
    Abstract: The present invention relates to a light emitting device and a method of manufacturing the light emitting device. According to the present invention, the light emitting device comprises a substrate, an N-type semiconductor layer formed on the substrate, and a P-type semiconductor layer formed on the N-type semiconductor layer, wherein a side surface including the N-type or P-type semiconductor layer has a slope of 20 to 80° from a horizontal plane.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: July 12, 2011
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Jong Lam Lee, Jae Ho Lee, Yeo Jin Yoon, Eu Jin Hwang, Dae Won Kim
  • Patent number: 7972877
    Abstract: A method of fabricating a light emitting diode package structure is provided. First, a first circuit substrate having a first surface and a corresponding second surface and a second circuit substrate having a third surface and a corresponding fourth surface are provided. The second surface and the third surface respectively have a plurality of electrodes. Then, a plurality of N-type semiconductor materials and a plurality of P-type semiconductor materials alternatively arranged on the electrodes are formed. Then, the first circuit substrate and the second circuit substrate are assembled. The two type semiconductor materials are located between the electrodes of the first circuit substrate and the second circuit substrate. The two type semiconductor materials are electrically connected to the first circuit substrate and the second circuit substrate through the electrodes. Finally, an LED chip is arranged on the first surface and electrically connected to the first circuit substrate.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: July 5, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Ming-Ji Dai, Chun-Kai Liu, Chih-Kuang Yu
  • Patent number: 7968869
    Abstract: Optoelectronic device modules, arrays optoelectronic device modules and methods for fabricating optoelectronic device modules are disclosed. The device modules are made using a starting substrate having an insulator layer sandwiched between a bottom electrode made of a flexible bulk conductor and a conductive back plane. An active layer is disposed between the bottom electrode and a transparent conducting layer. One or more electrical contacts between the transparent conducting layer and the back plane are formed through the transparent conducting layer, the active layer, the flexible bulk conductor and the insulating layer. The electrical contacts are electrically isolated from the active layer, the bottom electrode and the insulating layer.
    Type: Grant
    Filed: October 4, 2008
    Date of Patent: June 28, 2011
    Assignee: Nanosolar, Inc.
    Inventors: James R. Sheats, Sam Kao, Martin R. Roscheisen
  • Publication number: 20110133063
    Abstract: Optical waveguide and coupler devices and methods include a trench formed in a bulk semiconductor substrate, for example, a bulk silicon substrate. A bottom cladding layer is formed in the trench, and a core region is formed on the bottom cladding layer. A reflective element, such as a distributed Bragg reflector can be formed under the coupler device and/or the waveguide device. Because the optical devices are integrated in a bulk substrate, they can be readily integrated with other devices on a chip or die in accordance with silicon photonics technology. Specifically, for example, the optical devices can be integrated in a DRAM memory circuit chip die.
    Type: Application
    Filed: October 25, 2010
    Publication date: June 9, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ho-chul Ji, Ki-nam Kim, Yong-woo Hyung, Kyoung-won Na, Kyoung-ho Ha, Yoon-dong Park, Dae-lok Bae, Jin-kwon Bok, Pil-kyu Kang, Sung-dong Suh, Seong-gu Kim, Dong-jae Shin, In-sung Joe
  • Patent number: 7955883
    Abstract: Interdigitated electrode arrays are very promising devices for multi-parameter (bio)sensing, for example the label-free detection of nucleic acid hybridization for diagnostic applications. The current disclosure provides an innovative method for the affordable manufacturing of polymer-based arrays of interdigitated electrodes with ?m-dimensions. The method is based on a combination of an appropriate three-dimensional structure and a single and directional deposition of conductive material. The three-dimensional structure can be realized in a polymer material using a molding step, for which the molds are manufactured by electroplating as a reverse copy of a silicon master structure. In order to ensure sufficient electrical isolation and individual, but convenient, accessibility of the sensors in the array, the interdigitated electrode regions need to be complemented with specific features on the three-dimensional structure. Combined with the use of e.g.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: June 7, 2011
    Assignees: IMEC, Innogenetics
    Inventors: Wim Laureyn, Jan Suls, Paul Jacobs
  • Publication number: 20110127546
    Abstract: The present invention relates to a reflective and/or refractive secondary lens system for focusing sunlight onto semiconductor elements, the secondary lens system being characterised according to the invention by a projection which is disposed around the basic body forming the secondary lens system. Furthermore, the present invention relates to a semiconductor assembly which includes the secondary lens system according to the invention, and also to a method for the production of this semiconductor assembly. In particular, this semiconductor assembly represents a concentrating solar cell module.
    Type: Application
    Filed: December 22, 2008
    Publication date: June 2, 2011
    Applicant: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERLING DERANGEWAN FORSCHUNG E.V.
    Inventors: Joachim Jaus, Andreas Bett, Michael Passig, Gerhard Peharz, Peter Nitz, Wolfgang Graf
  • Publication number: 20110127547
    Abstract: A multispectral pixel structure is provided that includes a plurality of stacked cavity arrangements for emitting or detecting a plurality of specified wavelengths, wherein each stacked cavity arrangement having a photoactive layer for spectral emission or detection of one of the specified wavelengths. The photoactive layer is positioned within a resonant cavity stack and the resonant cavity stack being positioned between two adjacent mirror stacks. A plurality of coupling-matching layers are positioned between one or more of the stack mirror arrangements for controlling optical phase and coupling strength between emitted or incident light and resonant modes in each of the stacked cavity arrangements.
    Type: Application
    Filed: June 15, 2010
    Publication date: June 2, 2011
    Inventors: Jianfei Wang, Juejun Hu, Anuradha M. Agarwal, Xiaochen Sun, Lionel C. Kimerling
  • Publication number: 20110126891
    Abstract: A solar cell element having improved power generation efficiency is provided. A solar cell element 100 has a substrate 110, a mask pattern 120, semiconductor nanorods 130, a first electrode 150 and a second electrode 160. The semiconductor nanorods 130 are disposed in triangular lattice form as viewed in plan on the substrate 110. The ratio p/d of the center-to-center distance p between each adjacent pair of the semiconductor nanorods 130 and the minimum diameter d of the semiconductor nanorods 130 is within the range from 1 to 7. Each semiconductor nanorod 130 has a central nanorod 131 formed of a semiconductor of a first conduction type, a first cover layer 132 formed of an intrinsic semiconductor and covering the central nanorod 131, and a second cover layer 138 formed of a semiconductor of a second conduction type and covering the first cover layer 132.
    Type: Application
    Filed: November 29, 2010
    Publication date: June 2, 2011
    Inventors: Hajime Goto, Hirotaka Endo, Kenji Hiruma, Junichi Motohisa, Takashi Fukui
  • Publication number: 20110129950
    Abstract: A method of manufacturing a solid state imaging device having a photo-electric conversion portion array and a transfer electrode array, these arrays being provided in parallel to each other, upper surfaces and side wall surfaces of the transfer electrode array being covered with a light-shielding layer, and a transparent layer showing an oxidizing property at the time of film formation, the transparent layer being formed on the photo-electric conversion parts and the light-shielding layer.
    Type: Application
    Filed: January 31, 2011
    Publication date: June 2, 2011
    Applicant: SONY CORPORATION
    Inventors: Takeshi TAKEDA, Tadayuki DOFUKU, Kenji TAKEO
  • Publication number: 20110121319
    Abstract: Light emitting devices and methods of fabricating the same are disclosed. The light emitting device includes a light emitting diode (LED) that emits blue or UV light and is attached to a semiconductor construction. The semiconductor construction includes a re-emitting semiconductor construction that includes at least one layer of a II-VI compound and converts at least a portion of the emitted blue or UV light to longer wavelength light. The semiconductor construction further includes an etch-stop construction that includes an AlInAs or a GaInAs compound. The etch-stop is capable of withstanding an etchant that is capable of etching InP.
    Type: Application
    Filed: November 7, 2008
    Publication date: May 26, 2011
    Inventors: Michael A. Haase, Thomas J. Miller, Xiaoguang Sun
  • Patent number: 7947516
    Abstract: A method of packaging a light-emitting diode (LED) chip includes coupling the LED chip to a printed circuit board (PCB) and forming a conductor on a cover plate. Conductive epoxy is applied to at least one of the LED chip and the conductor. The cover plate is coupled to the PCB such that the conductive epoxy forms a circuit connection between the LED chip and the conductor. An LED-based lighting product includes a PCB with one or more LED chips mounted directly thereon. A cover plate has conductors that couple at least to the one or more LED chips and to the PCB, such that the conductors form electrical connections between the one or more LED chips and the PCB.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: May 24, 2011
    Assignee: AlbEO Technologies, Inc.
    Inventor: Jeffrey Bisberg
  • Patent number: 7943408
    Abstract: The present invention is related to a surface-mounting ceramic LED package and a method for its production comprising: layering a ceramic green sheet which has a hole and a second ceramic green sheet, inserting a mold with a groove to form a partition in the bottom of the ceramic green sheet substrate, and firing the ceramic green sheet substrate.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: May 17, 2011
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Naoto Nakajima, Shuichi Tsunoda, Akira Inaba
  • Patent number: 7943409
    Abstract: The present invention relates to a photodiode of an image sensor using a three-dimensional multi-layer substrate, and more particularly, to a method of implementing a buried type photodiode and a structure thereof, and a trench contact method for connecting a photodiode in a multi-layer substrate and a transistor for signal detection.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: May 17, 2011
    Assignees: Lumiense Photonics, Inc., Hanvision Co., Ltd.
    Inventor: Robert Steven Hannebauer
  • Patent number: 7943932
    Abstract: A flexible display substrate includes: a thin film transistor on the flexible substrate, the thin film transistor including a gate electrode, a gate insulating layer insulating the gate electrode, a channel layer on the gate insulating layer, a source electrode connected with the channel layer, and a drain electrode connected with the channel layer; a first stress absorbing layer below the thin film transistor; a first protection layer on the first stress absorbing layer; a second stress absorbing layer on the thin film transistor; a second protection layer on the second stress absorbing layer; and a pixel electrode on the second protection layer, the pixel electrode being connected with the drain electrode.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: May 17, 2011
    Assignee: LG Display Co., Ltd.
    Inventors: Yong In Park, Seung Han Paek, Sang Soo Kim
  • Publication number: 20110108714
    Abstract: A small type photo-interrupter and a fabrication method of small type photo-interrupter. The fabrication method of small type photo-interrupter includes removing a portion of the surface of the substrate between the light-emitter and the light-sensor and forming an opaque sealing member on the place where the portion of the substrate is removed.
    Type: Application
    Filed: October 19, 2010
    Publication date: May 12, 2011
    Inventors: Chia-Feng Yang, Chih-Wei Liao, Chun-Chih Liang
  • Publication number: 20110109609
    Abstract: A touch sensitive display device utilizing infrared ray sensing transistors. The transistors are configured, and comprise specified materials, to allow them to be formed with fewer photolithography processes, reducing cost and manufacturing time.
    Type: Application
    Filed: October 6, 2010
    Publication date: May 12, 2011
    Inventors: Ki-Hun Jeong, Sung-Hoon Yang, Kap-Soo Yoon, Kyung-Sook Jeon, Seung Mi Seo
  • Patent number: 7923737
    Abstract: A combined semiconductor device can be formed by bonding the thin-film three-terminal switching elements to a surface of an integrated circuit chip including a shift register that shifts data supplied to the control electrodes of the three-terminal switching elements, or by bonding both the thin-film three-terminal switching elements and another thin semiconductor film including the shift register to a substrate. In either case, thin-film wiring can be used to interconnect the shift register and the switching elements, and the need for an array of large transistors to feed driving current to the switching elements is eliminated, reducing the size and cost of the combined semiconductor device, which can be advantageously used in the optical head of an electrophotographic printer.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: April 12, 2011
    Assignee: Oki Data Corporation
    Inventor: Akira Nagumo