Stacked Capacitor Patents (Class 438/253)
  • Patent number: 8133792
    Abstract: A structure of a capacitor set is described, including at least two capacitors that are disposed at the same position on a substrate and include a first capacitor and a second capacitor. The first capacitor includes multiple first capacitor units electrically connected with each other in parallel. The second capacitor includes multiple second capacitor units electrically connected with each other in parallel. The first and the second capacitor units are arranged spatially intermixing with each other to form an array.
    Type: Grant
    Filed: July 4, 2006
    Date of Patent: March 13, 2012
    Assignee: United Microelectronics Corp.
    Inventors: Victor-Chiang Liang, Chien-Kuo Yang, Hua-Chou Tseng, Chun-Yao Ko, Cheng-Wen Fan, Yu-Ho Chiang, Chih-Yuh Tzeng
  • Patent number: 8134196
    Abstract: An integrated circuit system is provided including forming a substrate, forming a first contact having multiple conductive layers over the substrate and a layer of the multiple conductive layers on other layers of the multiple conductive layers, forming a dielectric layer on the first contact, and forming a second contact on the dielectric layer and over the first contact.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: March 13, 2012
    Assignee: STATS ChipPAC Ltd.
    Inventors: Yaojian Lin, Haijing Cao, Wan Lay Looi, Eng Seng Lim
  • Patent number: 8133779
    Abstract: A conductive film is formed to extend from a bottom and a sidewall of a recess formed in an interlayer insulating film onto a top surface of the interlayer insulating film. Dry etching of the conductive film is performed such that a portion of the conductive film remains on the bottom and sidewall of the recess. The dry etching is also performed such that a deposition film is formed on a top portion of the recess.
    Type: Grant
    Filed: October 12, 2009
    Date of Patent: March 13, 2012
    Assignee: Elpida Memory, Inc.
    Inventor: Keisuke Ohtsuka
  • Patent number: 8129244
    Abstract: A method for fabricating a semiconductor device includes forming a plurality of first trenches by etching a substrate, forming a plurality of buried bit lines in the first trenches, forming a plurality of second trenches to expose at least one sidewall of the buried bit lines by etching the substrate, and forming a plurality of one-sidewall contact plugs which fill the second trenches.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: March 6, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventors: Yong-Seok Eun, Eun-Shil Park, Tae-Yoon Kim, Min-Soo Kim
  • Patent number: 8129251
    Abstract: A METAL-INSULATOR-METAL structured capacitor is formed with polysilicon instead of an oxide film as a sacrificial layer material that defines a storage electrode region. A MPS (Meta-stable Poly Silicon) process is performed to increase the surface area of the sacrificial layer that defines the storage electrode region and also increase the area of the storage electrode formed over sacrificial layer. This process results in increasing the capacity of the capacitor in a stable manner.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: March 6, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Won Sun Seo
  • Patent number: 8129240
    Abstract: A method of forming a plurality of capacitors includes an insulative material received over a capacitor array area and a circuitry area. The array area comprises a plurality of capacitor electrode openings within the insulative material received over individual capacitor storage node locations. The intervening area comprises a trench. Conductive metal nitride-comprising material is formed within the openings and against a sidewall portion of the trench to less than completely fill the trench. Inner sidewalls of the conductive material within the trench are annealed in a nitrogen-comprising atmosphere. The insulative material within the array area is etched with a liquid etching solution effective to expose outer sidewall portions of the conductive material within the array area. The conductive material within the array area is incorporated into a plurality of capacitors.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: March 6, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Vishwanath Bhat, Kevin R. Shea
  • Patent number: 8124476
    Abstract: Provided is a semiconductor device, including a silicon substrate, a first insulating film formed on the silicon substrate, a first conductive plug formed in an inside of a first contact hole of the first insulating film, an underlying conductive film having a flat surface formed on the first conductive plug and in the circumference thereof, a crystalline conductive film formed on the underlying conductive film, and a capacitor in which a lower electrode, a dielectric film made of a ferroelectric material, and an upper electrode are laminated in this order on the crystalline conductive film.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: February 28, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Jirou Miura
  • Publication number: 20120040504
    Abstract: The present invention discloses a method for integrating DRAM and NVM, which comprises steps: sequentially forming on a portion of surface of a DRAM semiconductor substrate a first gate insulation layer and a first gate layer functioning as a floating gate; and implanting ion into regions of the semiconductor substrate, which are at two sides of the first gate insulation layer, to form two heavily-doped areas that are adjacent to the first gate insulation layer and respectively function as a drain and a source; respectively forming over the first gate layer a second gate insulation layer and a second gate layer functioning as a control gate. The present invention not only increases the transmission speed but also reduces the power consumption, the fabrication cost and the package cost.
    Type: Application
    Filed: August 10, 2010
    Publication date: February 16, 2012
    Applicant: YIELD MICROELECTRONICS CORP.
    Inventors: HSIN CHANG LIN, CHIA-HAO TAI, YANG-SEN YEN, MING-TSANG YANG, YA-TING FAN
  • Patent number: 8114752
    Abstract: A structure of a capacitor set is described, including at least two capacitors that are disposed at the same position on a substrate and include a first capacitor and a second capacitor. The first capacitor includes multiple first capacitor units electrically connected with each other in parallel. The second capacitor includes multiple second capacitor units electrically connected with each other in parallel. The first and the second capacitor units are arranged spatially intermixing with each other to form an array.
    Type: Grant
    Filed: February 6, 2010
    Date of Patent: February 14, 2012
    Assignee: United Microelectronics Corp.
    Inventors: Victor Chiang Liang, Chien-Kuo Yang, Hua-Chou Tseng, Chun-Yao Ko, Cheng-Wen Fan, Yu-Ho Chiang, Chih-Yuh Tzeng
  • Patent number: 8105914
    Abstract: A method of fabricating an organic memory device is provided. In the method, a bottom electrode is formed on a substrate. A first surface treatment is performed on the bottom electrode to form a bottom surface treatment layer on a surface thereof. A polymer thin film is formed on the bottom surface treatment layer, and a top electrode is formed on the polymer thin film.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: January 31, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Chia-Chieh Chang, Zing-Way Pei, Wen-Miao Lo
  • Patent number: 8105497
    Abstract: A method for fabricating a cylinder type capacitor includes forming connection contacts passing through a lower layer over a semiconductor substrate; forming a mold layer covering the connection contacts; forming a first floated pinning layer with a stress in a first direction over the mold layer; forming a second floated pinning layer for stress relief with a stress in a second direction over the first floated pinning layer, said second direction being opposite to the first direction; forming opening holes passing through the first and second floated pinning layers and the mold layer and exposing the connection contacts; forming storage nodes following a profile of the opening holes; removing portions of the first and second floated pinning layers to form a floated pinning layer pattern, the floated pinning layer pattern exposing a portion of the mold layer and contacting upper tips of the storage nodes; exposing outer walls of the storage nodes by selectively removing the exposed mold layer; and forming a d
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: January 31, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Byung Soo Eun
  • Patent number: 8092721
    Abstract: Methods and compositions for the deposition of ternary oxide films containing ruthenium and an alkali earth metal.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: January 10, 2012
    Assignees: L'Air Liquide Societe Anonyme pour l'Etude Et l'Exploitation des Procedes Georges Claude, American Air Liquide, Inc.
    Inventors: Satoko Gatineau, Julien Gatineau, Christian Dussarrat
  • Patent number: 8093641
    Abstract: An integrated circuit including a storage capacitor suitable for use in a DRAM cell, as well as to a method of manufacturing such a storage capacitor is disclosed. The storage capacitor is formed at least partially above a semiconductor substrate surface. The invention also includes a memory array employing the storage capacitor.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: January 10, 2012
    Assignee: Qimonda AG
    Inventor: Rolf Weis
  • Patent number: 8088658
    Abstract: Methods for fabricating a capacitor are provided. In the methods, a dielectric may be formed on a metal (e.g. nickel) substrate, and a copper electrode is formed thereon, followed by the thinning of the metal substrate from its non-coated face, and subsequently forming a copper electrode on the thinned, non-coated face of the substrate.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: January 3, 2012
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Juan Carlos Figueroa, Damien Francis Reardon
  • Patent number: 8089113
    Abstract: The present method of fabricating a memory device includes the steps of providing a dielectric layer, providing an opening in the dielectric layer, providing a first conductive body in the opening in the dielectric layer, providing a switching body in the opening, and providing a second conductive body in the opening.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: January 3, 2012
    Assignee: Spansion LLC
    Inventors: Suzette K. Pangrle, Steven Avanzino, Sameer Haddad, Michael VanBuskirk, Manuj Rathor, James Xie, Kevin Song, Christie Marrian, Bryan Choo, Fei Wang, Jeffrey A. Shields
  • Patent number: 8084323
    Abstract: The invention provides a method for forming a stack capacitor of a memory device, including providing a substrate, forming a patterned sacrificial layer with a plurality of first openings over the substrate, conformally forming a first conductive layer on the patterned sacrificial layer and in the first openings, forming a second conductive layer on the first conductive layer to seal the first openings with a void formed therein, removing a portion of the first and second conductive layers to expose the patterned sacrificial layer, and removing at least a portion of the patterned sacrificial layer to form bottom cell plates.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: December 27, 2011
    Assignee: Nanya Technology Corporation
    Inventor: Shin-Yu Nieh
  • Patent number: 8084353
    Abstract: Methods and apparatus for providing a memory array fabrication process that concurrently forms memory array elements and peripheral circuitry. The invention relates to a method for fabricating memory arrays using a process that concurrently forms memory array elements and peripheral circuitry and results in a reduction in pitch.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: December 27, 2011
    Assignee: Macronix International Co., Ltd.
    Inventor: Chien Wei Chen
  • Patent number: 8084842
    Abstract: Memory devices and methods for manufacturing are described herein. A memory device as described herein includes a first electrode layer, a second electrode layer, and a thermal isolation structure including a layer of thermal isolation material between the first and second electrode layers. The first and second electrode layers and the thermal isolation structure define a multi-layer stack having a sidewall. A sidewall conductor layer including a sidewall conductor material is on the sidewall of the multi-layer stack. The sidewall conductor material has an electrical conductivity greater than that of the thermal isolation material. A memory element including memory material is on the second electrode layer.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: December 27, 2011
    Assignee: Macronix International Co., Ltd.
    Inventor: Shih-Hung Chen
  • Patent number: 8076248
    Abstract: The invention includes methods for selectively etching insulative material supports relative to conductive material. The invention can include methods for selectively etching silicon nitride relative to metal nitride. The metal nitride can be in the form of containers over a semiconductor substrate, with such containers having upwardly-extending openings with lateral widths of less than or equal to about 4000 angstroms; and the silicon nitride can be in the form of a layer extending between the containers. The selective etching can comprise exposure of at least some of the silicon nitride and the containers to Cl2 to remove the exposed silicon nitride, while not removing at least the majority of the metal nitride from the containers. In subsequent processing, the containers can be incorporated into capacitors.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: December 13, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Kevin R. Shea, Thomas M. Graettinger
  • Patent number: 8071423
    Abstract: Provided are variable resistance memory devices and methods of forming the variable resistance memory devices. The methods can include forming an etch stop layer on an electrode, forming a molding layer on the etch stop layer, forming a recess region including a lower part having a first width and an upper part having a second width by recessing the etch stop layer and the molding layer, and forming a layer of variable resistance material in the recess region.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: December 6, 2011
    Assignee: Samsung Electronics Co. Ltd.
    Inventor: Heung Jin Joo
  • Patent number: 8071441
    Abstract: Some embodiments include methods of forming transistor gates. A gate stack is placed within a reaction chamber and subjected to at least two etches, and to one or more depositions to form a transistor gate. The transistor gate may comprise at least one electrically conductive layer over a semiconductor material-containing layer. At least one of the one or more depositions may form protective material. The protective material may extend entirely across the at least one electrically conductive layer, and only partially across the semiconductor material-containing layer to leave unlined portions of the semiconductor material-containing layer. The unlined portions of the semiconductor material-containing layer may be subsequently oxidized.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: December 6, 2011
    Assignee: Micron Technology, Inc
    Inventor: David J. Keller
  • Patent number: 8067250
    Abstract: A method of manufacturing a ferroelectric memory device includes: forming a hydrogen barrier film which covers a ferroelectric capacitor including a lower electrode, a ferroelectric film, and an upper electrode, wherein a thickness of an area of the hydrogen barrier film provided on the upper electrode is made greater than a thickness of an area of the hydrogen barrier film provided on a sidewall of the ferroelectric capacitor by forming the area of the hydrogen barrier film provided on the upper electrode in a plurality of layers.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: November 29, 2011
    Assignee: Seiko Epson Corporation
    Inventors: Hiroaki Tamura, Teruo Tagawa
  • Patent number: 8067281
    Abstract: A method of fabricating a CMOS device is provided. First, first and second gates, first and second offset spacers and first and second lightly-doped regions are respectively formed in first and second type metal-oxide-semiconductor regions. A mask layer is respectively formed on the first and second gates. Next, an epitaxial layer is formed in the substrate on two sides of the second gate. Next, first and second spacers, first and second doped regions are formed. Next, a portion of the first spacer is removed to expose a portion of a surface of the first lightly-doped region, thereby forming a first slimmed spacer. Next, a coating layer containing silicon is formed to cover the exposed first lightly-doped region, the first and second doped regions. Next, the mask layer is removed. Next, a metal silicide layer is formed on the first and second gates and the silicon layer.
    Type: Grant
    Filed: July 5, 2010
    Date of Patent: November 29, 2011
    Assignee: United Microelectronics Corp.
    Inventors: Yi-Wei Chen, Chien-Chung Huang, Nien-Ting Ho, Kuo-Chih Lai
  • Patent number: 8062940
    Abstract: A method of manufacturing semiconductor memory device comprises forming a first wiring layer and a memory cell layer above a semiconductor substrate; forming a plurality of first trenches extending in a first direction in the first wiring layer and the memory cell layer, thereby forming first wirings and separating the memory cell layer; burying a first interlayer film in the first trenches to form a stacked body; forming a second wiring layer above the stacked body; forming a plurality of second trenches, extending in a second direction intersecting the first direction and reaching an upper surface of the first interlayer film in depth, in the first stacked body with the second wiring layer formed thereabove, thereby forming second wirings; removing the first interlayer film isotropically; and digging the second trenches down to an upper surface of the first wirings, thereby forming memory cells.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: November 22, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Nikka Ko, Tomoya Satonaka, Katsunori Yahashi
  • Publication number: 20110278656
    Abstract: A stacked capacitor for double-poly flash memory is provided. The stacked capacitor is formed by a lower electrode, a lower dielectric layer, a central electrode, an upper dielectric layer, and an upper electrode, wherein the lower electrode is a doped region in a substrate. The manufacturing process of this stacked capacitor can be fully integrated in to the manufacturing process of the double-poly flash memory cell.
    Type: Application
    Filed: May 17, 2010
    Publication date: November 17, 2011
    Applicant: CHINGIS TECHNOLOGY CORPORATION
    Inventors: Julian CHANG, An-Xing SHEN, Soon-Won KANG
  • Patent number: 8058126
    Abstract: Methods of forming semiconductor devices that include one or more container capacitors include anchoring an end of a conductive member to a surrounding lattice material using an anchor material, which may be a dielectric. The anchor material may extend over at least a portion of an end surface of the conductive member, at least a portion of the lattice material, and an interface between the conductive member and the lattice material. In some embodiments, the anchor material may be formed without significantly covering an inner sidewall surface of the conductive member. Furthermore, in some embodiments, a barrier material may be provided over at least a portion of the anchor material and over at least a portion of an inner sidewall surface of the conductive member. Novel semiconductor devices and structures are fabricated using such methods.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: November 15, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Brett Busch, Kevin R. Shea, Thomas A. Figura
  • Patent number: 8053313
    Abstract: In a method of fabricating a semiconductor device on a substrate having a pillar pattern, a gate electrode is formed on the pillar pattern without etching the latter. A conductive pattern is filled between adjacent pillar patterns, a spacer is formed above the conductive pattern and surrounding sidewalls of each pillar pattern, and the gate electrode is formed by etching the conductive pattern using the spacer as an etch barrier.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: November 8, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventors: Yun-Seok Cho, Sang-Hoon Park, Young-Kyun Jung, Chun-Hee Lee
  • Patent number: 8053311
    Abstract: The present invention provides a dielectric film having a high permittivity and a high heat resistance. An embodiment of the present invention is a dielectric film (103) including a composite oxynitride containing an element A made of Hf, an element B made of Al or Si, and N and O, wherein mole fractions of the element A, the element B, and N expressed as B/(A+B+N) range from 0.015 to 0.095 and N/(A+B+N) equals or exceeds 0.045, and has a crystalline structure.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: November 8, 2011
    Assignee: Canon Anelva Corporation
    Inventors: Takashi Nakagawa, Naomu Kitano, Toru Tatsumi
  • Patent number: 8053310
    Abstract: A method for forming a cylindrical stack capacitor structure. A semiconductor substrate is provided. Storage node structures are formed in a memory cell region. A dielectric layer is formed overlying the storage node structures. A patterning and a first etching process expose the storage nodes. A polysilicon layer and a rugged polysilicon layer are formed overlying the exposed storage nodes. The memory cell region is masked, exposing a peripheral region. A chemical dry etch process removes the rugged polysilicon and the polysilicon layers in the peripheral region. The rugged polysilicon and the polysilicon layers are planarized followed by a dielectric recess. The resulting cylindrical stack capacitor structures are substantially free of defects from rugged polysilicon remaining in the peripheral region thereby improving device yield and process window.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: November 8, 2011
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Ling Jin, Dah Cheng Lin, Chin Hsing Yu, Meng Jan Cherng, Huan Sung Fu
  • Patent number: 8049263
    Abstract: A capacitor has an MIM (Metal Insulator Metal) structure comprising a lower electrode formed in the interior of an electrode trench which is formed in an interlayer insulating film, a dielectric film formed over the lower electrode, and an upper electrode formed over the dielectric film. The upper electrode and the dielectric film are each formed with an area larger than the area of the lower electrode so that the whole of the lower electrode is positioned inside the upper electrode and the dielectric film. The reliability and production yield of the capacitor are improved.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: November 1, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Katsuhiro Torii
  • Patent number: 8048736
    Abstract: By forming metal capacitors in the metallization structures of semiconductor devices, complex manufacturing sequences in the device level may be avoided. The process of manufacturing the metal capacitors may be performed on the basis of well-established patterning regimes of modern metallization systems by using appropriately selected etch stop materials, which may enable a high degree of compatibility for forming via openings in a metallization layer while providing a capacitor dielectric of a desired high dielectric constant in the capacitor.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: November 1, 2011
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Thomas Werner, Frank Feustel, Kai Frohberg
  • Patent number: 8048737
    Abstract: The invention relates to a semiconductor device and a method of fabricating the same, wherein a storage node contact hole is made large to solve any problem caused during etching a storage node contact hole with a small CD, a landing plug is formed to lower plug resistance, and the SAC process is eliminated at the time of the bit line formation. A method of fabricating a semiconductor device according to the invention comprises: forming a device isolation film for defining a multiplicity of active regions in a semiconductor substrate; forming a multiplicity of buried word lines in the semiconductor substrate; forming a storage node contact hole for exposing a storage node contact region of two adjoining active regions; filling the storage node contact hole with a storage node contact plug material; forming a bit-line groove for exposing a bit-line contact region of the active region and splitting the storage node contact plug material into two; and burying the bit line into the bit-line groove.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: November 1, 2011
    Assignee: Hynix Semiconductor, Inc.
    Inventors: Do Hyung Kim, Young Man Cho
  • Publication number: 20110260230
    Abstract: A memory cell with surrounding word line structures includes an active area; a plurality of first trenches formed on the active area in a first direction, each first trench has a bit line on a sidewall therein; a plurality of second trenches formed on the active area in a second direction, each second trench has two word lines formed correspondingly on the sidewalls in the second trench; and a plurality of transistors formed on the active area. The word line pairs are arranged into a surrounding word line structure. The transistor is controlled by the bit line and the two word lines, thus improving the speed of the transistor.
    Type: Application
    Filed: July 2, 2010
    Publication date: October 27, 2011
    Applicant: INOTERA MEMORIES, INC.
    Inventors: TZUNG HAN LEE, CHUNG-LIN HUANG, HSIEN-WEN LIU
  • Publication number: 20110260231
    Abstract: The present application discloses a memory device and a method for manufacturing the same.
    Type: Application
    Filed: September 21, 2010
    Publication date: October 27, 2011
    Applicant: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Qingqing Liang, Huicai Zhong
  • Publication number: 20110248234
    Abstract: The present invention relates to a method for producing a vertical interconnect structure, a memory device and an associated production method, in which case, after the formation of a contact region in a carrier substrate a catalyst is produced on the contact region and a free-standing electrically conductive nanoelement is subsequently formed between the catalyst and the contact region and embedded in a dielectric layer.
    Type: Application
    Filed: June 24, 2011
    Publication date: October 13, 2011
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Martin Gutsche, Franz Kreupl, Harald Seidl
  • Patent number: 8034683
    Abstract: A method of forming a phase change material layer includes preparing a substrate having an insulator and a conductor, loading the substrate into a process housing, injecting a deposition gas into the process housing to selectively form a phase change material layer on an exposed surface of the conductor, and unloading the substrate from the process housing, wherein a lifetime of the deposition gas in the process housing is shorter than a time the deposition gas takes to react by thermal energy.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: October 11, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Lae Cho, Choong-Man Lee, Jin-Il Lee, Sang-Wook Lim, Hye-Young Park, Young-Lim Park
  • Patent number: 8030168
    Abstract: The invention includes methods of electrically interconnecting different elevation conductive structures, methods of forming capacitors, methods of forming an interconnect between a substrate bit line contact and a bit line in DRAM, and methods of forming DRAM memory cells. In one implementation, a method of electrically interconnecting different elevation conductive structures includes forming a first conductive structure comprising a first electrically conductive surface at a first elevation of a substrate. A nanowhisker is grown from the first electrically conductive surface, and is provided to be electrically conductive. Electrically insulative material is provided about the nanowhisker. An electrically conductive material is deposited over the electrically insulative material in electrical contact with the nanowhisker at a second elevation which is elevationally outward of the first elevation, and the electrically conductive material is provided into a second conductive structure.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: October 4, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Brett W. Busch, David K. Hwang, F. Daniel Gealy
  • Patent number: 8026604
    Abstract: Semiconductor devices are provided including a semiconductor substrate and a first interlayer insulating layer on the semiconductor substrate. A contact pad is provided in the first interlayer insulating layer and a second insulating layer is provided on the first interlayer insulating layer. A contact hole is provided in the second interlayer insulating layer. The contact hole exposes the contact pad and a lower portion of the contact hole has a protrusion exposing the contact pad. The protrusion is provided on the second interlayer insulating layer. A contact spacer is provided on inside sidewalls of the contact hole and fills the protrusion. A contact plug is provided in the contact hole. Related methods are also provided herein.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: September 27, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Byung-yoon Kim
  • Patent number: 8013373
    Abstract: A semiconductor device comprises MOS transistors sequentially arranged in the plane direction of a substrate, wherein a gate electrode and a wiring portion for connecting between the gate electrodes to each other are implanted into a layer that is lower than a surface of the substrate in which a diffusion layer has been formed. A first device isolation area with a STI structure for separating the diffusion layers that function as a source/drain area is formed on the surface of the substrate. A second device isolation area with the STI structure for separating channel areas of the MOS transistors adjacent to each other is formed in a layer that is lower than a layer that has the first device isolation area.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: September 6, 2011
    Assignee: Elpida Memory, Inc.
    Inventor: Hiroyuki Uchiyama
  • Patent number: 8012823
    Abstract: Provided are methods of fabricating capacitors of semiconductor devices, the methods including: forming a lower electrode on a semiconductor substrate, performing a pre-process operation on the lower electrode for suppressing deterioration of the lower electrode during a process, forming a dielectric layer on the lower electrode using a source gas and an ozone gas, and forming an upper electrode on the dielectric layer, wherein the pre-process operation and the forming of the dielectric layer may be performed in one device capable of atomic layer deposition.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: September 6, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Han-jin Lim, Jae-young Park, Young-jin Kim, Seok-woo Nam, Bong-hyun Kim, Kyoung-ryul Yoon, Jae-hyoung Choi, Beom-jong Kim
  • Patent number: 8012836
    Abstract: Semiconductor devices and methods for fabricating the same are provided. An exemplary embodiment of a semiconductor device comprises a substrate with a plurality of isolation structures formed therein, defining first and second areas over the substrate. A transistor is formed on a portion of the substrate in the first and second areas, respectively, wherein the transistor in the second area is formed with merely a pocket doping region in the substrate adjacent to a drain region thereof. A first dielectric layer is formed over the substrate, covering the transistor formed in the first and second areas. A plurality of first contact plugs is formed through the first dielectric layer, electrically connecting a source region and a drain region of the transistor in the second area, respectively. A second dielectric layer is formed over the first dielectric layer with a capacitor formed therein, wherein the capacitor electrically connects one of the first contact plugs.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: September 6, 2011
    Assignee: Taiwan Semiconductor Manufacuturing Co., Ltd.
    Inventors: Kuo-Chyuan Tzeng, Jian-Yu Shen, Kuo-Chi Tu, Kuo-Ching Huang, Chin-Yang Chang
  • Publication number: 20110204428
    Abstract: A method and circuit for implementing an embedded dynamic random access memory (eDRAM), and a design structure on which the subject circuit resides are provided. The embedded dynamic random access memory (eDRAM) circuit includes a stacked field effect transistor (FET) and capacitor. The capacitor is fabricated directly on top of the FET to build the eDRAM.
    Type: Application
    Filed: February 25, 2010
    Publication date: August 25, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Karl Robert Erickson, David Paul Paulsen, John Edward Sheets, II, Kelly L. Williams
  • Patent number: 8003480
    Abstract: A process using oxide supporter for manufacturing a capacitor lower electrode of a micron stacked DRAM is disclosed. First, form a stacked structure. Second, form a photoresist layer on an upper oxide layer and then etch them. Third, deposit a polysilicon layer onto the upper oxide layer and the nitride layer. Fourth, deposit a nitrogen oxide layer on the polysilicon layer and the upper oxide layer. Sixth, partially etch the nitrogen oxide layer, the polysilicon layer and the upper oxide layer to form a plurality of vias. Seventh, oxidize the polysilicon layer to form a plurality of silicon dioxides surround the vias. Eighth, etch the nitride layer, the dielectric layer and the lower oxide layer beneath the vias. Ninth, form a metal plate and a capacitor lower electrode in each of the vias. Tenth, etch the nitrogen oxide layer, the polysilicon layer, the nitride layer and the dielectric layer.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: August 23, 2011
    Assignee: Inotera Memories, Inc.
    Inventors: Shin Bin Huang, Ching-Nan Hsiao, Chung-Lin Huang
  • Patent number: 7985645
    Abstract: A semiconductor device having a high aspect cylindrical capacitor and a method for fabricating the same is presented. The high aspect cylindrical type capacitor is a stable structure which is not prone to causing bunker defects and losses in a guard ring. The semiconductor device includes the cylindrical type capacitor structure, a storage node oxide, a guard ring hole, a conductive layer, and a capping oxide. The cylindrical type capacitor structure in a cell region includes a cylindrical type lower electrode, a dielectric and an upper electrode. The storage node oxide is in a peripheral region over the semiconductor substrate. The conductive layer coating the guard ring hole. The guard ring hole at a boundary of the peripheral region that adjoins the cell region over the semiconductor substrate. The capping oxide partially fills in a part of the conductive layer. The gapfill film filling in the rest of the conductive layer.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: July 26, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventors: Cheol Hwan Park, Ho Jin Cho, Dong Kyun Lee
  • Patent number: 7981764
    Abstract: A method for fabricating a semiconductor device includes: forming a stack structure including pillar regions whose upper portion has a wider width than a lower portion over a substrate, the lower portion including at least a conductive layer; forming a gate insulation layer on sidewalls of the pillar regions; forming active pillars to gap-fill the pillar regions; and forming vertical gates that serve as both gate electrode and word lines by selectively etching the conductive layer.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: July 19, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Young-Kyun Jung
  • Publication number: 20110169061
    Abstract: The semiconductor device comprises a first region, a guard ring surrounding the first region, and a second region outside of the guard ring. The first region includes a first electrode made of a first film which has conductivity. A surface of the first electrode in the first region is not covered with the second film. The guard ring includes the first film covering an inner wall of a groove having a recess shape, and a second film as an insulating film covering at least one portion of a surface of the first film in the groove.
    Type: Application
    Filed: November 24, 2010
    Publication date: July 14, 2011
    Applicant: Elpida Memory, Inc.
    Inventors: Mitsunari Sukekawa, Keisuke Otsuka
  • Publication number: 20110171796
    Abstract: A vertical transistor having a wrap-around-gate and a method of fabricating such a transistor. The wrap-around-gate (WAG) vertical transistors are fabricated by a process in which source, drain and channel regions of the transistor are automatically defined and aligned by the fabrication process, without photolithographic patterning.
    Type: Application
    Filed: March 25, 2011
    Publication date: July 14, 2011
    Inventors: Sanh D. Tang, Robert J. Burke, Anand Srinivasan
  • Patent number: 7977184
    Abstract: A method for fabricating a metal/insulator/metal (MIM) structure capacitor includes forming a nitride film that is an insulating layer on a bottom electrode metal layer; forming titanium/titanium nitride (Ti/TiN) that is a top electrode metal layer on the nitride film; coating photo-resist on the top electrode metal layer and patterning a photo-resist layer; selectively etching the top metal electrode layer so that the nitride film remains using the patterned photo-resist layer as an etching mask and using the nitride film as an end point; and removing the remaining nitride film.
    Type: Grant
    Filed: December 14, 2008
    Date of Patent: July 12, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: ChoNG-Hoon Shin
  • Publication number: 20110156118
    Abstract: A method for fabricating a semiconductor substrate includes defining an active region by forming a device isolation layer over the substrate, forming a first trench dividing the active region into a first active region and a second active region, forming a buried bit line filling a portion of the first trench, forming a gap-filling layer gap-filling an upper portion of the first trench over the buried bit line, forming second trenches by etching the gap-filling layer and the device isolation layer in a direction crossing the buried bit line, and forming a first buried word line and a second buried word line filling the second trenches, wherein the first buried word line and the second buried word line are shaped around sidewalls of the first active region and the second active region, respectively.
    Type: Application
    Filed: July 6, 2010
    Publication date: June 30, 2011
    Inventor: Jung-Woo Park
  • Patent number: 7968447
    Abstract: A semiconductor device may include plugs disposed in a zigzag pattern, interconnections electrically connected to the plugs and a protection pattern which is interposed between the plugs and the interconnections to selectively expose the plugs. The interconnections may include a connection portion which is in contact with plugs selectively exposed by the protection pattern. A method of manufacturing a semiconductor device includes, after forming a molding pattern and a mask pattern, selectively etching a protection layer using the mask pattern to form a protection pattern exposing a plug.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: June 28, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Ho Lee, Jae-Hwang Sim, Jae-Kwan Park, Mo-Seok Kim, Jong-Min Lee, Dong-Sik Lee