Vertical Channel Patents (Class 438/268)
  • Publication number: 20150017770
    Abstract: A three dimensional (3-D) non-volatile memory device includes a pipe gate including a first pipe gate, a second pipe gate formed on the first pipe gate, and a first interlayer insulating layer interposed between the first pipe gate and the second pipe gate, word lines alternately stacked with second interlayer insulating layers on the pipe gate, a pipe channel buried within the pipe gate, and memory cell channels coupled to the pipe channel and arranged to pass through the word lines and the second interlayer insulating layers.
    Type: Application
    Filed: October 2, 2014
    Publication date: January 15, 2015
    Inventors: Seo Hyun LEE, Byung Soo PARK, Sang Hyun OH, Sun Mi PARK
  • Patent number: 8932924
    Abstract: Exemplary power semiconductor devices with features providing increased breakdown voltage and other benefits are disclosed.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: January 13, 2015
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Joseph A. Yedinak, Dean E. Probst, Daniel Calafut
  • Patent number: 8932927
    Abstract: The present application discloses a semiconductor device structure and a method for manufacturing the same, wherein the method comprises: forming a semiconductor substrate comprising a local SOI structure having a local buried isolation dielectric layer; forming a fin on the silicon substrate on top of the local buried isolation dielectric layer; forming a gate stack structure on the top and side faces of the fin; forming source/drain structures in the fin on both sides of the gate stack structure; and performing metallization. The present invention makes use of traditional quasi-planar based top-down processes, thus the manufacturing process thereof is simple to implement; the present invention exhibits good compatibility with CMOS planar process and can be easily integrated, therefore, short channel effects are suppressed desirably, and MOSFETs are boosted to develop towards a trend of downscaling size.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: January 13, 2015
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huajie Zhou, Qiuxia Xu
  • Patent number: 8933504
    Abstract: The invention discloses a semiconductor structure comprising: a substrate, a conductor layer, and a dielectric layer surrounding the conductor layer on the substrate; a first insulating layer covering both of the conductor layer and the dielectric layer; a gate conductor layer formed on the first insulating layer, and a dielectric layer surrounding the gate conductor layer; and a second insulating layer covering both of the gate conductor layer and the dielectric layer surrounding the gate conductor layer; wherein a through hole filled with a semiconductor material penetrates through the gate conductor layer perpendicularly, the bottom of the through hole stops on the conductor layer, and a first conductor plug serving as a drain/source electrode is provided on the top of the through hole; and a second conductor plug serving as a source/drain electrode electrically contacts the conductor layer, and a third conductor plug serving as a gate electrode electrically contacts the gate conductor layer.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: January 13, 2015
    Inventors: Qingqing Liang, Huicai Zhong, Huilong Zhu
  • Patent number: 8932926
    Abstract: A method for manufacturing a semiconductor device, includes forming a gate oxide film on an SiC region by a first thermal oxidation treatment in a first oxidizing atmosphere, performing a second thermal oxidation treatment at an oxidation speed of at most 5 nm/hour in a second oxidizing atmosphere having a lower oxygen concentration than the first oxidizing atmosphere, to increase film thickness of the gate oxide film, after the first thermal oxidation treatment, and forming a gate electrode on the gate oxide film with the increased film thickness.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: January 13, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroshi Kono, Takuma Suzuki
  • Patent number: 8932915
    Abstract: A semiconductor device manufacturing method of an embodiment includes the steps of: forming a first insulating layer on a semiconductor substrate; forming on the first insulating layer an amorphous or polycrystalline semiconductor layer having a narrow portion; forming on the semiconductor layer a second insulating layer having a thermal expansion coefficient larger than that of the semiconductor layer; performing thermal treatment; removing the second insulating layer; forming a gate insulating film on the side faces of the narrow portion; forming a gate electrode on the gate insulating film; and forming a source-drain region in the semiconductor layer.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: January 13, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masumi Saitoh, Toshinori Numata, Yukio Nakabayashi
  • Patent number: 8933466
    Abstract: In a semiconductor element, a body region of a second conductivity type includes a first body region in contact with a surface of a first silicon carbide semiconductor layer, and a second body region in contact with a bottom surface of the body region of the second conductivity type. The impurity concentration of the first body region is twice or more the impurity concentration of the second body region. A second silicon carbide semiconductor layer of a first conductivity type, which is a channel layer, has an impurity concentration distribution in a direction perpendicular to a semiconductor substrate, and an impurity concentration on a side in contact with the gate insulating film is lower than an impurity concentration on a side in contact with the first body region.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: January 13, 2015
    Assignee: Panasonic Corporation
    Inventors: Masao Uchida, Nobuyuki Horikawa, Koutarou Tanaka, Tsutomu Kiyosawa
  • Publication number: 20150008505
    Abstract: A method of making a monolithic three dimensional NAND string including forming a stack of alternating layers of a first material and a second material over a substrate. The first material comprises an electrically insulating material and the second material comprises a semiconductor or conductor material. The method also includes etching the stack to form a front side opening in the stack, forming a blocking dielectric layer over the stack of alternating layers of a first material and a second material exposed in the front side opening, forming a semiconductor or metal charge storage layer over the blocking dielectric, forming a tunnel dielectric layer over the charge storage layer, forming a semiconductor channel layer over the tunnel dielectric layer, etching the stack to form a back side opening in the stack, removing at least a portion of the first material layers and portions of the blocking dielectric layer.
    Type: Application
    Filed: February 18, 2014
    Publication date: January 8, 2015
    Applicant: SANDISK TECHNOLOGIES INC.
    Inventors: Henry Chien, Donovan Lee, Vinod R. Purayath, Yuan Zhang, James K. Kai, George Matamis
  • Publication number: 20150011064
    Abstract: Provided is a vertical non-volatile memory device having a metal source line. The vertical non-volatile memory device includes cell string units that are formed on first portions of a semiconductor substrate and are vertically arranged with respect to a surface of the semiconductor substrate, impurity regions formed on second portions of the semiconductor substrate between the cell string units, conductive lines formed on the impurity regions, and spacers that are formed on the sidewalls of the cell string units and insulate the conductive lines from the cells string units.
    Type: Application
    Filed: September 24, 2014
    Publication date: January 8, 2015
    Inventors: Sung-min HWANG, Han-soo KIM, Won-seok CHO, Jae-hoon JANG
  • Publication number: 20150008503
    Abstract: A method of making a semiconductor device including forming a sacrificial feature over a substrate, forming a plurality of etch through regions having an etch through material and an etch stop region having an etch stop material over the sacrificial feature, forming a stack of alternating layers of a first material and a second material over the plurality of the etch through regions and the plurality of the etch stop regions, etching the stack to form a plurality of openings through the stack and through the etch through regions to expose the sacrificial feature, such that the etch through material is etched preferentially compared to the first and the second materials of the stack, removing the sacrificial feature through the plurality of openings and etching the stack to form a slit trench up to or only partially through the etch stop region, such that the first and the second materials of the stack are etched preferentially compared to the etch stop material.
    Type: Application
    Filed: July 2, 2013
    Publication date: January 8, 2015
    Inventors: Raghuveer S. MAKALA, Johann ALSMEIER, Yao-Sheng LEE, Masanori TERAHARA, Hirofumi WATATANI, Jayavel PACHAMUTHU
  • Patent number: 8928087
    Abstract: A semiconductor device is equipped with an element region, an electrode, a thermal conduction portion, and a protective membrane. The element region is equipped with a plurality of gate electrodes. The electrode is formed on a surface of the element region. The thermal conduction portion is located on a surface side of a central portion of the electrode, and is higher in thermal conductivity than the element region. The protective membrane is formed on a peripheral portion that is located on the surface side of the electrode and surrounds a periphery of the central portion. In the element region, an emitter central region that is formed on a back side of the central portion of the electrode remains on for a longer time than an emitter peripheral region that is formed on a back side of the peripheral portion of the electrode.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: January 6, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Tadashi Misumi
  • Patent number: 8921182
    Abstract: A method for fabricating a nonvolatile memory device includes forming a stacked structure having a plurality of interlayer dielectric layers and a plurality of sacrificial layers wherein interlayer dielectric layers and sacrificial layers are alternately stacked over a substrate, forming a first hole exposing a part of the substrate by selectively etching the stacked structure, forming a first insulation layer in the first hole, forming a second hole exposing the part of the substrate by selectively etching the first insulation layer, and forming a channel layer in the second hole.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: December 30, 2014
    Assignee: SK Hynix Inc.
    Inventors: Sung-Wook Jung, Yun-Kyoung Lee, Young-Soo Ahn, Tae-Hwa Lee
  • Patent number: 8921922
    Abstract: This technology relates to a nonvolatile memory device and a method for fabricating the same. The nonvolatile memory device may include a pipe connection gate electrode configured to have a lower part buried in a groove formed in a substrate, one or more pipe channel layers formed within the pipe connection gate electrode, pairs of main channel layers each coupled with the pipe channel layer and extended in a direction substantially perpendicular to the substrate; and a plurality of interlayer insulating layers and a plurality of cell gate electrodes alternately stacked along the main channel layers. In accordance with this technology, a lower part of the pipe connection gate electrode is buried in the substrate. Accordingly, electric resistance may be reduced because the pipe connection gate electrode may have an increased volume without a substantial increase of the height.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: December 30, 2014
    Assignee: SK Hynix Inc.
    Inventors: Min-Soo Kim, Young-Jin Lee, Sung-Jin Whang
  • Patent number: 8921925
    Abstract: A semiconductor device includes an n-type drain layer, an n-type base layer provided on the n-type drain layer, a p-type base layer and an n-type source layer partially formed in surface layer portions of the n-type base layer and the p-type base layer, respectively, a gate insulation film formed on a surface of the p-type base layer between the n-type source layer and the n-type base layer, a gate electrode formed on the gate insulation film facing the p-type base layer across the gate insulation film, a p-type column layer formed within the n-type base layer to extend from the p-type base layer toward the n-type drain layer, a depletion layer alleviation region arranged between the p-type column layer and the n-type drain layer and including first baryons converted to donors, a source electrode connected to the n-type source layer, and a drain electrode connected to the n-type drain layer.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: December 30, 2014
    Assignee: Rohm Co., Ltd.
    Inventor: Toshio Nakajima
  • Patent number: 8921921
    Abstract: A nonvolatile memory device includes a stacked structure disposed over a substrate and having a plurality of interlayer dielectric layers and conductive layers that are alternately stacked, a plurality of holes formed to pass through the stacked structure to expose the substrate, a first memory layer and a second memory layer formed separately in a circumference of each hole, and a first channel layer and a second channel layer formed respectively on the first and second memory layers.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: December 30, 2014
    Assignee: SK Hynix Inc.
    Inventor: Jung-Ryul Ahn
  • Patent number: 8916927
    Abstract: Among other things, one or more techniques for forming a vertical tunnel field effect transistor (FET), and a resulting vertical tunnel FET are provided herein. In an embodiment, the vertical tunnel FET is formed by forming a core over a first type substrate region, forming a second type channel shell around a circumference greater than a core circumference, forming a gate dielectric around a circumference greater than the core circumference, forming a gate electrode around a circumference greater than the core circumference, and forming a second type region over a portion of the second type channel shell, where the second type has a doping opposite a doping of the first type. In this manner, line tunneling is enabled, thus providing enhanced tunneling efficiency for a vertical tunnel FET.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: December 23, 2014
    Assignee: Taiwan Semiconductor Manufacturing
    Inventors: Krishna Bhuwalka, Gerben Doornbos, Matthias Passlack
  • Patent number: 8916928
    Abstract: When forming sophisticated multiple gate transistors and planar transistors in a common manufacturing sequence, the threshold voltage characteristics of the multiple gate transistors may be intentionally “degraded” by selectively incorporating a dopant species into corner areas of the semiconductor fins, thereby obtaining a superior adaptation of the threshold voltage characteristics of multiple gate transistors and planar transistors. In advantageous embodiments, the incorporation of the dopant species may be accomplished by using the hard mask, which is also used for patterning the self-aligned semiconductor fins.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: December 23, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Tim Baldauf, Andy Wei, Tom Herrmann, Stefan Flachowsky, Ralf Illgen
  • Patent number: 8916437
    Abstract: A transistor having at least one passivated Schottky barrier to a channel includes an insulated gate structure on a p-type substrate in which the channel is located beneath the insulated gate structure. The channel and the insulated gate structure define a first and second undercut void regions that extend underneath the insulated gate structure toward the channel from a first and a second side of the insulated gate structure, respectively. A passivation layer is included on at least one exposed sidewall surface of the channel, and metal source and drain terminals are located on respective first and second sides of the channel, including on the passivation layer and within the undercut void regions beneath the insulated gate structure. At least one of the metal source and drain terminals comprises a metal that has a work function near a valence band of the p-type substrate.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: December 23, 2014
    Assignee: Acorn Technologies, Inc.
    Inventors: Daniel E. Grupp, Daniel J. Connelly
  • Publication number: 20140370675
    Abstract: A semiconductor device includes a plurality of conductive layers and a plurality of insulating layers formed alternately with each other, at least one channel layer passing through the plurality of conductive layers and the plurality of insulating layers, and at least one first charge blocking layer surrounding the at least one channel layer, wherein a plurality of first regions, interposed between the at least one channel layer and the plurality of conductive layers, and a plurality of second regions, interposed between the at least one channel layer and the plurality of insulating layers, are alternately defined on the at least one first charge blocking layer, and each of the plurality of first regions has a greater thickness than each of the plurality of second regions.
    Type: Application
    Filed: August 28, 2014
    Publication date: December 18, 2014
    Inventors: Ki Hong LEE, Seung Ho PYI, Seok Min JEON
  • Publication number: 20140370674
    Abstract: A vertical super junction MOSFET and a lateral MOSFET are integrated on the same semiconductor substrate. The lateral MOSFET is electrically isolated from the vertical super junction MOSFET by an n-buried isolating layer and an n-diffused isolating layer. The lateral MOSFET is formed of a p-well region formed in an n? semiconductor layer bounded by the n-buried isolating layer and n-diffused isolating layer, an n-source region and n-drain region formed in the p-well region, and a gate electrode that covers a portion of the p-well region sandwiched by the n-source region and n-drain region. As the n-buried isolating layer is formed at the same time as an n-layer (3) of the vertical super junction MOSFET, it is possible to reduce cost. Also, it is possible to suppress parasitic action between the elements with the n-buried isolating layer.
    Type: Application
    Filed: August 26, 2014
    Publication date: December 18, 2014
    Inventors: Yoshiaki TOYODA, Akio KITAMURA
  • Publication number: 20140367771
    Abstract: Metal-oxide-semiconductor field-effect transistor (MOSFET) devices are described which have a p-type region between the p-type well regions of the device. The p-type region can be either floating or connected to the p-type well regions by additional p-type regions. MOSFET devices are also described which have one or more p-type regions connecting the p-type well regions of the device. The p-type well regions can be arranged in a various geometric arrangements including square, diamond and hexagonal. Methods of making the devices are also described.
    Type: Application
    Filed: June 12, 2014
    Publication date: December 18, 2014
    Inventors: Kiran CHATTY, Kevin MATOCHA, Sujit BANERJEE, Larry Burton ROWLAND
  • Publication number: 20140367769
    Abstract: A semiconductor device forms a salicide layer to surround an upper surface and a circumference of a lateral surface of a pillar. A contact area between the pillar and a lower electrode may be increased to reduce a contact resistance.
    Type: Application
    Filed: October 2, 2013
    Publication date: December 18, 2014
    Applicant: SK hynix Inc.
    Inventors: Suk Ki KIM, Kang Sik CHOI
  • Publication number: 20140367770
    Abstract: A semiconductor device including an active cell region formed over the surface of a silicon substrate and including a vertical MOSFET, a drain electrode formed over the surface of the silicon substrate and leading out the drain of the vertical MOSFET from the back surface of the silicon substrate, an external drain terminal formed over the drain electrode, and a source electrode formed over the active cell region so as to be opposed to the drain electrode at least along three sides at the periphery of the external drain terminal over the active cell region and connected to the source of the vertical MOSFET.
    Type: Application
    Filed: May 20, 2014
    Publication date: December 18, 2014
    Applicant: Renesas Electronics Corporation
    Inventors: Takashi Aoki, Takahiro Korenari
  • Patent number: 8912063
    Abstract: A method for fabricating a semiconductor device is provided. The method includes forming a gate pattern which intersects a fin-type active pattern protruding upward from a device isolation layer. A first blocking pattern is formed on a portion of the fin-type active pattern, which does not overlap the gate pattern. Side surfaces of the portion of the fin-type active pattern are exposed. A semiconductor pattern is formed on the exposed side surfaces of the portion of the fin-type active pattern after the forming of the first blocking pattern.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: December 16, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Bum Kim, Ha-Kyu Seong
  • Patent number: 8912519
    Abstract: Provided are a variable resistive memory device and a method of fabricating the same. The variable resistive memory device includes an interlayer insulating film having an opening therein, the opening exposing a surface of a first electrode which is disposed at a bottom of the opening. A variable resistive layer is formed in the opening and a second electrode is formed on the variable resistive layer. The variable resistive layer has a sidewall that is separated from an inner side surface of the opening to define a gap between the sidewall of the variable resistive layer and the inner side surface of the opening.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: December 16, 2014
    Assignee: SK Hynix Inc.
    Inventor: Keun Lee
  • Patent number: 8907393
    Abstract: A semiconductor device including buried bit lines formed of a metal silicide and silicidation preventing regions formed in a substrate under trenches that separate the buried bit lines.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: December 9, 2014
    Assignee: SK Hynix Inc.
    Inventor: Ju-Hyun Myung
  • Patent number: 8906766
    Abstract: A semiconductor device and a method for manufacturing the same are provided. The method includes forming a cell structure where a storage node contact is coupled to first and second channel layers formed on sidewalls and upper portions of a plurality of gates, thereby simplifying the manufacturing process of the device. The semiconductor device includes a bit line buried in a semiconductor substrate; the gates disposed over the semiconductor substrate buried with the bit line; a first plug disposed in a lower portion between the gates and coupled to the bit line; and a second plug coupled to the second channel layer.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: December 9, 2014
    Assignee: SK Hynix Inc.
    Inventor: Hyung Jin Park
  • Patent number: 8907406
    Abstract: A semiconductor device according to embodiments includes a semiconductor substrate, a buried insulating layer which is formed on the semiconductor substrate, a semiconductor layer which is formed on the buried insulating layer and includes a narrow portion and two wide portions which are larger than the narrow portion in width and are respectively connected to one end and the other end of the narrow portion, a gate insulating film which is formed on a side surface of the narrow portion, and a gate electrode formed on the gate insulating film. The impurity concentration of the semiconductor substrate directly below the narrow portion is higher than the impurity concentration of the narrow portion, and the impurity concentration of the semiconductor substrate directly below the narrow portion is higher than the impurity concentration of the semiconductor substrate directly below the wide portion.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: December 9, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kensuke Ota, Toshinori Numata, Masumi Saitoh, Chika Tanaka, Yusuke Higashi
  • Patent number: 8907407
    Abstract: The invention prevents a semiconductor device from warping due to heat when it is used. The invention also prevents a formation defect such as peeling of a resist layer used as a plating mask and a formation defect of a front surface electrode. A source pad electrode connected to a source region is formed on a front surface of a semiconductor substrate forming a vertical MOS transistor. A front surface electrode is formed on the source pad electrode by a plating method using a resist layer having openings as a mask. The semiconductor substrate formed with the front surface electrode is thinned by back-grinding. A back surface electrode connected to a drain region is formed on the back surface of the semiconductor substrate. The front surface electrode and the back surface electrode are made of metals having the same coefficients of linear expansion, preferably copper. The front surface electrode and the back surface electrode preferably have the same thicknesses or almost the same thicknesses.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: December 9, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventor: Takahiro Oikawa
  • Patent number: 8907402
    Abstract: According to one embodiment, a method for manufacturing is a method for manufacturing a nonvolatile semiconductor memory device including a memory string having series-connected memory cells. The method includes forming a first semiconductor layer; forming a first sacrificial layer and the bottom surface and the side surface being surrounded with the first semiconductor layer; forming a first insulating layer on the first semiconductor layer and the first sacrificial layer; forming a stacked body on the first insulating layer, the body including electrode layers and second sacrificial layers alternately stacked; forming a first trench extending from an upper surface of the body to the first insulating layer on the first sacrificial layer; forming a second insulating layer in the first trench; forming a second trench extending from the upper surface of the body to the first semiconductor layer; and forming a third insulating layer in the second trench.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: December 9, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroshi Shinohara
  • Publication number: 20140357031
    Abstract: A nonvolatile memory device may include a plurality of channel layers protruded substantially perpendicularly over a substrate having a well region, a structure configured to have a plurality of interlayer insulating layers and a plurality of gate electrodes alternately stacked along each of the plurality of channel layers, a plurality of memory layers interposed respectively between each of the plurality of channel layers and each of the plurality of gate electrodes, a source line formed in the substrate between a plurality of the structures, a plurality of source contact plugs placed between the plurality of structures and connected with the source line, and a well pickup contact plug placed between the plurality of structures and connected with the well region.
    Type: Application
    Filed: August 15, 2014
    Publication date: December 4, 2014
    Inventor: In-Hey LEE
  • Publication number: 20140353593
    Abstract: A vertical tunneling field effect transistor (TFET) and method for forming a vertical tunneling field effect transistor (TFET) is disclosed. The vertical tunneling field effect transistor TFET comprises a vertical core region, a vertical source region, a vertical drain region and a gate structure. The vertical core region is extending perpendicularly from a semiconductor substrate, having a top surface, consisting of a doped outer part and a middle part. The vertical source region of semiconducting core material comprises the doped outer part of the vertical core region. The vertical drain region of semiconducting drain material comprises along its longitudinal direction a first drain part and a second drain part, the first drain part either directly surrounding said vertical source region or directly sandwiching said vertical source region between two sub-parts of said first drain part, the second drain part located directly above and in contact with the first drain part.
    Type: Application
    Filed: May 28, 2014
    Publication date: December 4, 2014
    Inventor: Quentin Smets
  • Publication number: 20140357032
    Abstract: On a silicon substrate is formed a stacked body by alternately stacking a plurality of silicon oxide films and silicon films, a trench is formed in the stacked body, an alumina film, a silicon nitride film and a silicon oxide film are formed in this order on an inner surface of the trench, and a channel silicon crystalline film is formed on the silicon oxide film. Next, a silicon oxide layer is formed at an interface between the silicon oxide film and the channel silicon crystalline film by performing thermal treatment in an oxygen gas atmosphere.
    Type: Application
    Filed: August 15, 2014
    Publication date: December 4, 2014
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Yoshio OZAWA
  • Patent number: 8900948
    Abstract: A method for fabricating a non-volatile memory device includes alternately stacking a plurality of inter-layer dielectric layers and a plurality of sacrificial layers over a substrate, forming at least a channel hole that exposes the substrate by selectively etching the inter-layer dielectric layers and the sacrificial layers, forming a protective layer on sidewalls of the sacrificial layers that are exposed through the channel hole, sequentially forming a memory layer and a channel layer on the sidewalls of the channel hole, forming slit holes that penetrate through the inter-layer dielectric layers and the sacrificial layers on both sides of the channel hole, removing the sacrificial layers that are exposed through the slit holes, removing the protective layer, and forming gate electrodes in space from which the sacrificial layers and the protective layer are removed.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: December 2, 2014
    Assignee: SK Hynix Inc.
    Inventors: Seok-Min Jeon, Sun-Kok Hwang
  • Patent number: 8900949
    Abstract: A staggered column superjunction semiconductor device may include a cell region having one or more device cells. One or more device cells in the cell region include a semiconductor substrate configured to act as a drain and a semiconductor layer formed on the substrate. A first doped column may be formed in the semiconductor layer to a first depth and a second doped column may be formed in the semiconductor layer to a second depth. The first depth is greater than the second depth. The first and second columns are doped with dopants of a same second conductivity type and extend along a portion of a thickness of the semiconductor layer and are separated from each by a portion of the semiconductor layer.
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: December 2, 2014
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Lingpeng Guan, Madhur Bobde, Anup Bhalla, Hamza Yilmaz
  • Patent number: 8901644
    Abstract: Disclosed herein is a field effect transistor with a vertical channel and a fabrication method thereof. A channel region of the field effect transistor is a circular ring-shaped Si platform, which is formed over a substrate and perpendicular to the substrate; a source, which is made of polysilicon, is located at an upper end of the Si platform; a drain is disposed at an outside of a lower end of the circular ring-shaped Si platform; a gate is placed on an outer side surface of the circular ring-shaped Si platform; and an inside of the circular ring-shaped Si platform is filled with a dielectric material. In comparison with the conventional vertical structure MOSFET with a Si platform, the circular ring-shaped structure field effect transistor according to the invention can effectively suppress the short channel effect and improve the device performance.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: December 2, 2014
    Assignee: Peking University
    Inventors: Ru Huang, Yujie Ai, Zhihua Hao, Shuangshuang Pu, Jiewen Fan, Shuai Sun, Runsheng Wang, Xiaoyan Xu
  • Patent number: 8901572
    Abstract: A semiconductor device includes an n+ type silicon carbide substrate; a plurality of n type pillar regions, a plurality of p type pillar regions, and an n? type epitaxial layer disposed on a first surface of the n+ type silicon carbide substrate; a p type epitaxial layer and an n+ region sequentially disposed on the n? type epitaxial layer; a trench penetrating the n+ region and the p type epitaxial layer and disposed on the n? type epitaxial layer; a gate insulating film disposed within the trench; a gate electrode disposed on the gate insulating film; an oxide film disposed on the gate electrode; a source electrode disposed on the p type epitaxial layer, the n+ region, and the oxide film; and a drain electrode positioned on a second surface of the n+ type silicon carbide substrate.
    Type: Grant
    Filed: December 12, 2013
    Date of Patent: December 2, 2014
    Assignee: Hyundai Motor Company
    Inventors: Jong Seok Lee, Kyoung-Kook Hong, Dae Hwan Chun, Youngkyun Jung
  • Publication number: 20140349454
    Abstract: Methods are disclosed that include selectively etching diffused regions to form recesses in semiconductor material, and forming charge storage structures in the recesses. Additional embodiments are disclosed.
    Type: Application
    Filed: August 11, 2014
    Publication date: November 27, 2014
    Inventors: Alex Schrinsky, Anish Khandekar, Pavan Aella, Niraj B. Rana
  • Publication number: 20140346589
    Abstract: A semiconductor device includes a semiconductor body and a source metallization arranged on a first surface of the body. The body includes: a first semiconductor layer including a compensation-structure; a second semiconductor layer adjoining the first layer, comprised of semiconductor material of a first conductivity type and having a doping charge per horizontal area lower than a breakdown charge per area of the semiconductor material; a third semiconductor layer of the first conductivity type adjoining the second layer and comprising at least one of a self-charging charge trap, a floating field plate and a semiconductor region of a second conductivity type forming a pn-junction with the third layer; and a fourth semiconductor layer of the first conductivity type adjoining the third layer and having a maximum doping concentration higher than that of the third layer. The first semiconductor layer is arranged between the first surface and the second semiconductor layer.
    Type: Application
    Filed: August 13, 2014
    Publication date: November 27, 2014
    Inventors: Hans Weber, Stefan Gamerith, Franz Hirler
  • Publication number: 20140349453
    Abstract: Memory devices include a plurality of elongate gate stacks extending in parallel on a substrate and at least one insulation region disposed in a trench between adjacent ones of the gate stacks. The at least one insulation region has linear first portions having a first width and widened second portions having a second width greater than the first width. A common source region is disposed in the substrate underlying the at least one insulation region. The devices further include respective conductive plugs passing through respective ones of the widened second portions of the at least one insulation region and electrically connected to the common source region and at least one strapping line disposed on the conductive plugs between the adjacent ones of the gate stacks and in direct contact with the conductive plugs.
    Type: Application
    Filed: August 8, 2014
    Publication date: November 27, 2014
    Inventors: Bongyong Lee, Sang-Hoon Kim, Ae-Jeong Lee, Dongchan Kim
  • Publication number: 20140346585
    Abstract: According to one embodiment, a semiconductor memory device includes a lower gate layer, a stacked body including a plurality of electrode layers and a plurality of insulating layers, alternately stacked on the lower gate layer, a channel body extending within the stacked body from the topmost electrode layer to the lower gate layer, and a memory film provided between the electrode layer and the channel body. The memory film includes a charge storage film. The electrode layer includes a step portion in which a step is formed in a stacking direction of the stacked body. The channel body and the memory film pass through the step portion.
    Type: Application
    Filed: September 5, 2013
    Publication date: November 27, 2014
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Nobuhito KUGE, Tsukasa NAKAI
  • Publication number: 20140346588
    Abstract: A method for manufacturing a semiconductor power device, comprising the steps of: forming a trench in a semiconductor body having a first type of conductivity; partially filling the trench with semiconductor material via epitaxial growth so as to obtain a first column having a second type of conductivity and having an internal cavity. The epitaxial growth includes simultaneously supplying a gas containing dopant ions of the second type of conductivity, hydrochloric acid HCl in gaseous form and dichlorosilane DCS in gaseous form, so that the ratio between the amount of HCl and the amount of DCS has a value of from 3.5 to 5.5.
    Type: Application
    Filed: May 20, 2014
    Publication date: November 27, 2014
    Applicant: STMICROELECTRONICS S.r.l.
    Inventors: Giuseppe MORALE, Carlo MAGRO, Domenico MURABITO, Tiziana CUSCANI
  • Patent number: 8895392
    Abstract: A method for fabricating a semiconductor device including a semiconductor substrate having a trench formed therein. A migration assist layer is formed in the trench and on the substrate. A buried layer in formed in the trench by migrating material from the migration assist layer and the semiconductor substrate.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: November 25, 2014
    Assignee: SK Hynix Inc.
    Inventors: Tae-Yoon Kim, Heung-Jae Cho
  • Patent number: 8895393
    Abstract: In a semiconductor device and a method of forming such a device, the semiconductor device comprises a substrate of semiconductor material extending in a horizontal direction. A plurality of interlayer dielectric layers is provided on the substrate. A plurality of gate patterns is provided, each gate pattern between a neighboring lower interlayer dielectric layer and a neighboring upper interlayer dielectric layer. A vertical channel of semiconductor material extends in a vertical direction through the plurality of interlayer dielectric layers and the plurality of gate patterns, a gate insulating layer between each gate pattern and the vertical channel that insulates the gate pattern from the vertical channel, the vertical channel being in contact with the substrate at a contact region that comprises a semiconducting region.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: November 25, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Sung Sim, Jung-Dal Choi
  • Patent number: 8890252
    Abstract: A semiconductor device includes a switching element having: a drift layer; a base region; an element-side first impurity region in the base region; an element-side gate electrode sandwiched between the first impurity region and the drift layer; a second impurity region contacting the drift layer; an element-side first electrode coupled with the element-side first impurity region and the base region; and an element-side second electrode coupled with the second impurity region, and a FWD having: a first conductive layer; a second conductive layer; a diode-side first electrode coupled to the second conductive layer; a diode-side second electrode coupled to the first conductive layer; a diode-side first impurity region in the second conductive layer; and a diode-side gate electrode in the second conductive layer sandwiched between first impurity region and the first conductive layer and having a first gate electrode as an excess carrier injection suppression gate.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: November 18, 2014
    Assignee: DENSO CORPORATION
    Inventors: Hirotaka Saikaku, Tsuyoshi Yamamoto, Shoji Mizuno, Masakiyo Sumitomo, Tetsuo Fujii, Jun Sakakibara, Hitoshi Yamaguchi, Yoshiyuki Hattori, Rie Taguchi, Makoto Kuwahara
  • Publication number: 20140335671
    Abstract: A three-dimensional memory is formed as an array of memory elements that are formed across multiple layers of planes positioned at different distances above a semiconductor substrate. The memory elements reversibly change a level of electrical conductance in response to a voltage difference being applied across them. The three-dimensional array includes a two-dimensional array of pillar lines acting as local vertical bit lines through the multiple layers of planes which together with arrays of word lines on each plane are used to access the memory elements. The three-dimensional memory is formed over a CMOS substrate with an intermediate pillar select layer. The pillar select layer is formed with a plurality of pillar select devices which are switching transistors formed outside the CMOS and serve to switch selected rows of pillar lines to corresponding metal lines on the substrate.
    Type: Application
    Filed: July 24, 2014
    Publication date: November 13, 2014
    Inventors: George Samachisa, Johann Alsmeier
  • Patent number: 8883593
    Abstract: A semiconductor pillar which has a first conductivity type and protrudes from a semiconductor substrate, is formed. A bottom diffusion layer having a second conductivity type is formed in the semiconductor substrate around a bottom of the semiconductor pillar. A gate insulator film which covers a side surface of the semiconductor pillar, is formed. A gate electrode which covers the gate insulator film, is formed. A top diffusion layer having the second conductivity type is formed at a top portion of the semiconductor pillar. The top diffusion layer including a semiconductor body is formed by an epitaxial growth which contains an impurity.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: November 11, 2014
    Assignee: PS4 Luxco S.a.r.l.
    Inventor: Kazuhiro Nojima
  • Patent number: 8883578
    Abstract: Various embodiments form silicon and silicon germanium fins on a semiconductor wafer. In one embodiment a semiconductor wafer is obtained. The semiconductor wafer comprises a substrate, a dielectric layer, and a semiconductor layer including silicon germanium (SiGe). At least one SiGe fin is formed from at least a first SiGe region of the semiconductor layer in at least one PFET region of the semiconductor wafer. Strained silicon is epitaxially grown on at least a second SiGe region of the semiconductor layer. At least one strained silicon fin is formed from the strained silicon in at least one NFET region of the semiconductor wafer.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: November 11, 2014
    Assignee: International Business Machines Corporation
    Inventors: Veeraraghavan S. Basker, Chun-chen Yeh, Tenko Yamashita
  • Patent number: 8883594
    Abstract: A method of making a tunneling field-effect transistor (TFET) device is disclosed. A frustoconical protrusion structure is disposed over the substrate and protrudes out of the plane of substrate. Isolation features are formed on the substrate. A drain region is disposed over the substrate adjacent to the frustoconical protrusion structure and extends to a bottom portion of the frustoconical protrusion structure as a raised drain region. A source region is formed as a top portion of the frustoconical protrusion structure. A series connection and a parallel connection are made among TFET devices units.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: November 11, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Harry-Hak-Lay Chuang, Cheng-Cheng Kuo, Ming Zhu
  • Patent number: 8883596
    Abstract: A semiconductor device with vertical channel transistors and a method of fabricating the same are provided. A method of fabricating the semiconductor device includes patterning a substrate to form a trench that defines an active region, forming a sacrificial pattern in a lower region of the trench, forming a spacer on an upper sidewall of the trench, recessing a top surface of the sacrificial pattern to form a window exposing a sidewall of the active region between the spacer and the sacrificial pattern, doping a sidewall of the trench through the window to form a doped region in the active region, and forming a wiring in the trench to be connected to the doped region.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: November 11, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seonghwee Cheong, Mansug Kang, Joon Kim, Kihong Nam, Gyuwan Choi