Planarization Patents (Class 438/626)
  • Patent number: 8933551
    Abstract: A package includes an interposer, which includes a first substrate free from through-vias therein, redistribution lines over the first substrate, and a first plurality of connectors over and electrically coupled to the redistribution lines. A first die is over and bonded to the first plurality of connectors. The first die includes a second substrate, and through-vias in the second substrate. A second die is over and bonded to the plurality of connectors. The first die and the second die are electrically coupled to each other through the redistribution lines. A second plurality of connectors is over the first die and the second die. The second plurality of connectors is electrically coupled to the first plurality of connectors through the through-vias in the second substrate.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: January 13, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chin-Chuan Chang, Jing-Cheng Lin, Chen-Hua Yu
  • Patent number: 8912092
    Abstract: A method of forming a semiconductor device may include, but is not limited to, the following processes. A multi-layered structure is prepared over a semiconductor substrate. The multi-layered structure may include, but is not limited to, first and second patterns of a first insulating film, a second insulating film covering the first pattern of the first insulating film, and a first conductive film covering the second pattern of the first insulating film. The second insulating film and the first conductive film are polished under conditions that the first and second insulating films are greater in polishing rate than the first conductive film, to expose the first and second patterns of the first insulating film.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: December 16, 2014
    Assignee: PS4 Luxco S.A.R.L.
    Inventor: Kyoko Miyata
  • Patent number: 8883631
    Abstract: One illustrative method disclosed herein includes forming at least one layer of insulating material above a conductive structure, forming a patterned hard mask comprised of metal above the layer of insulating material, performing at least one etching process to define a cavity in the layer of insulating material, forming a layer of sacrificial material so as to overfill the cavity, performing at least one planarization process to remove a portion of the layer of sacrificial material and the patterned hard mask while leaving a remaining portion of the layer of sacrificial material within the cavity, and removing the remaining portion of the layer of sacrificial material positioned within the cavity.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: November 11, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Kunaljeet Tanwar, Xunyuan Zhang, Xiuyu Cai
  • Patent number: 8865013
    Abstract: A method for chemical mechanical polishing of a substrate comprising tungsten using a nonselective chemical mechanical polishing composition.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: October 21, 2014
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Yi Guo, Jerry Lee, Raymond L. Lavoie, Jr., Guangyun Zhang
  • Patent number: 8859421
    Abstract: There is provided a manganese oxide film forming method capable of forming a manganese oxide film having high adhesivity to Cu. In the manganese oxide film forming method, a manganese oxide film is formed on an oxide by supplying a manganese-containing gas onto the oxide. A film forming temperature for forming the manganese oxide film is set to be equal to or higher than about 100° C. and lower than about 400° C.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: October 14, 2014
    Assignees: Tokyo Electron Limited, Tohoku University
    Inventors: Koji Neishi, Junichi Koike, Kenji Matsumoto
  • Patent number: 8835307
    Abstract: A method and a structure for reworking an antireflective coating (ARC) layer over a semiconductor substrate. The method includes providing a substrate having a material layer, forming a planarization layer on the material layer, forming an organic solvent soluble layer on the planarization layer, forming an ARC layer on the organic solvent soluble layer, forming a pattern in the ARC layer, and removing the organic solvent soluble layer and the ARC layer with an organic solvent while leaving the planarization layer unremoved. The structure includes a substrate having a material layer, a planarization layer on the material layer, an organic solvent soluble layer on the planarization layer, and an ARC layer on the organic solvent soluble layer.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: September 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Hakeem Akinmade-Yusuff, John A. Fitzsimmons, Ranee Wai-Ling Kwong
  • Patent number: 8802569
    Abstract: The present disclosure provides a method of fabricating a semiconductor device. The method includes forming a plurality of circuit devices over a substrate. The method includes forming an organic layer over the substrate. The organic layer is formed over the plurality of circuit devices. The method includes polishing the organic layer to planarize a surface of the organic layer. The organic layer is free of being thermally treated prior to the polishing. The organic material is un-cross-linked during the polishing. The method includes depositing a LT-film over the planarized surface of the organic layer. The depositing is performed at a temperature less than about 150 degrees Celsius. The depositing is also performed without using a spin coating process. The method includes forming a patterned photoresist layer over the LT-film.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: August 12, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuei-Liang Lu, Ming-Feng Shieh, Ching-Yu Chang
  • Patent number: 8802561
    Abstract: Techniques disclosed herein prevent wire flaking (collapse). One aspect is an improved way of forming wires over trenches, which may be located in a hookup region of a 3D memory array, and may be used to form electrical connections between conductive lines in the memory array and drivers. The trenches are formed between CMP dummy structures. The trenches are partially filled with a flowable oxide film, which leaves a gap in the trench that is at least as wide as the total pitch of the wires to be formed. A capping layer is formed over the flowable film. After forming a conductive layer over the dielectric layer, the conductive layer is etched to form conductive wires. Some of the capping layer, as well as the CMP dummy structures may be removed. Thus, the conductive wires may be at least temporarily supported by lines of material formed from the capping layer.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: August 12, 2014
    Assignee: SanDisk 3D LLC
    Inventors: Chao Feng Yeh, Hiroaki Iuchi, Hitomi Fujimoto, Hisayuki Nozawa
  • Patent number: 8796859
    Abstract: A multilayer interconnect structure is formed by, providing a substrate (40) having thereon a first dielectric (50, 27) for supporting a multi-layer interconnection (39) having lower conductor MN (22, 23), upper conductor MN+1 (34, 35), dielectric interlayer (DIL) (68) and interconnecting via conductor VN+1/N (36, 36?). The lower conductor MN (22, 23) has a first upper surface (61) located in a recess below a second upper surface (56) of the first dielectric (50, 27). The DIL (68) is formed above the first (61) and second (56) surfaces. A cavity (1263) is etched through the DIL (68) from a desired location (122) of the upper conductor MN+1 (34), exposing the first surface (61). The cavity (1263) is filled with a further electrical conductor (80) to form the upper conductor MN+1 (34) and the connecting via conductor VN+1/N (36, 36?) making electrical contact with the first upper surface (61).
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: August 5, 2014
    Assignee: Globalfoundries, Inc.
    Inventor: Ryan Ryoung-Han Kim
  • Publication number: 20140203445
    Abstract: One or more techniques or systems for mitigating pattern collapse are provided herein. For example, a semiconductor structure for mitigating pattern collapse is formed. In some embodiments, the semiconductor structure includes an extreme low-k (ELK) dielectric region associated with a via or a metal line. For example, a first metal line portion and a second metal line portion are associated with a first lateral location and a second lateral location, respectively. In some embodiments, the first portion is formed based on a first stage of patterning and the second portion is formed based on a second stage of patterning. In this manner, pattern collapse associated with the semiconductor structure is mitigated, for example.
    Type: Application
    Filed: January 18, 2013
    Publication date: July 24, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventor: Taiwan Semiconductor Manufacturing Company Limited
  • Publication number: 20140187037
    Abstract: A method for fabricating a semiconductor device includes forming a plurality of semiconductor structures over a substrate, forming an interlayer dielectric layer over the semiconductor structures, etching the interlayer dielectric layer, and defining open parts between the semiconductor structures to expose a surface of the substrate, forming sacrificial spacers on sidewalls of the open parts, forming conductive layer patterns in the open parts, and causing the conductive layer patterns and the sacrificial spacers to reach each other, and defining air gaps on the sidewalls of the open parts.
    Type: Application
    Filed: March 16, 2013
    Publication date: July 3, 2014
    Applicant: SK HYNIX INC.
    Inventors: Il-Cheol RHO, Jong-Min LEE
  • Publication number: 20140187036
    Abstract: Embodiments described herein provide approaches for interconnect formation in a semiconductor device. Specifically, a Cu layer is removed to a top surface of an Ru layer using CMP, the Cu layer is removed to form a recess within each of a plurality of trenches of a dielectric of the semiconductor device, and the Ru layer is removed using an etch process (e.g., a wet etch). An additional CMP is performed to reach the desired target trench height and to planarize the wafer.
    Type: Application
    Filed: December 28, 2012
    Publication date: July 3, 2014
    Applicant: GLOBALFOUNDRIES INC.
    Inventor: GLOBAL FOUNDERS Inc.
  • Patent number: 8759218
    Abstract: A chemical mechanical polishing process includes placing a substrate on a first polishing pad of a first platen, wherein the substrate has a bulk metal layer and a barrier layer; polishing the bulk metal layer by using the first polishing pad having a hardness of above 50 (Shore D) until the barrier layer is exposed; polishing the barrier layer on a second polishing pad of a second platen after removing the bulk metal layer, wherein the second polishing pad has a hardness ranging between 40 and 50 (Shore D) and includes an upper layer and a lower backing layer and the upper layer has a hardness less than 50 (Shore D).
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: June 24, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Boon-Tiong Neo, Chin-Kun Lin, Lee-Lee Lau
  • Publication number: 20140162450
    Abstract: An electromigration and stress migration enhancement liner is provided for use in an interconnect structure. The liner includes a metal that has a thickness at a bottom of the at least one via opening and on an exposed portion of an underlying conductive feature that is greater than a remaining thickness that is located on exposed sidewalls of the interconnect dielectric material. The thinner portion of the electromigration and stress migration enhancement liner is located between the interconnect dielectric material and an overlying diffusion barrier. The thicker portion of the electromigration and stress migration enhancement liner is located between the underlying conductive feature and the diffusion barrier as well as between an adjacent dielectric capping layer and the diffusion barrier. The remainder of the at least one via opening is filled with an adhesion layer and a conductive material.
    Type: Application
    Filed: February 14, 2014
    Publication date: June 12, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chih-Chao Yang, Baozhen Li
  • Publication number: 20140131841
    Abstract: Various embodiments of mechanisms for forming a slotted metal pad over a TSV in substrate are provided. The dielectric structures in the slotted metal pad reduce dishing effect during planarization of the slotted metal pad. As a result, the risk of having metal stringers in upper metal level(s) caused by the dishing effect is greatly reduced.
    Type: Application
    Filed: November 15, 2012
    Publication date: May 15, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Chuan Tseng, Chia-Wei Liu, Cindy Kuo, Ren-Wei Xiao
  • Patent number: 8709939
    Abstract: A multilevel interconnect structure in a semiconductor device and methods for fabricating the same are described. The multilevel interconnect structure in the semiconductor device includes a first insulating layer formed on a semiconductor wafer, a Cu interconnect layer formed on the first insulating layer, a second insulating layer formed on the Cu interconnect layer, and a metal oxide layer formed at an interface between the Cu interconnect layer and the second insulating layer. The metal oxide layer is formed by immersion-plating a metal, such as Sn or Zn, on the Cu interconnect layer and then heat-treating the plated layer in an oxidizing atmosphere.
    Type: Grant
    Filed: October 2, 2012
    Date of Patent: April 29, 2014
    Assignees: Semiconductor Technology Academic Research Center, National University Corporation Tohoku University
    Inventors: Junichi Koike, Yoshito Fujii, Jun Iijima, Noriyoshi Shimizu, Kazuyoshi Maekawa, Koji Arita, Ryotaro Yagi, Masaki Yoshimaru
  • Patent number: 8703612
    Abstract: A method includes forming an etch stop layer over and contacting a gate electrode of a transistor, forming a sacrificial layer over the etch stop layer, and etching the sacrificial layer, the etch stop layer, and an inter-layer dielectric layer to form an opening. The opening is then filled with a metallic material. The sacrificial layer and excess portions of the metallic material over a top surface of the etch stop layer are removed using a removal step including a CMP process. The remaining portion of the metallic material forms a contact plug.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: April 22, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shich-Chang Suen, Liang-Guang Chen, He Hui Peng, Wne-Pin Peng, Shwang-Ming Jeng
  • Publication number: 20140091390
    Abstract: A thin-film transistor having a protection layer for a planarization layer. The protection layer prevents reduction of the planarization layer during an ashing process, thereby preventing the formation of a steeply tapered via hole through the planarization layer. In this manner, the via hole may be coated with a conductive element that may serve as a conductive path between a common electrode and the drain of the transistor.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 3, 2014
    Applicant: Apple Inc.
    Inventors: Ming-Chin Hung, Byung Duk Yang, Kyung Wook Kim, Shih Chang Chang
  • Patent number: 8679967
    Abstract: The present invention provides apparatus, methods, and systems for fabricating memory lines and structures using double sidewall patterning for four times half pitch relief patterning. The invention includes forming features from a first template layer disposed above a substrate, forming half-pitch sidewall spacers adjacent the features, forming smaller features in a second template layer by using the half-pitch sidewall spacers as a hardmask, forming quarter-pitch sidewall spacers adjacent the smaller features, and forming conductor features from a conductor layer by using the quarter-pitch sidewall spacers as a hardmask. Numerous additional aspects are disclosed.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: March 25, 2014
    Assignee: SanDisk 3D LLC
    Inventors: Roy E. Scheuerlein, Yoichiro Tanaka
  • Patent number: 8679966
    Abstract: A method of manufacturing a biosensor semiconductor device in which copper electrodes at a major surface of the device are modified to form Au—Cu alloy electrodes. Such modification is effected by depositing a gold layer over the device, and then thermally treating the device to promote interdiffusion between the gold and the electrode copper. Alloyed gold-copper is removed from the surface of the device, leaving the exposed electrodes. The electrodes are better compatible with further processing into a biosensor device than is the case with conventional copper electrodes, and the process windows are wider than for gold capped copper electrodes. A biosensor semiconductor device having Au—Cu alloy electrodes is also disclosed.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: March 25, 2014
    Assignee: NXP, B.V.
    Inventors: David Van Steenwinckel, Thomas Merelle, Franciscus Petrus Widdershoven, Viet Hoang Nguyen, Dimitri Soccoi, Jan Leo Dominique Fransaer
  • Patent number: 8669176
    Abstract: Disclosed herein are various methods of forming copper-based conductive structures on integrated circuit devices by performing a copper deposition process to fill the trench or via with copper, which can be performed by fill, plating or electroless deposition. Copper clearing of copper overburden is performed using CMP to stop on an existing liner. Copper in the trenches or vias is recessed by controlled etch. An Nblok cap layer is deposited to cap the trenches or vias so that copper is not exposed to ILD. Nblok overburden and adjacent liner is then removed by CMP. Nblok cap layer is then deposited. The proposed approach is an alternative CMP integration scheme that will eliminate the exposure of copper to ILD during CMP, will prevent any dendrite formation, can be used for all metal layers in BEOL stack, and can be utilized for multiple layers, as necessary, whenever copper CMP is desired.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: March 11, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventor: Kunaljeet Tanwar
  • Patent number: 8637403
    Abstract: A method of manufacturing a semiconductor structure includes varying local chemical mechanical polishing (CMP) abrading rates of an insulator film by selectively varying a carbon content of the insulator film.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: January 28, 2014
    Assignee: International Business Machines Corporation
    Inventors: Yoba Amoah, Graham M. Bates, Joseph P. Hasselbach, Thomas L. McDevitt, Eva A. Shah
  • Patent number: 8609528
    Abstract: Methods for patterning high-density features are described herein. Embodiments of the present invention provide a method comprising patterning a first subset of a pattern, the first subset configured to form a plurality of lines over the substrate, and patterning a second subset of the pattern, the second subset configured to form a plurality of islands over the substrate, wherein said patterning the first subset and said patterning the second subset comprise at least two separate patterning operations.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: December 17, 2013
    Assignee: Marvell International Ltd.
    Inventors: Pantas Sutardja, Albert Wu, Winston Lee, Peter Lee, Chien-Chuan Wei, Runzi Chang
  • Publication number: 20130316528
    Abstract: A system and method for forming through substrate vias is provided. An embodiment comprises forming an opening in a substrate and lining the opening with a first barrier layer. The opening is filled with a conductive material and a second barrier layer is formed in contact with the conductive material. The first barrier layer is formed with different materials and different methods of formation than the second barrier layer so that the materials and methods may be tuned to maximize their effectiveness within the device.
    Type: Application
    Filed: August 2, 2013
    Publication date: November 28, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, I, Wen-Chih Chiou, Tsang-Jiuh Wu
  • Patent number: 8541307
    Abstract: A treatment method for reducing particles in a Dual Damascene Silicon Nitride (DDSN) process, including the following steps: forming a seed layer of copper on a silicon wafer; depositing a deposition layer of copper to cover the seed layer of copper; planarizing the deposition layer of copper; providing the silicon wafer into a reaction chamber and performing a pre-treatment on a surface of the deposition layer of copper using NH3 gas under a plasma condition so as to reduce copper oxide (CuO) to copper (Cu) formed on the deposition layer of copper; in the reaction chamber, generating an etching block layer on the deposition layer of copper using a DDSN deposition process; cleaning the reaction chamber using NF3 gas; and directing N2O gas into the reaction chamber and removing the remaining hydrogen (H) and fluorine (F) in the reaction chamber using the N2O gas under the plasma condition.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: September 24, 2013
    Assignee: Shanghai Huali Microelectronics Corporation
    Inventors: Meimei Gu, Duoyuan Hou, Jun Xu, Ke Wang
  • Patent number: 8524587
    Abstract: Provided is a method of planarizing a semiconductor device. The method includes providing a substrate. The method includes forming a first layer over the substrate. The method includes forming a second layer over the first layer. The first and second layers have different material compositions. The method includes forming a third layer over the second layer. The method includes performing a polishing process on the third layer until the third layer is substantially removed. The method includes performing an etch back process to remove the second layer and a portion of the first layer. Wherein an etching selectivity of the etch back process with respect to the first and second layers is approximately 1:1.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: September 3, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Neng-Kuo Chen, Jeff J. Xu
  • Patent number: 8518817
    Abstract: The disclosure relates generally to semiconductor device fabrication, and more particularly to methods of electroplating used in semiconductor device fabrication. A method of electroplating includes: immersing an in-process substrate into an electrolytic plating solution to form a first metal layer on the in-process substrate; then performing a first chemical-mechanical polish to a liner on the in-process substrate followed by immersing the in-process substrate into the electrolytic plating solution to form a second metal layer on the first metal layer and the liner; and performing a second chemical-mechanical polish to the liner.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: August 27, 2013
    Assignee: International Business Machines Corporation
    Inventors: Felix P. Anderson, Zhong-Xiang He, Anthony K. Stamper, Eric J. White
  • Patent number: 8518818
    Abstract: The present disclosure relates to a method of forming a back-end-of-the-line metallization layer. The method is performed by forming a plurality of freestanding metal layer structures (i.e., metal layer structures not surrounded by a dielectric material) on a semiconductor substrate within an area defined by a patterned photoresist layer. A diffusion barrier layer is deposited onto the metal layer structure in a manner such that the diffusion barrier layer conforms to the top and sides of the metal layer structure. A dielectric material is formed on the surface of the substrate to fill areas between metal layer structures. The substrate is planarized to remove excess metal and dielectric material and to expose the top of the metal layer structure.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: August 27, 2013
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: You-Hua Chou, Min Hao Hong, Jian-Shin Tsai, Miao-Cheng Liao, Hsiang Hsiang Ko
  • Patent number: 8513815
    Abstract: A method and structures are provided for implementing an integrated circuit with an enhanced wiring structure of mixed double density and high performance wires in a common plane. A wiring structure includes a first wire having a first plane and a first via to a second wire in a second plane having a second via and a third wire having the first plane with height equal to the first wire and the first via, and a third via having a height equal to the second wire and the second via.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: August 20, 2013
    Assignee: International Business Machines Corporation
    Inventors: Anthony G. Aipperspach, Todd A. Christensen, John E. Sheets, II
  • Patent number: 8481342
    Abstract: A method for manufacturing a semiconductor device, includes: a step of etching a Si (111) substrate along a (111) plane of the Si (111) substrate to separate a Si (111) thin-film device having a separated surface along the (111) plane.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: July 9, 2013
    Assignee: Oki Data Corporation
    Inventors: Mitsuhiko Ogihara, Tomohiko Sagimori, Takahito Suzuki, Masataka Muto
  • Publication number: 20130168867
    Abstract: A method for forming a metal line in a semiconductor device and an associated apparatus. The method includes at least one of (1) Depositing a metal line layer and a metal contact layer over a semiconductor substrate. (2) Patterning the metal contact layer and the metal line layer to form a primarily formed contact portion and a lower metal line. (3) Patterning the primarily formed contact portion to form a secondarily formed contact portion. (4) Forming an insulating film on the semiconductor substrate including the secondarily formed contact portion and the lower metal line. (5) Planarizing the insulating film such that the secondarily formed contact portion is exposed. (6) Forming an upper metal line over the planarized insulating film to be in electrical contact with the secondarily formed contact portion.
    Type: Application
    Filed: April 3, 2012
    Publication date: July 4, 2013
    Applicant: Dongbu HiTek Co., Ltd.
    Inventor: Sang Chul SHIM
  • Patent number: 8461040
    Abstract: A method of forming a shielded gate field effect transistor includes: forming a plurality of active gate trenches in a silicon region; lining lower sidewalls and bottom of the active gate trenches with a shield dielectric; using a CMP process, filling a bottom portion of the active gate trenches with a shield electrode comprising polysilicon; forming an interpoly dielectric (IPD) over the shield electrode in the active gate trenches; lining upper sidewalls of the active gate trenches with a gate dielectric; and forming a gate electrode over the IPD in an upper portion of the active gate trenches.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: June 11, 2013
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Thomas E. Grebs, Rodney S. Ridley, Nathan Lawrence Kraft
  • Patent number: 8455348
    Abstract: A manufacturing method of a semiconductor device is provided which can precisely control the depth of a wiring trench pattern, and which can suppress the damage on the wiring trench pattern. A second low dielectric constant film, a third low dielectric constant film, and a film for serving as a mask layer are laminated over a diffusion preventing film in that order. The film for serving as the mask layer is etched, and a wiring trench pattern is formed which has its bottom made of a surface of the third low dielectric constant film, so that a mask layer is formed. A first resist mask is removed by asking. A wiring trench is formed using the wiring trench pattern of the mask layer such that a bottom of the trench is comprised of the second low dielectric constant film. A layer from a top surface of the copper metal to the third low dielectric constant film is removed by a CMP method.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: June 4, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Kazumasa Yonekura, Kazuo Tomita
  • Patent number: 8450197
    Abstract: Contact elements in the contact level of a semiconductor device may be formed on the basis of a selective deposition technique, such as electroless plating, wherein an efficient planarization of the contact level is achieved without subjecting the contact elements to undue mechanical stress. In some illustrative embodiments, an overfilling of the contact openings may be reliably avoided and the planarization of the surface topography is accomplished on the basis of a non-critical polishing process. In other cases, electrochemical etch techniques are applied in combination with a conductive sacrificial current distribution layer in order to remove any excess material of the contact elements without inducing undue mechanical stress.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: May 28, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Axel Preusse, Norbert Schroeder, Uwe Stoeckgen
  • Patent number: 8434664
    Abstract: A device for loading electro-conductive ball onto the terminal regions of a substrate more correctly and reliably is disclosed. Micro-ball loading device (200) may have the following parts: backing plate (220) supporting substrate (100) such that plural terminal regions (108) formed on one surface of substrate (100) are free, transfer mask (210), which contains a metal mask and has plural through-holes (216) formed corresponding to plural terminal regions (108) of the substrate, fixing block (230) onto which end portions (210a) of the transfer mask are fixed such that transfer mask (210) faces one surface of the substrate, and magnet part (240), which attaches transfer mask (210) by magnetic force to the side of backing plate (220); for magnet part (240), the attachment force to the center portion of the substrate is less than that of the peripheral edge portion.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: May 7, 2013
    Assignee: Texas Instruments Incorporated
    Inventor: Kengo Aoya
  • Patent number: 8420527
    Abstract: Interconnections are formed over an interlayer insulating film which covers MISFETQ1 formed on the principal surface of a semiconductor substrate, while dummy interconnections are disposed in a region spaced from such interconnections. Dummy interconnections are disposed also in a scribing area. Dummy interconnections are not formed at the peripheries of a bonding pad and a marker. In addition, a gate electrode of a MISFET and a dummy gate interconnection formed of the same layer are disposed. Furthermore, dummy regions are disposed in a shallow trench element-isolation region. After such dummy members are disposed, an insulating film is planarized by the CMP method.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: April 16, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Yasushi Koubuchi, Koichi Nagasawa, Masahiro Moniwa, Youhei Yamada, Toshifumi Takeda
  • Patent number: 8409941
    Abstract: The present invention proposes a method of forming a dual contact plug, comprising steps of: forming a source/drain region and a sacrificed gate structure on a semiconductor substrate, the sacrificed gate structure including a sacrificed gate; depositing a first inter-layer dielectric layer; planarizing the first inter-layer dielectric layer to expose the sacrificed gate in the sacrificed gate structure; removing the sacrificed gate and depositing to form a metal gate; etching to form a first source/drain contact opening in the first inter-layer dielectric layer; sequentially depositing a liner and filling conductive metal in the first source/drain contact opening to form a first source/drain contact plug; depositing a second inter-layer dielectric layer on the first inter-layer dielectric layer; etching to form a second source/drain contact opening and a gate contact opening in the second inter-layer dielectric layer; and sequentially depositing a liner and filling conductive metal in the second source/drain
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: April 2, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Haizhou Yin, Huilong Zhu, Zhijiong Luo
  • Patent number: 8409986
    Abstract: A method for improving the within die uniformity of the metal plug CMP process in the gate last route is provided. Before performing the CMP process for forming the metal plug, a metal etching process is applied, so that the step height between the metal layers in the contact hole area and the non-contact hole area is greatly reduced. Therefore, the relatively small step height will exert a significantly less effect on the following CMP process, so that the step height will be limitedly transferred to the top of metal plug after finishing CMP process. In this way, the recess on top of the metal plug is largely reduced, so that a flat top of the metal plug is obtained, and within die uniformity and electrical properties the device are improved.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: April 2, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Tao Yang, Chao Zhao, Junfong Li
  • Patent number: 8394656
    Abstract: MEMS devices (such as interferometric modulators) may be fabricated using a sacrificial layer that contains a heat vaporizable polymer to form a gap between a moveable layer and a substrate. One embodiment provides a method of making a MEMS device that includes depositing a polymer layer over a substrate, forming an electrically conductive layer over the polymer layer, and vaporizing at least a portion of the polymer layer to form a cavity between the substrate and the electrically conductive layer.
    Type: Grant
    Filed: July 7, 2010
    Date of Patent: March 12, 2013
    Assignee: Qualcomm MEMS Technologies, Inc.
    Inventors: Chun-Ming Wang, Jeffrey Lan, Teruo Sasagawa
  • Patent number: 8383509
    Abstract: (a) A copper alloy film containing at least two types of metal elements in addition to copper is formed on the surface of an insulator containing oxygen and formed on a semiconductor substrate. (b) A metal film made of pure copper or copper alloy is formed on the copper alloy film. (c) After the step (a) or (b), heat treatment is performed under the condition that a metal oxide film is formed on a surface of the insulator through reaction between the oxygen in the insulator and the metal elements in the copper alloy film.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: February 26, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Yumiko Koura, Hideki Kitada, Kiyoshi Ozawa
  • Patent number: 8373273
    Abstract: Methods of forming integrated circuit devices include forming an interlayer insulating layer having a trench therein, on a substrate and forming an electrical interconnect (e.g., Cu damascene interconnect) in the trench. An upper surface of the interlayer insulating layer is recessed to expose sidewalls of the electrical interconnect. An electrically insulating first capping pattern is formed on the recessed upper surface of the interlayer insulating layer and on the exposed sidewalls of the electrical interconnect, but is removed from an upper surface of the electrical interconnect. A metal diffusion barrier layer is formed on an upper surface of the electrical interconnect, however, the first capping pattern is used to block formation of the metal diffusion barrier layer on the sidewalls of the electrical interconnect. This metal diffusion barrier layer may be formed using an electroless plating technique.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: February 12, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyeok-Sang Oh, Woo-Jin Jang, Bum-Ki Moon, Ji-Hong Choi, Minseok Oh, Tien-Jen Cheng
  • Patent number: 8367534
    Abstract: Provided is a method of planarizing a semiconductor device. The method includes providing a substrate. The method includes forming a first layer over the substrate. The method includes forming a second layer over the first layer. The first and second layers have different material compositions. The method includes forming a third layer over the second layer. The method includes performing a polishing process on the third layer until the third layer is substantially removed. The method includes performing an etch back process to remove the second layer and a portion of the first layer. Wherein an etching selectivity of the etch back process with respect to the first and second layers is approximately 1:1.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: February 5, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Neng-Kuo Chen, Jeff J. Xu
  • Patent number: 8338198
    Abstract: There is provided a peeling method capable of preventing a damage to a layer to be peeled. Thus, not only a layer to be peeled having a small area but also a layer to be peeled having a large area can be peeled over the entire surface at a high yield. Processing for partially reducing contact property between a first material layer (11) and a second material layer (12) (laser light irradiation, pressure application, or the like) is performed before peeling, and then peeling is conducted by physical means. Therefore, sufficient separation can be easily conducted in an inner portion of the second material layer (12) or an interface thereof.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: December 25, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toru Takayama, Junya Maruyama, Shunpei Yamazaki
  • Patent number: 8330275
    Abstract: A cap layer for a copper interconnect structure formed in a first dielectric layer is provided. In an embodiment, a conductive layer is located within a dielectric layer and a top surface of the conductive layer has either a recess, a convex surface, or is planar. An alloy layer overlies the conductive layer and is a silicide alloy having a first material from the conductive layer and a second material of germanium, arsenic, tungsten, or gallium.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: December 11, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hui-Lin Chang, Hung Chun Tsai, Yung-Cheng Lu, Syun-Ming Jang
  • Patent number: 8324098
    Abstract: A via is formed on a wafer to lie within an opening in a non-conductive structure and make an electrical connection with an underlying conductive structure so that the entire top surface of the via is substantially planar, and lies substantially in the same plane as the top surface of the non-conductive structure. The substantially planar top surface of the via enables a carbon nanotube switch to be predictably and reliably closed.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: December 4, 2012
    Assignee: National Semiconductor Corporation
    Inventors: Mehmet Emin Aklik, Thomas James Moutinho
  • Patent number: 8318599
    Abstract: The resin layer formation method comprises the step of forming on a substrate 10 a resin layer 34 for containing a substance for decreasing the thermal expansion coefficient to thereby forming a resin layer 34 having said substance localized in the side thereof nearer to the substrate 10; and the step of cutting the surface of the resin layer 34 with a cutting tool 40 to planarize the surface of the resin layer 34. The resin layer 34 as said substance for decreasing the thermal expansion coefficient localized in the side thereof nearer to the substrate 10, and the surface of the resin layer 34 is cut to planarize the surface of the resin layer 34, whereby the extreme abrasion and breakage of the cutting tool 40 by said substance for decreasing the thermal expansion coefficient can be prevented.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: November 27, 2012
    Assignee: Fujitsu Limited
    Inventors: Kanae Nakagawa, Motoaki Tani
  • Patent number: 8293644
    Abstract: Methods of forming a semiconductor include forming an insulation layer over a semiconductor substrate in which a first region and a second region are defined. A storage node contact (SNC) that passes through the insulation layer is formed and is electrically connected to the first region. A conductive layer that passes through the insulation layer is deposited and is electrically connected to the second region on the insulation layer and the SNC. A bit line is formed by removing an upper portion of the conductive layer, an upper portion of the insulation layer and an upper portion of the SNC until the SNC and the conductive layer are electrically separated from each other, wherein the bit line is a remaining part of the conductive layer.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: October 23, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Se-myeong Jang, Min-sung Kang
  • Patent number: 8288273
    Abstract: A method is disclosed for forming a patterned thick metallization atop a semiconductor chip wafer. The method includes fabricating a nearly complete semiconductor chip wafer ready for metallization; depositing a bottom metal layer of sub-thickness TK1 together with its built-in alignment mark using a hot metal process; depositing a top metal layer of sub-thickness TK2 using a cold metal process thus forming a stacked thick metallization of total thickness TK=TK1+TK2; then, use the built-in alignment mark as reference, patterning the stacked thick metallization. A patterned thick metallization is thus formed with the advantages of better metal step coverage owing to the superior step coverage nature of the hot metal process as compared to the cold metal process; and lower alignment error rate owing to the lower alignment signal noise nature of the cold metal process as compared to the hot metal process.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: October 16, 2012
    Assignee: Alpha & Omega Semiconductor Inc.
    Inventor: Il Kwan Lee
  • Patent number: 8288271
    Abstract: A method and a structure for reworking an antireflective coating (ARC) layer over a semiconductor substrate. The method includes providing a substrate having a material layer, forming a planarization layer on the material layer, forming an organic solvent soluble layer on the planarization layer, forming an ARC layer on the organic solvent soluble layer, forming a pattern in the ARC layer, and removing the organic solvent soluble layer and the ARC layer with an organic solvent while leaving the planarization layer unremoved. The structure includes a substrate having a material layer, a planarization layer on the material layer, an organic solvent soluble layer on the planarization layer, and an ARC layer on the organic solvent soluble layer.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: October 16, 2012
    Assignee: International Business Machines Corporation
    Inventors: Hakeem Akinmade Yusuff, John A. Fitzsimmons, Ranee Wai-Ling Kwong
  • Patent number: 8288268
    Abstract: A microelectronic structure and a method for fabricating the microelectronic structure provide a plurality of voids interposed between a plurality of conductor layers. The plurality of voids is also located between a liner layer and an inter-level dielectric layer. The voids provide for enhanced electrical performance of the microelectronic structure.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: October 16, 2012
    Assignee: International Business Machines Corporation
    Inventors: Daniel C. Edelstein, David V. Horak, Elbert E. Huang, Satyanarayana V. Nitta, Takeshi Nogami, Shom Ponoth, Terry A. Spooner