Oxidation Patents (Class 438/770)
  • Patent number: 7067425
    Abstract: A method of manufacturing a flash memory device includes the steps of forming a nitride film on an entire surface of a trench by means of an annealing process to prevent implanted ions for adjusting a threshold voltage from diffusing to a device isolation region, and forming a side wall oxide film on a surface of the nitride film. The nitride film plays a role of preventing ions implanted into a substrate for adjusting a threshold voltage from flowing into the side wall oxidation film.
    Type: Grant
    Filed: December 16, 2003
    Date of Patent: June 27, 2006
    Assignee: Hynix Semiconductor Inc.
    Inventor: Keun Woo Lee
  • Patent number: 7064084
    Abstract: To provide a method for the formation of oxide films to form with advantage a high-quality oxide film having excellent uniformity in film thickness and film quality over the entire wafer. The method for the formation of oxide films comprises: the pretreatment process of forming a protective oxide film on the surface of a wafer positioned in a reaction vessel by performing oxidation treatment with radical oxidative species or an atmosphere containing radical oxidative species under depressurized conditions; and the oxide-film-formation process of forming an oxide film on the wafer by performing oxidation treatment at a predetermined temperature under depressurized conditions. The oxide-film-formation process is preferably performed following the pretreatment process in a continuous manner in the reaction vessel in which the pretreatment process is performed.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: June 20, 2006
    Assignee: Tokyo Electron Limited
    Inventors: Shingo Hishiya, Koji Akiyama, Yoshikazu Furusawa, Kimiya Aoki
  • Patent number: 7060197
    Abstract: In a mass flow sensor having a layered structure on the upper side of a silicon substrate (1), and having at least one heating element (8) patterned out of a conductive layer in the layered structure, thermal insulation between the heating element (8) and the silicon substrate (1) is achieved by way of a silicon dioxide block (5) which is produced beneath the heating element (8) either in the layered structure on the silicon substrate (1) or in the upper side of the silicon substrate (1). As a result, the sensor can be manufactured by surface micromechanics, i.e. without wafer back-side processes.
    Type: Grant
    Filed: June 8, 2002
    Date of Patent: June 13, 2006
    Assignee: Robert Bosch GmbH
    Inventors: Matthias Fuertsch, Frank Fischer, Lars Metzger, Frieder Sundermeier
  • Patent number: 7053007
    Abstract: A method for fabricating a semiconductor integrated circuit device of the invention comprises feeding oxidation species containing a low concentration of water, which is generated from hydrogen and oxygen by the catalytic action, to the main surface of or in the vicinity of a semiconductor wafer, and forming a thin oxide film serving as a gate insulating film of an MOS transistor and having a thickness of 5 nm or below on the main surface of the semiconductor wafer at an oxide film-growing rate sufficient to ensure fidelity in formation of an oxide film and uniformity in thickness of the oxide film.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: May 30, 2006
    Assignee: Renesas Technology Corp.
    Inventors: Yoshikazu Tanabe, Satoshi Sakai, Nobuyoshi Natsuaki
  • Patent number: 7045466
    Abstract: Multi-level structures are formed in a semiconductor substrate by first forming a pattern of lines or structures of different widths. Width information on the pattern is decoded by processing steps into level information to form a MEMS structure. The pattern is etched to form structures having a first floor. The structures are oxidized until structures of thinner width are substantially fully oxidized. A portion of the oxide is then etched to expose the first floor. The first floor is then etched to form a second floor. The oxide is then optionally removed, leaving a multi-level structure. In one embodiment, high aspect ratio comb actuators are formed using the multi-level structure process.
    Type: Grant
    Filed: June 27, 2003
    Date of Patent: May 16, 2006
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Kanakasabapathi Subramanian, Xiaojun T. Huang, Noel C. MacDonald
  • Patent number: 7045432
    Abstract: A semiconductor on insulator transistor is formed beginning with a bulk silicon substrate. An active region is defined in the substrate and an oxygen-rich silicon layer that is monocrystalline is formed on a top surface of the active region. On this oxygen-rich silicon layer is grown an epitaxial layer of silicon. After formation of the epitaxial layer of silicon, the oxygen-rich silicon layer is converted to silicon oxide while at least a portion of the epitaxial layer of silicon remains as monocrystalline silicon. This is achieved by applying high temperature water vapor to the epitaxial layer. The result is a silicon on insulator structure useful for making a transistor in which the gate dielectric is on the remaining monocrystalline silicon, the gate is on the gate dielectric, and the channel is in the remaining monocrystalline silicon under the gate.
    Type: Grant
    Filed: February 4, 2004
    Date of Patent: May 16, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Marius K. Orlowski, Olubunmi O. Adetutu, Alexander L. Barr
  • Patent number: 7037861
    Abstract: A method for oxidizing a nitride film is disclosed, which includes the steps of: providing a nitride film formed on an electrically conductive substrate; irradiating the nitride film with a light beam and getting close to the nitride film with a electrically conductive probe; and exerting a bias between the electrically conductive substrate and the electrically conductive probe. The method can oxidize the nitrides quickly and reduce the cost building a nano-structure in the nitride film. An apparatus for oxidizing a nitride film is also disclosed herewith.
    Type: Grant
    Filed: October 5, 2004
    Date of Patent: May 2, 2006
    Assignee: Industrial Technology Research Institute
    Inventors: Hung-Ming Tai, Forest Shih-Sen Chien
  • Patent number: 7037860
    Abstract: Methods and devices are disclosed utilizing a phosphorous-doped oxide layer that is added prior to re-oxidation. This allows greater control of the re-oxidation process and greater control of the performance characteristics of semiconductor devices such as flash memory. For flash memory, greater control is gained over programming rates, erase rates, data retention and self align source resistance.
    Type: Grant
    Filed: April 6, 2004
    Date of Patent: May 2, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Paul J. Rudeck, Francis Benistant, Kelly Hurley
  • Patent number: 7033957
    Abstract: Process for reducing charge leakage in a SONOS flash memory device, including in one embodiment, forming a bottom oxide layer of an ONO structure on the semiconductor substrate to form an oxide/silicon interface having a first oxygen content adjacent the oxide/silicon interface; treating the bottom oxide layer to increase the first oxygen content to a second oxygen content adjacent the oxide/silicon interface; and depositing a nitride charge-storage layer on the bottom oxide layer. In another embodiment, process for reducing charge leakage in a SONOS flash memory device, including forming a bottom oxide layer of an ONO structure on a surface of the semiconductor substrate having an oxide/silicon interface with a super-stoichiometric oxygen content adjacent the oxide/silicon interface; and depositing a nitride charge-storage layer on the bottom oxide layer.
    Type: Grant
    Filed: February 5, 2003
    Date of Patent: April 25, 2006
    Assignee: FASL, LLC
    Inventors: Hidehiko Shiraiwa, Tazrien Kamal, Mark Ramsbey, Inkuk Kang, Jaeyong Park, Rinji Sugino, Jean Y. Yang, Fred T K Cheung, Arvind Halliyal, Amir H. Jafarpour
  • Patent number: 7030038
    Abstract: This invention pertains generally to forming thin oxides at low temperatures, and more particularly to forming uniformly thick, thin oxides. We disclose a low temperature method for forming a thin, uniform oxide 16 on a silicon surface 12. This method includes providing a partially completed integrated circuit on a semiconductor substrate 10 with a clean, hydrogen terminated or atomically flat, silicon surface 12; and stabilizing the substrate at a first temperature. The method further includes exposing the silicon surface to an atmosphere 14 including ozone, while maintaining the substrate 10 at the first temperature. In this method, the exposing step creates a uniformly thick, oxide film 16. This method is suitable for room temperature processing.
    Type: Grant
    Filed: October 21, 1998
    Date of Patent: April 18, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: Glen D. Wilk, Robert M. Wallace, Berinder P. S. Brar
  • Patent number: 7030020
    Abstract: A new method to form MOS gates in an integrated circuit device is achieved. The method comprises forming a dielectric layer overlying a substrate. A polysilicon layer is formed overlying the dielectric layer. A patterned masking layer with an opening is formed overlying the polysilicon layer. Through the opening, the polysilicon layer is oxidized to form a first silicon oxide layer at the bottom of the opening. Thereafter the masking layer is removed and the polysilicon layer is exposed. The exposed polysilicon layer is then etched through using the first silicon oxide layer as a mask to form MOS floating gates. The first silicon oxide layer is then removed. A second conductor layer is then deposited overlying the MOS floating gates for forming control gates.
    Type: Grant
    Filed: September 12, 2003
    Date of Patent: April 18, 2006
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Chia-Ta Hsieh
  • Patent number: 7022593
    Abstract: A method for forming strain-relaxed SiGe films comprises depositing a graded strained SiGe layer on a substrate in which the concentration of Ge is greater at the interface with the substrate than at the top of the layer. The strained SiGe film is subsequently oxidized, producing a strain-relaxed SiGe film with a substantially uniform Ge concentration across the thickness of the film. The relaxed SiGe layer may be used to form a strained silicon layer on a substrate.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: April 4, 2006
    Assignee: ASM America, Inc.
    Inventors: Chantal J. Arena, Pierre Tomasini, Nyles W. Cody
  • Patent number: 7018879
    Abstract: A method of making a semiconductor device having a silicon dioxide based gate with improved dielectric properties including providing a silicon based substrate having active areas defined therein. Thermally growing a silicon dioxide based gate from the silicon based substrate. Nitriding the silicon dioxide based gate to provide a nitrided silicon dioxide based gate and to increase the dielectric constant of the silicon dioxide based gate without substantially increasing thickness of the silicon dioxide based gate.
    Type: Grant
    Filed: March 20, 2002
    Date of Patent: March 28, 2006
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Fang Wang, Chien-Hao Chen, Liang-Gi Yao, Shih-Chang Chen
  • Patent number: 7015151
    Abstract: A transistor gate is formed which comprises semiconductive material and conductive metal. Source/drain regions are formed proximate the transistor gate. In one implementation, the transistor gate and source/drain regions are exposed to a gas mixture comprising H2O, H2, a noble gas and N2 under conditions effective to oxidize outer surfaces of the source/drain regions. The N2 is present in the gas mixture at greater than 0% and less than or equal to 20.0% by volume. In one implementation, the transistor gate and source/drain regions are exposed to a gas mixture comprising H2O, H2, and an inert gas under conditions effective to oxidize outer surfaces of the source/drain regions. The conditions comprise a pressure of greater than room ambient pressure. Other aspects and implementations are contemplated.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: March 21, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Don Carl Powell
  • Patent number: 7015150
    Abstract: Methods and structures having pore-closing layers for closing exposed pores in a patterned porous low-k dielectric layer, and optionally a reactive liner on the low-k dielectric. A first reactant is absorbed or retained in exposed pores in the patterned dielectric layer and then a second reactant is introduced into openings such that it enters the exposed pores, while first reactant molecules are simultaneously being outgassed. The second reactant reacts in-situ with the outgassed first reactant molecules at a mouth region of the exposed pores to form the pore-closing layer across the mouth region of exposed pores, while retaining a portion of each pore's porosity to maintain characteristics and properties of the porous low-k dielectric layer. Optionally, the first reactant may be adsorbed onto the low-k dielectric such that upon introduction of the second reactant into the patterned dielectric openings, a reactive liner is also formed on the low-k dielectric.
    Type: Grant
    Filed: May 26, 2004
    Date of Patent: March 21, 2006
    Assignee: International Business Machines Corporation
    Inventors: Edward C. Cooney, III, John A. Fitzsimmons, Jeffrey P. Gambino, Stephen E. Luce, Thomas L. McDevitt, Lee M. Nicholson, Anthony K. Stamper
  • Patent number: 7015076
    Abstract: A method is provided of forming an integrated circuit with a semiconductor substrate that is doped with a set concentration of an oxidizable dopant of a type that segregates to the top surface of a silicide when the semiconductor substrate is reacted to form such a silicide. A gate dielectric is formed on the semiconductor substrate, and a gate is formed on the gate dielectric. Source/drain junctions are formed in the semiconductor substrate. A silicide is formed on the source/drain junctions and dopant is segregated to the top surface of the silicide. The dopant on the top surface of the segregated dopant is oxidized to form an insulating layer of oxidized dopant above the silicide. An interlayer dielectric is deposited above the semiconductor substrate. Contacts and connection points are then formed in the interlayer dielectric to the insulating layer of oxidized dopant above the silicide.
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: March 21, 2006
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Darin A. Chan, Simon Siu-Sing Chan, Paul L. King
  • Patent number: 7008880
    Abstract: A method for fabricating a semiconductor integrated circuit device of the invention comprises feeding oxidation species containing a low concentration of water, which is generated from hydrogen and oxygen by the catalytic action, to the main surface of or in the vicinity of a semiconductor wafer, and forming a thin oxide film serving as a gate insulating film of an MOS transistor and having a thickness of 5 nm or below on the main surface of the semiconductor wafer at an oxide film-growing rate sufficient to ensure fidelity in formation of an oxide film and uniformity in thickness of the oxide film.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: March 7, 2006
    Assignee: Renesas Technology Corp.
    Inventors: Yoshikazu Tanabe, Satoshi Sakai, Nobuyoshi Natsuaki
  • Patent number: 7001852
    Abstract: A method of making a high quality thin dielectric layer includes annealing a substrate and a base oxide layer overlying a top surface of the substrate at a first temperature in a first ambient and annealing the substrate and base oxide layer at a second temperature in a second ambient subsequent to the first anneal. The first ambient includes an inert gas ambient selected from the group consisting of a nitrogen, argon, and helium ambient. Prior to the first anneal, the base oxide layer has an initial thickness and an initial density. The first anneal causes a first density and thickness change in the base oxide layer from the initial thickness and density to a first thickness and density, with no incorporation of nitrogen, argon, or helium of the ambient within the base oxide layer. The first thickness is less than the initial thickness and the first density is greater than the initial density.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: February 21, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Tien-Ying Luo, Olubunmi O. Adetutu, Hsing-Huang Tseng
  • Patent number: 7001851
    Abstract: This invention provides a steam oxidation method of a matter to be oxidized with proper controllability and reproducibility. It is provided a steam oxidation method, where a semiconductor substrate (a matter to be oxidized) is housed in a steam oxidation reactor and is subjected to: a first step of supplying N2 gas to the reactor housing the semiconductor substrate and substituting the inside of the reactor with N2 gas; a second step of stopping supply of the N2 gas and supplying a steam-accompanied N2 gas, in which the N2 gas is accompanied with steam, to the reactor; a third step of increasing a temperature of the semiconductor substrate to 450° C. (a steam oxidation temperature) while supplying the steam-accompanied N2 gas; and a fourth step of holding the semiconductor substrate for a predetermined time at 450° C.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: February 21, 2006
    Assignee: Sony Corporation
    Inventors: Yoshiyuki Tanaka, Hironobu Narui, Yoshinori Yamauchi, Yuichi Kuromizu, Yoshiaki Watanabe
  • Patent number: 7001849
    Abstract: A method for treatment of the surface of a CdZnTe (CZT) crystal that provides a native dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals. A two step process is disclosed, etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and after attachment of electrical contacts, passivating the CZT crystal surface with a solution of 10 w/o NH4F and 10 w/o H2O2 in water.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: February 21, 2006
    Assignee: Sandia National Laboratories
    Inventors: Gomez W. Wright, Ralph B. James, Arnold Burger, Douglas A. Chinn
  • Patent number: 6998357
    Abstract: A method of forming a dielectric layer suitable for use as the gate dielectric layer of a metal-oxide-semiconductor field effect transistor (MOSFET) includes oxidizing the surface of a silicon substrate, forming a metal layer over the oxidized surface, and reacting the metal with the oxidized surface to form a substantially intrinsic layer of silicon superjacent the substrate, wherein at least a portion of the silicon layer may be an epitaxial silicon layer, and a metal oxide layer superjacent the silicon layer. In a further aspect of the present invention, an integrated circuit includes a plurality of MOSFETs, wherein various ones of the plurality of transistors have metal oxide gate dielectric layers and substantially intrinsic silicon layers subjacent the metal oxide dielectric layers.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: February 14, 2006
    Assignee: Intel Corporation
    Inventors: Gang Bai, David B. Fraser, Brian S. Doyle, Peng Cheng, Chunlin Liang
  • Patent number: 6998354
    Abstract: A fabrication process of a flash memory device includes microwave excitation of high-density plasma in a mixed gas of Kr and an oxidizing gas or a nitriding gas. The resultant atomic state oxygen O* or hydrogen nitride radicals NH* are used for nitridation or oxidation of a polysilicon electrode surface. It is also disclosed the method of forming an oxide film and a nitride film on a polysilicon film according to such a plasma processing.
    Type: Grant
    Filed: February 7, 2003
    Date of Patent: February 14, 2006
    Inventors: Tadahiro Ohmi, Shigetoshi Sugawa
  • Patent number: 6998326
    Abstract: The method for manufacturing a shallow trench isolation (STI) in a semiconductor device with an enhanced gap-fill property and without a detrimental effect of fluorine by introducing a two-stage thermal process. The method includes steps of: preparing a semiconductor substrate obtained by a predetermined process on which a pad oxide and a pad nitride are formed on predetermined locations thereof; forming a trench structure in the semiconductor substrate; forming a hydrogen (H2)-based high density plasma (HDP) oxide layer over a first resultant structure; forming a nitrogen trifluoride (NF3)-based HDP oxide layer into the trench structure with a predetermined depth; carrying out a two-stage thermal process for removing fluorine in the NF3-based HDP oxide layer; and forming a helium (He)-based HDP oxide layer over a second resultant structure.
    Type: Grant
    Filed: December 16, 2003
    Date of Patent: February 14, 2006
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jae-Hong Kim
  • Patent number: 6987073
    Abstract: A deposition method includes forming a nucleation layer over a substrate, forming a layer of a first substance at least one monolayer thick chemisorbed on the nucleation layer, and forming a layer of a second substance at least one monolayer thick chemisorbed on the first substance. The chemisorption product of the first and second substance may include silicon and nitrogen. The nucleation layer may comprise silicon nitride. Further, a deposition method may include forming a first part of a nucleation layer on a first surface of a substrate and forming a second part of a nucleation layer on a second surface of the substrate. A deposition layer may be formed on the first and second parts of the nucleation layer substantially non-selectively on the first part of the nucleation layer compared to the second part. The first surface may be a surface of a borophosphosilicate glass layer. The second surface may be a surface of a rugged polysilicon layer.
    Type: Grant
    Filed: November 18, 2002
    Date of Patent: January 17, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Garry A. Mercaldi
  • Patent number: 6987069
    Abstract: With a view to preventing the oxidation of a metal film at the time of light oxidation treatment after gate patterning and at the same time to making it possible to control the reproducibility of oxide film formation and homogeneity of oxide film thickness at gate side-wall end portions, in a gate processing step using a poly-metal, a gate electrode is formed by patterning a gate electrode material which has been deposited over a semiconductor wafer 1A having a gate oxide film formed thereon and has a poly-metal structure and then, the principal surface of the semiconductor wafer 1A heated to a predetermined temperature or vicinity thereof is supplied with a hydrogen gas which contains water at a low concentration, the water having been formed from hydrogen and oxygen by a catalytic action, to selectively oxidize the principal surface of the semiconductor wafer 1A, whereby the profile of the side-wall end portions of the gate electrode is improved.
    Type: Grant
    Filed: April 12, 2004
    Date of Patent: January 17, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Yoshikazu Tanabe, Isamu Asano, Makoto Yoshida, Naoki Yamamoto, Masayoshi Saito, Nobuyoshi Natsuaki
  • Patent number: 6984593
    Abstract: A method of forming semiconductor device treating a surface of a substrate to produce a discontinuous growth of a material on the surface through rapid thermal oxidation of the substrate surface at a temperature of less than about 700° C.
    Type: Grant
    Filed: September 4, 2003
    Date of Patent: January 10, 2006
    Assignee: International Business Machines Corporation
    Inventors: Arne W. Ballantine, Douglas D. Coolbaugh, Steve S. Williams
  • Patent number: 6984590
    Abstract: A method of manufacturing an EEPROM device is disclosed. An example method forms a screen oxide film on a semiconductor substrate, forms a first ion implantation mask defining a gate insulating film forming region on the screen oxide film, and performs a first ion implantation on the semiconductor substrate and the first ion implantation mask. The example method also performs a first annealing of the semiconductor substrate, removes the screen oxide film and the first ion implantation mask, and forms a gate oxide film on the semiconductor substrate. In addition, the example method forms a second ion implantation mask defining a gate insulating film forming region on the gate oxide film, performs a second ion implantation on the semiconductor substrate and the second ion implantation mask, performs a second annealing for the semiconductor substrate, removes the second ion implantation mask; and forms a tunnel oxide film on the gate oxide film.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: January 10, 2006
    Assignee: Dongbu Anam Semiconductor Inc.
    Inventors: Chang Hun Han, Dong Oog Kim
  • Patent number: 6979635
    Abstract: Ultra narrow and thin polycrystalline silicon gate electrodes are formed by patterning a polysilicon gate precursor, reducing its width and height by selectively oxidizing its upper and side surfaces, and then removing the oxidized surfaces. Embodiments include patterning the polysilicon gate precursor with an oxide layer thereunder, ion implanting to form deep source/drain regions, forming a nitride layer on the substrate surface on each side of the polysilicon gate precursor, thermally oxidizing the upper and side surfaces of the polysilicon gate precursor thereby consuming silicon, and then removing the oxidized upper and side surfaces leaving a polysilicon gate electrode with a reduced width and a reduced height. Subsequent processing includes forming shallow source/drain extensions, forming dielectric sidewall spacers on the polysilicon gate electrode and then forming metal silicide layers on the upper surface of the polysilicon gate electrode and over the source/drain regions.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: December 27, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Akif Sultan, Qi Xiang, Bin Yu
  • Patent number: 6974779
    Abstract: A method is provided for forming a microstructure with an interfacial oxide layer by using a diffusion filter layer to control the oxidation properties of a substrate associated with formation of a high-k layer into the microstructure. The diffusion filter layer controls the oxidation of the surface. The interfacial oxide layer can be formed during an oxidation process that is carried out following deposition of a high-k layer onto the diffusion filter layer, or during deposition of a high-k layer onto the diffusion filter layer.
    Type: Grant
    Filed: September 16, 2003
    Date of Patent: December 13, 2005
    Assignees: Tokyo Electron Limited, International Business Machines Corporation
    Inventors: David L O'Meara, Cory Wajda, Tsuyoshi Takahashi, Alessandro Callegari, Kristen Scheer, Sufi Zafar, Paul Jamison
  • Patent number: 6969689
    Abstract: A method of forming oxide-nitride-oxide (ONO) dielectric of a SONOS-type nonvolatile storage device is disclosed. According to a first embodiment, a method may include the steps of forming a tunneling dielectric (step 102), forming a charge storing dielectric (step 104), and forming a top insulating layer (step 106) all in the same wafer processing tool. According to various aspects of the embodiments, all layers of an ONO dielectric of a SONOS-type device may be formed in the same general temperature range. Further, a tunneling dielectric may include a tunnel oxide formed with a long, low pressure oxidation, and a top insulating layer may include silicon dioxide formed with a preheated source gas.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: November 29, 2005
    Inventors: Krishnaswamy Ramkumar, Manuj Rathor, Biju Parameshwaran, Loren Lancaster
  • Patent number: 6967130
    Abstract: A method of forming dual gate insulator layers, each with a specific insulator thickness, featuring a HF type pre-clean procedure performed prior to formation of each of the gate insulator layers, has been developed. After a first HF type pre-clean procedure a silicon nitride layer is deposited on the native oxide free, semiconductor substrate followed by selective removal of silicon nitride layer from a second portion of the semiconductor substrate. After a second HF type pre-clean procedure a silicon dioxide gate insulator layer is formed on the second portion of the native oxide free, semiconductor substrate, with the silicon dioxide gate insulator layer comprised with a different thickness than the silicon nitride gate insulator layer, located on a first portion of the semiconductor substrate. The procedure used to form the silicon dioxide gate insulator layer also removes bulk traps in the silicon nitride gate insulator layer.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: November 22, 2005
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chi-Chun Chen, Tzu-Liang Lee, Shih-Chang Chen
  • Patent number: 6964905
    Abstract: An active region on a semiconductor substrate is electrically isolated by trench isolation. A structure of the trench isolation is constituted of: a trench; a silicon oxide film formed on the inner wall of trench; an oxidation preventive film formed between silicon oxide film and semiconductor substrate; and a filling oxide film filling trench. Gate oxide film is formed by oxidation having a high capability by which radicals of at least one kind of hydrogen radicals and oxygen radicals are generated. Thereby, gate oxide film is formed so as to have a almost uniform thickness such that a thickness of a region directly above oxidation preventive film and a thickness of a region directly below gate electrode are almost the same is each other. According to the above procedure, there are obtained a semiconductor device having good transistor characteristics and a fabrication process therefor.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: November 15, 2005
    Assignee: Renesas Technology Corp.
    Inventor: Masao Inoue
  • Patent number: 6962880
    Abstract: A method for fabricating a semiconductor integrated circuit device of the invention comprises feeding oxidation species containing a low concentration of water, which is generated from hydrogen and oxygen by the catalytic action, to the main surface of or in the vicinity of a semiconductor wafer, and forming a thin oxide film serving as a gate insulating film of an MOS transistor and having a thickness of 5 nm or below on the main surface of the semiconductor wafer at an oxide film-growing rate sufficient to ensure fidelity in formation of an oxide film and uniformity in thickness of the oxide film.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: November 8, 2005
    Assignee: Renesas Technology Corp.
    Inventors: Yoshikazu Tanabe, Satoshi Sakai, Nobuyoshi Natsuaki
  • Patent number: 6958299
    Abstract: A method for manufacturing a semiconductor device is disclosed. One example manufacturing method includes successively depositing gate insulating layer forming material and gate electrode forming material on a semiconductor substrate and patterning the gate insulating layer forming material and the gate electrode forming material to form a gate insulating layer and a gate electrode. The example manufacturing method further includes performing a nitrogen ion-implantation to a front face of the substrate and annealing the substrate so as to form a re-oxidation layer that has different thickness on the sidewalls of the gate electrode and on the substrate. The example method results in semiconductor gate electrodes and sidewalls having different oxidation rates so that a thickness of the re-oxidation layer of the sidewalls of the gate electrode is relatively thickened.
    Type: Grant
    Filed: December 3, 2003
    Date of Patent: October 25, 2005
    Assignee: DongbuAnam Semiconductor, Inc.
    Inventor: Seung Ho Hahn
  • Patent number: 6955996
    Abstract: A method and apparatus for preventing N2O from becoming super critical during a high pressure oxidation stage within a high pressure oxidation furnace are disclosed. The method and apparatus utilize a catalyst to catalytically disassociate N2O as it enters the high pressure oxidation furnace. This catalyst is used in an environment of between five atmospheres and 25 atmospheres N2O and a temperature range of 600° to 750° C., which are the conditions that lead to the N2O going super critical. By preventing the N2O from becoming super critical, the reaction is controlled that prevents both temperature and pressure spikes. The catalyst can be selected from the group of noble transition metals and their oxides. This group can comprise palladium, platinum, iridium, rhodium, nickel, silver, and gold.
    Type: Grant
    Filed: July 22, 2003
    Date of Patent: October 18, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Daniel F Gealy, Dave Chapek, Scott DeBoer, Husam N. Al-Shareef, Randhir Thakur
  • Patent number: 6955968
    Abstract: Flash memory cells are provided that include a first source/drain region and a second source/drain region separated by a channel region. A first gate opposes. A first gate insulator separates the first gate from the channel. The first gate insulator includes a graded composition gate insulator. A second gate is separated from the first gate insulator by a second gate insulator. The above memory cells produce gate insulators with less charging at the interface between composite insulator layers and provide gate insulators with low surface state densities. The memory cells substantially reduce large barrier heights or energy problems by using dielectrics having suitably, adjustably lower barrier heights in contact with the polysilicon floating gate. Such adjustable barrier heights of controlled thicknesses can be formed using a silicon suboxide and a silicon oxycarbide dielectrics prepared according to the process as described herein.
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: October 18, 2005
    Assignee: Micron Technology Inc.
    Inventors: Leonard Forbes, Jerome M. Eldridge
  • Patent number: 6943098
    Abstract: A method of forming a contact opening is provided. First, a substrate having a plurality of conductive structures formed thereon is provided. An ion implantation is performed. Thereafter, a thermal treatment is carried out to form a liner layer on the sidewall of the conductive structure and the exposed substrate. The liner layer on the sidewall of the conductive structure has a thickness smaller than the liner layer on the substrate surface. A spacer is formed on each side of the conductive structure and then an insulation layer is formed over the substrate. The insulation layer is patterned to form a contact opening between two neighboring conductive structures. Since the liner layer on the sidewall of the conductive structures is already quite thin, there is no need to reduce thickness through an etching operation and uniformity of the liner layer on the substrate can be ensured.
    Type: Grant
    Filed: September 23, 2003
    Date of Patent: September 13, 2005
    Assignee: ProMOS Technologies Inc.
    Inventors: Fang-Yu Yeh, Chun-Che Chen
  • Patent number: 6936550
    Abstract: A manufacturing method for a semiconductor integrated circuit device comprises forming, over a gate insulating film which has been formed over the main surface of a single crystal silicon substrate to have an effective film thickness less than 5 nm in terms of SiO2, a W film as a gate electrode material, and heat treating the silicon substrate in a water-vapor- and hydrogen-containing gas atmosphere having a water vapor/hydrogen partial pressure ratio set at a ratio permitting oxidation of silicon without substantial oxidation of the W film, whereby defects of the gate insulating film right under the W film are repaired. In this way, in a MISFET having a metal gate electrode formed over a ultra-thin gate insulating film having an effective film thickness less than 5 nm in terms of SiO2, defects of the gate insulating film can be repaired without oxidizing the metal gate electrode.
    Type: Grant
    Filed: January 21, 2004
    Date of Patent: August 30, 2005
    Assignee: Hitachi, Ltd.
    Inventors: Naoki Yamamoto, Yoshikazu Tanabe
  • Patent number: 6936503
    Abstract: In a pretreatment process, a silicon oxide film (13) with nitrogen content is formed on a semiconductor substrate (10). In a segregation process executing heat treatment in an in-oxidiz-able gas atmosphere, a silicon nitride layer (14) segregates out at the interface of the silicon substrate (10) and the silicon oxide film (13). After this, the unnecessary silicon oxide film (13) on the silicon nitride layer (14) is removed, and a silicon oxide layer (15) is formed beneath the exposed silicon nitride layer (14) with oxygen passing through the exposed silicon nitride layer (14). Whereby, a gate electrode (16) is formed on the gate insulating film consisting of the silicon nitride layer (14) and the silicon oxide layer (15).
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: August 30, 2005
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Shinobu Takehiro
  • Patent number: 6933248
    Abstract: The instant invention describes a method for forming a dielectric film with a uniform concentration of nitrogen. The films are formed by first incorporating nitrogen into a dielectric film using RPNO. The films are then annealed in N2O which redistributes the incorporated species to produce a uniform nitrogen concentration.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: August 23, 2005
    Assignee: Texas Instruments Incorporated
    Inventor: Douglas T. Grider
  • Patent number: 6930053
    Abstract: A method of manufacturing an element having a microstructure of an excellent grating groove pattern or the like is obtained. This method of manufacturing an element having a microstructure comprises steps of forming a metal layer on a substrate, forming a dot column of concave portions on the surface of the metal layer and anodically oxidizing the surface of the metal layer formed with the dot column of concave portions while opposing this surface to a cathode surface thereby forming a metal oxide film having a grating groove pattern. When the interval between the concave portions of the dot column is reduced, therefore, a linear grating groove pattern having a large depth with a uniform groove width along the depth direction is easily formed in a self-organized manner.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: August 16, 2005
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Kazushi Mori, Mitsuaki Matsumoto, Koji Tominaga, Atsushi Tajiri, Koutarou Furusawa
  • Patent number: 6929990
    Abstract: A semiconductor device comprises: a p-type semiconductor substrate (1); an insulating film (3); a gate electrode (2) formed on the substrate via the insulating film; and an n-type source/drain region (5) formed on both sides of a channel forming region (4) located under the gate electrode (2) formed on the substrate (1). In particular, the thickness (TOX) of the insulating film (3) is determined to be less than 2.5 nm at conversion rate of silicon oxide film (silicon oxide equivalent thickness); a gate length (Lg) of the gate electrode (2) is determined to be equal to or less than 0.3 ?m; and further a voltage applied to the gate electrode (2) and the drain region (6) is determined to be 1.5 V or less. Therefore, in the MOSFET having the tunneling gate oxide film (3), the reliability of the transistor under the hot carrier stress can be improved, and the gate leakage current can be reduced markedly, so that the transistor characteristics can be improved markedly.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: August 16, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hisayo Momose, Hiroshi Iwai, Masanobu Saito, Tatsuya Ohguro, Mizuki Ono, Takashi Yoshitomi, Shinichi Nakamura
  • Patent number: 6930057
    Abstract: To provide a method for manufacturing a magnetic recording medium which creates anodically oxidized aluminum nanoholes so as to have a rectangular or elliptical sectional shape and gives shape anisotropy to a magnetic material filled in the nanoholes to thereby always fix a relative positional relation between magnetizations of the magnetic material and a magnetic head that detects the magnetizations. The method for manufacturing a magnetic recording medium includes: preparing a member having regularly arranged plural pits; subjecting the member to anodic oxidation treatment so that formation of holes is started with the pits as starting points, and a porous region, which has a first portion where the holes are formed without branching and a second portion where branched holes are formed, is formed; filling a magnetic material in the formed holes; and removing the non-branching portions of the holes.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: August 16, 2005
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tatsuya Saito, Tohru Den
  • Patent number: 6930062
    Abstract: A method of forming an oxide layer on a semiconductor substrate includes thermally oxidizing a surface of the substrate to form an oxide layer on the substrate, and then exposing the oxide layer to an ambient including predominantly oxygen radicals to thereby thicken the oxide layer. Related methods of fabricating a recessed gate transistor are also discussed.
    Type: Grant
    Filed: May 21, 2004
    Date of Patent: August 16, 2005
    Assignee: Samsung Electronics Co., Inc.
    Inventors: Sang-Jin Hyun, Yu-Gyun Shin, Bon-Young Koo, Sug-Hun Hong, Taek-Soo Jeon, Jeong-do Ryu
  • Patent number: 6914013
    Abstract: A semiconductor device and a method of forming the semiconductor device are disclosed. The semiconductor device includes: a semiconductor substrate; a patterned floating gate formed on the semiconductor substrate, the patterned floating gate having upper and side parts and corners; and a dielectric layer containing a first oxide layer, a nitride layer and a second oxide layer deposited over the semiconductor substrate and the floating gate. The ratio of the thickness of the first oxide layer in the upper and side parts of the patterned floating gate to the thickness of the first oxide layer in the corners of the patterned floating gate does not exceed 1.4. The semiconductor device has an improved coupling coefficient, and reduced leakage current.
    Type: Grant
    Filed: May 8, 2003
    Date of Patent: July 5, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Byung-Hong Chung
  • Patent number: 6908774
    Abstract: A method for adjusting the thickness of a thin semiconductor material layer. The method includes measuring the layer to establish a thickness profile, determining thickness adjustment specifications from the measured thickness profile, and adjusting the thickness of the layer in accordance with the specifications by sacrificial oxidation. An apparatus for adjusting the thickness of a thin layer of semiconductor material according to this method is also disclosed.
    Type: Grant
    Filed: August 6, 2003
    Date of Patent: June 21, 2005
    Assignee: S.O. I. Tec Silicon on Insulator Technologies S.A.
    Inventors: Bruno Ghyselen, Cécile Aulnette, Bénédite Osternaud
  • Patent number: 6905978
    Abstract: A method of forming an interlayer insulation film on a semiconductor substrate using plasma CVD includes introducing a source gas into a reaction chamber, applying radio-frequency power after the source gas is brought in, introducing an oxidizing gas with or without an additive gas into the reaction chamber after the completion of supplying the source gas and applying the radio-frequency power, and applying the radio-frequency power again. The concentration of the oxidizing gas may be 0.3% or higher and a processing time period by the oxidizing gas may be three seconds or longer.
    Type: Grant
    Filed: March 17, 2003
    Date of Patent: June 14, 2005
    Assignee: ASM Japan K.K.
    Inventors: Naoto Tsuji, Yukihiro Mori, Satoshi Takahashi, Ryo Kawaguchi
  • Patent number: 6905979
    Abstract: The invention relates to an apparatus and method for improving AC coupling between adjacent signal traces and between plane splits and signals spanning plane splits on circuit boards. A circuit board includes adjacent conductive means and an oxide means interposed there between. The oxide means is a copper oxide, e.g., cupric or cuprous oxide. In one embodiment, the adjacent conductive means are adjacent voltage reference planes with a split interposed between the conductive means. The copper oxide fills the split. In another embodiment, the adjacent conductive means are differential signal traces. The copper oxide fills a gap between the differential signal traces. The copper oxide is a non-conductive material with an increased dielectric constant as compared to other common dielectric materials used as fillers. The increased dielectric constant increases capacitance, in turn, increasing AC coupling.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: June 14, 2005
    Assignee: Intel Corporation
    Inventors: Weston Roth, Damion T. Searls, James D. Jackson
  • Patent number: 6905893
    Abstract: A method is provided for determining a concentration profile of an impurity within a layer of a semiconductor topography. The method may include exposing the layer and an underlying layer to oxidizing conditions. In addition, the method may include comparing thickness measurements of total dielectric above the underlying layer taken before and after exposing the topography to oxidizing conditions . In some cases, the comparison may include plotting pre-oxidation thickness measurements versus post-oxidation measurements. In other embodiments, the comparison may include determining differences between the pre-oxidation and post-oxidation thickness measurements and correlating the differences to concentrations of the impurity. In some cases, such a correlation may include subtracting a concentration of the impurity at a first location along the semiconductor topography from a concentration of the impurity at a second location along the semiconductor topography.
    Type: Grant
    Filed: November 5, 2002
    Date of Patent: June 14, 2005
    Assignee: Cypress Semiconductor Corp.
    Inventors: Sundar Narayanan, Krishnaswamy Ramkumar
  • Patent number: 6905980
    Abstract: A semiconductor device is produced by forming a gate oxide film on a silicon substrate, forming a gate electrode on the gate oxide film, forming a nitrogen-containing oxide film on the silicon substrate and gate electrode in an N2O gas or an NO gas, forming a BPSG film on the nitrogen-containing oxide film, and carrying out a reflow process on the BPSG film in a water vapor atmosphere. During the reflow process, the nitrogen-containing oxide film that has no hydrogen atoms prevents the penetration and diffusion of oxygen and hydrogen atoms into the silicon substrate and gate electrode, thereby preventing the oxidization of the silicon substrate and gate electrode. No hydrogen atoms diffuse into the gate oxide film, and therefore, the reliability of the gate oxide film is secured.
    Type: Grant
    Filed: July 24, 2003
    Date of Patent: June 14, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Mikio Wakamiya