Elemental Carbon Patents (Class 502/180)
  • Patent number: 6936565
    Abstract: Compositions including modified carbide-containing nanorods and/or modified oxycarbide-containing nanorods and/or modified carbon nanotubes bearing carbides and oxycarbides and methods of making the same are provided. Rigid porous structures including modified oxycarbide-containing nanorods and/or modified carbide containing nanorods and/or modified carbon nanotubes bearing modified carbides and oxycarbides and methods of making the same are also provided. The compositions and rigid porous structures of the invention can be used either as catalyst and/or catalyst supports in fluid phase catalytic chemical reactions. Processes for making supported catalyst for selected fluid phase catalytic reactions are also provided.
    Type: Grant
    Filed: October 29, 2001
    Date of Patent: August 30, 2005
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Jun Ma, David Moy
  • Patent number: 6911412
    Abstract: Electrocatalyst powders and methods for producing electrocatalyst powders, such as carbon composite electrocatalyst powders. The powders have a well-controlled microstructure and morphology. The method includes forming the particles from an aerosol of precursors by heating the aerosol to a relatively low temperature, such as not greater than about 400° C.
    Type: Grant
    Filed: August 1, 2002
    Date of Patent: June 28, 2005
    Assignee: Cabot Corporation
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, Plamen Atanassov, Paolina Atanassova, Klaus Kunze, Paul Napolitano, David Dericotte
  • Patent number: 6906000
    Abstract: Stable carbonous catalyst particles composed of an inorganic catalytic metal/metal oxide powder and a carbonaceous binder material are formed having a basic inner substantially uniform-porous carbon coating of the catalytic powder, and may include an outer porous carbon coating layer. Suitable inorganic catalytic powders include zinc-chromite (ZnO/Cr2 03) and suitable carbonaceous liquid binders having molecular weight of 200-700 include partially polymerized furfuryl alcohol, which are mixed together, shaped and carbonized and partially oxidized at elevated temperature. Such stable carbonous catalyst particles such as 0.020-0.100 inch (0.51-2.54 mm) diameter extrudates, have total carbon content of 2-25 wt. % and improved crush strength of 1.0-5 1b/mn, 50-300 m2/g surface area, and can be advantageously utilized in fixed bed or ebullated/fluidized bed reactor operations.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: June 14, 2005
    Assignee: Hydrocarbon Technologies, Inc.
    Inventors: Partha S. Ganguli, Alfred G. Comolli
  • Patent number: 6844286
    Abstract: The present invention relates to water-based catalyst inks and their use for manufacture of catalyst-coated substrates. According to the present invention, a catalyst layer is applied to the hydrophobic surface of a substrate by using a water-based catalyst ink comprising an electrocatalyst, an ionomer and water. The catalyst ink also comprises a highly volatile surfactant having a vapor pressure at ambient temperature in the range of 1 to 600 Pa. The use of this surfactant allows applying the water-based ink to the hydrophobic surface of a variety of substrates, such as gas diffusion layers, advanced ionomer membranes and polymer substrates. The required coating deposit can be applied in one coating pass and the resulting catalyst layer exhibits improved performance due to the absence of residual surfactant in the catalyst layer.
    Type: Grant
    Filed: July 28, 2003
    Date of Patent: January 18, 2005
    Assignee: Umicore AG & Co. KG
    Inventors: Joachim Köhler, Volker Bänisch
  • Patent number: 6841509
    Abstract: A carbon nanocapsule supported catalysts. At least one kind of catalytic metal particle is deposited to a carbon nanocapsule, wherein the carbon nanocapsule has the following formula: F(?M)n, in which F is the carbon nanocapsule, M is the catalytic metal particle, and n is the number of the catalytic metal particle. By applying the carbon nanocapsule as a catalyst support, the catalytic behavior of the catalytic metal particle is specialized, the dispersion is improved, and the catalytic effect is enhanced.
    Type: Grant
    Filed: November 20, 2003
    Date of Patent: January 11, 2005
    Assignee: Industrial Technology Research Institute
    Inventors: Gan-Lin Hwang, Chao-Kang Chang
  • Patent number: 6841508
    Abstract: Compositions including oxycarbide-based nanorods and/or carbide-based nanorods and/or carbon nanotubes bearing carbides and oxycarbides and methods of making the same are provided. Rigid porous structures including oxycarbide-based nanorods and/or carbide based nanorods and/or carbon nanotubes bearing carbides and oxycarbides and methods of making the same are also provided. The compositions and rigid porous structures of the invention can be used either as catalyst and/or catalyst supports in fluid phase catalytic chemical reactions. Processes for making supported catalyst for selected fluid phase catalytic reactions are also provided. The fluid phase catalytic reactions catalyzed include hydrogenation, hydrodesulfurisation, hydrodenitrogenation, hydrodemetallisation, hydrodeoxigenation, hydrodearomatization, dehydrogenation, hydrogenolysis, isomerization, alkylation, dealkylation and transalkylation.
    Type: Grant
    Filed: June 11, 2002
    Date of Patent: January 11, 2005
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: David Moy, Chunming Niu, Jun Ma, James M. Willey
  • Patent number: 6838070
    Abstract: The invention relates to a method of producing cyanuric chloride by trimerizing chlorocyan at a temperature of at least 250° C. on washed activated carbon as the catalyst. The service life of the catalyst can be improved by using an activated coal with an effective pore volume V eff of equal or greater 0.17 ml/g, with V eff being the result of pores with a pore diameter ranging from 0.5 to 7 nm.
    Type: Grant
    Filed: March 8, 2000
    Date of Patent: January 4, 2005
    Assignee: Degussa AG
    Inventors: Walter Boerner, Ralph Marquardt, Stephanie Schauhoff, Christine Schick, Rudolf Vanheertum
  • Publication number: 20040248730
    Abstract: Disclosed is an electrocatalyst for fuel cells, in which a porous carbon material including pores having a diameter smaller than a kinetic diameter of carbon monoxide is used as a support body and contact probability between an activated metal and carbon monoxide is decreased, thereby preventing fuel cell performance from being degraded by carbon monoxide. The electrocatalyst is obtained by adsorbing 10-80 parts by weight of an activated metal to 20-90 parts by weight of a porous support body, characterized in that the porous support body has a total surface area of 200-2,500 m2/g including an outer surface thereof and an inner surface of pores thereof, and has a plurality of pores penetrating into an interior of the support body with an average diameter of 2-15 nm and a total volume of 0.4-2.0 m3/g, and the activated metal is alloyed with 20-95 at % of platinum and 5-80 at % of one metal selected from among Ru, Sn, Os, Rh, Ir, Pd, V, Cr, Co, Ni, Fe and Mn.
    Type: Application
    Filed: June 3, 2003
    Publication date: December 9, 2004
    Applicant: Korea Institute of Energy Research
    Inventors: Chang-Soo Kim, Young-Gi Kim, Won-Yong Lee, Gu-Gon Park, Tae-Hyun Yang
  • Patent number: 6827932
    Abstract: The invention provides a composition which is effective in the prevention or delay of the onset of side effects associated with alcohol consumption or the reduction or alleviation of those effects. The composition of the invention includes activated charcoal and limestone, optionally activated limestone. Optionally, the composition of the invention also includes vitamin B1 and/or other agents such as fatigue relieving agents. Preferably, the composition of the invention is provided in the form of tablets or powder encapsulated in a gelatin capsule. The composition of the invention is provided in pre-dosed quantities varying from between about 100 and 500 milligrams per dose. The invention also provides a method of reducing or alleviating the deleterious effects associated with alcohol consumption.
    Type: Grant
    Filed: January 11, 2002
    Date of Patent: December 7, 2004
    Inventors: Raymond Crippen, Manoj Bhargava, Thomas F. Morse
  • Patent number: 6824755
    Abstract: This invention relates generally to a method for producing single-wall carbon nanotube (SWNT) catalyst supports and compositions thereof. In one embodiment, SWNTs or SWNT structures can be employed as the support material. A transition metal catalyst is added to the SWNT. In a preferred embodiment, the catalyst metal cluster is deposited on the open nanotube end by a docking process that insures optimum location for the subsequent growth reaction. The metal atoms may be subjected to reductive conditions.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: November 30, 2004
    Assignee: William Marsh Rice University
    Inventors: Daniel T. Colbert, Hongjie Dai, Jason H. Hafner, Andrew G. Rinzler, Richard E. Smalley
  • Publication number: 20040226863
    Abstract: The invention relates to a catalyst for the selective hydrodesulfurization of hydrocarbon-containing feedstocks that comprise sulfur-containing compounds and olefins. This catalyst comes in a sulfurized form and comprises a substrate that is selected from among the refractory oxides, at least one metal that is selected from the group that consists of the metals of groups VI and VII of the periodic table and carbon, whereby the carbon content is less than or equal to 2.8% by weight. The invention also relates to a method for the production of the catalyst that is described above, as well as a process that uses this catalyst for the selective hydrodesulfurization of hydrocarbon-containing feedstocks that contain sulfur-containing compounds and olefins.
    Type: Application
    Filed: January 29, 2004
    Publication date: November 18, 2004
    Inventors: Denis Uzio, Nathalie Marchal-George, Christophe Bouchy, Florent Picard
  • Patent number: 6812187
    Abstract: A method for manufacturing a carbon molecular sieve with increased microporosity; a method for manufacturing a carbon molecular sieve with increased microporosity and improved structural regularity; a carbon molecular sieve with increased microporosity; a carbon molecular sieve with increased microporosity and improved structural regularity; a catalyst for a fuel cell using the carbon molecular sieve; and a fuel cell using the catalyst are provided.
    Type: Grant
    Filed: July 28, 2003
    Date of Patent: November 2, 2004
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Chan-ho Pak, Ji-man Kim, Hyung-ik Lee
  • Patent number: 6806223
    Abstract: The present invention relates to novel singlet oxygen catalysts useful for the production of specialty chemicals. The catalysts include a core material selected from amine coated polymeric beads, amine coated glass beads and multi-generational dendrimers to which condensed carbon molecules are bonded. These catalysts may in turn give rise to other solid phase heterogeneous catalysts useful for stereoselective or regioselective reactions, by way of non-limiting example.
    Type: Grant
    Filed: April 19, 2002
    Date of Patent: October 19, 2004
    Assignee: Central Michigan University Board of Trustees
    Inventor: Anton W. Jensen
  • Patent number: 6797666
    Abstract: A honeycomb filter is composed mainly of silicon carbide or of metallic silicon and silicon carbide; the filter being formed by bonding a plurality of honeycomb segments each of which has a plurality of through-holes being partitioned by porous partition walls. The filter is plugged alternately at the exhaust gas inlet face and exhaust gas outlet face of honeycomb segments. Each two adjacent honeycomb segments are contacted with each other at each a portion of their sides facing each other. They are bonded with each other at least at part of each portion of said sides other than the contacted portion through a bonding material having a strength lower than that of a basal body of honeycomb segment. Thus, the thermal stresses generated among the respective portions constituting the filter is reduced. The generation of cracks, etc. can be also prevented considerably.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: September 28, 2004
    Assignee: NGK Insulators, Ltd.
    Inventors: Takashi Harada, Toshiyuki Hamanaka
  • Publication number: 20040186011
    Abstract: A metallic catalytic particle for producing single-walled carbon nanotubes. The catalytic particles contain at least one metal from Group VIII, including for example Co, Ni, Ru, Rh, Pd, Ir, and Pt, and at least one metal from Group VIb including for example Mo, W and Cr. The metal component is on a support such as silica.
    Type: Application
    Filed: January 8, 2004
    Publication date: September 23, 2004
    Inventors: Daniel E. Resasco, Boonyarach Kitiyanan, Jeffrey H. Harwell, Walter Alvarez
  • Patent number: 6790806
    Abstract: The core/jacket catalyst molding with a core made from an inorganic support material and with a jacket made from a catalytically active material can be prepared by coextruding an aqueous molding composition which comprises the support material or a precursor thereof, with an aqueous molding composition which comprises the catalytically active material or a precursor thereof, then drying the coextrudate, and then calcining the dried coextrudate.
    Type: Grant
    Filed: January 17, 2002
    Date of Patent: September 14, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Michael Hesse, Rainer Anderlik, Hans-Gerhard Fritz, Jochen Hammer
  • Patent number: 6787500
    Abstract: Catalyst particles having a higher activity and capable of showing activities for a plurality of kinds of material are provided. The catalyst particles of the invention comprise base particles that consist of one kind of single material fine particles or two or more kinds of solid solution fine particles having primary particle diameters of a nanometer order, and a surface coating layer made of one or more kind of noble metal, or an oxide of noble metal, that covers at least a part of the surface of the base particles 1 to a thickness of one to thirty single atom layers.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: September 7, 2004
    Assignees: Denso Corporation
    Inventors: Miho Ito, Jun Hasegawa, Koichi Niihara, Tadachika Nakayama
  • Patent number: 6777368
    Abstract: A molten-salt type catalyst is adapted for purifying particulate materials, which are contained in an exhaust gas emitted from an internal combustion engine and contain carbon. It includes a solid support and a catalytic ingredient. The catalytic ingredient is loaded on the solid support, and includes at least one member selected from the group consisting of silver nitrate, alkali metal nitrate, alkaline-earth metal nitrate and rare-earth nitrate. The molten-type catalyst can efficiently burn and remove the particulate materials even in a low temperature range.
    Type: Grant
    Filed: January 3, 2002
    Date of Patent: August 17, 2004
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Tomoyuki Kayama, Hirofumi Shinjoh, Yuji Sakakibara
  • Publication number: 20040158086
    Abstract: One aspect of the invention relates to a catalyst composite containing an extruded catalyst support containing an extruded activated carbonaceous material having specifically a defined pore structure. For example, the extruded activated carbonaceous material may have pores wherein at least about 40% of total Hg porosity occurs in pores having a diameter of about 200 Å and larger. Alternatively the extruded activated carbonaceous material may have a first set of pores having a pore diameter of at least about 40 Å and at most about 100 Å with a porosity of at least about 0.15 cc/g, and a second set of pores having a pore diameter of at least about 5,000 Å and at most about 20,000 Å with a porosity of at least about 0.3 cc/g.
    Type: Application
    Filed: February 4, 2004
    Publication date: August 12, 2004
    Inventor: James Ferguson White
  • Publication number: 20040157109
    Abstract: A membrane electrode assembly for a proton exchange membrane fuel cell that employs an improved catalyst. The catalyst is a mixture of a first catalyst and a second catalyst. The first catalyst is a 50 wt % Pt formed on Vulcan XC72 carbon having a BET surface area of about 250 m2/g. The second catalyst is a 50 wt % Pt formed on Ketjen Black carbon having a BET surface area of about 800 m2/g. The ratio of the first catalyst to the second catalyst is 1:1.
    Type: Application
    Filed: February 7, 2003
    Publication date: August 12, 2004
    Inventors: Susan G. Yan, Brian A. Litteer
  • Publication number: 20040147620
    Abstract: Methods have been developed to form catalysts having active metals disposed on a carbon nanotube coated porous substrate. Catalysts and reactions over nanotube-containing catalysts are also disclosed. Results are presented showing enhanced performance resulting from use of the inventive catalyst. Mesoporous oxide layers can be utilized to improve catalyst properties.
    Type: Application
    Filed: January 14, 2004
    Publication date: July 29, 2004
    Inventors: Yong Wang, Ya-Huei Chin, Yufei Gao
  • Publication number: 20040133045
    Abstract: A catalyst particle containing an active metal and a carrier composed of a carbon material, wherein the active metal being supported by cavities on a surface of the carrier and their edge portions. The active metal is fixedly attached to the carrier for a long period of time, so that the catalyst particle stably shows a high catalytic activity, which is hardly reduced by a reaction. The catalyst particle is usable for the dehydrogenation of alcohols.
    Type: Application
    Filed: August 26, 2003
    Publication date: July 8, 2004
    Inventors: Hitoshi Okanobori, Atsushi Kamachi
  • Publication number: 20040132613
    Abstract: The invention provides systems and methods for conducting reactions in which a reactant contacts a tethered catalyst and/or tethered chiral auxiliary in a microchannel and is converted to product.
    Type: Application
    Filed: August 14, 2003
    Publication date: July 8, 2004
    Inventors: John H. Brophy, Kai Jarosch
  • Publication number: 20040121903
    Abstract: An object of the present invention is to provide a photocatalytic powder containing titanium dioxide fine particles containing an anionically active substance, where the electrokinetic potential of the fine particle is from about −100 to 0 mV in an aqueous environment at pH 5. Another object of the present invention is to provide a photocatalytic slurry containing the powder, and a polymer composition, a coating agent, a photocatalytic functional molded article and a photocatalytic functional structure using the powder.
    Type: Application
    Filed: December 2, 2003
    Publication date: June 24, 2004
    Applicant: SHOWA DENKO K.K.
    Inventors: Katsura Ito, Hiroyuki Hagihara
  • Publication number: 20040121221
    Abstract: A catalytic material and electrode of the present invention are characterized in that the catalyst carrier constituting the above-mentioned catalytic material and electrode includes at least one member selected from the group consisting of nitrogen atoms, oxygen atoms, phosphor atoms, and sulfur atoms. Since the cohesion or growth of catalyst grains can hereby be suppressed, it is possible to provide a highly active catalyst, a high-performance electrode, and a high-output-density fuel cell which uses the same.
    Type: Application
    Filed: December 12, 2003
    Publication date: June 24, 2004
    Inventors: Shuichi Suzuki, Chahn Lee, Yuichi Satsu, Kishio Hidaka, Mitsuo Hayashibara, Yoshiyuki Takamori, Tomoichi Kamo, Yasuhisa Aono
  • Patent number: 6746982
    Abstract: The invention is a porous carbon body for a fuel cell having an electronically conductive hydrophilic agent and method of manufacture of the body. The porous carbon body comprises an electronically conductive graphite powder in an amount of between 60%-80% by weight of the body; a carbon fiber in an amount of between 5%-15% by weight of the body; a thermoset binder in an amount of between 6%-18% by weight of the body; and, a modified carbon black electronically conductive hydrophilic agent in an amount of between 2%-20% by weight of the body. The body provides for increased wettability without any decrease in electrical conductivity, and also provides for an efficient manufacture without any need for high temperature, costly steps to graphitize the body, or to incorporate post molding hydrophilic agents into pores of the body.
    Type: Grant
    Filed: December 27, 2001
    Date of Patent: June 8, 2004
    Assignee: UTC Fuel Cells, LLC
    Inventors: Christopher J. Hertel, John A. S. Bett, Foster P. Lamm, Carl A. Reiser
  • Patent number: 6720282
    Abstract: Trace impurities such as organic compounds and carbon monoxide in reactive fluids such as ammonia, hydrogen chloride, hydrogen bromide, and chlorine are reduced to sub-ppb levels using gas purifying systems that contain a preconditioned ultra-low emission (P-ULE) carbon. P-ULE is capable of removing impurities from a reactive fluid down to parts-per-billion (ppb) and sub-ppb levels without concurrently emitting other impurities such as moisture or carbon dioxide into the purified reactive fluid. The P-ULE carbon is prepared by heating a carbon material to temperatures from 300° C. to about 800° C. in an ultra-dry, inert gas stream, to produce an ultra-low emission (ULE) carbon material, subjecting the ULE carbon to a second activation process under a reactive gas atmosphere to produce a P-ULE carbon and storing the P-ULE carbon in an environment that minimizes contamination of the P-ULE prior to its use in a gas purifier system.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: April 13, 2004
    Assignee: Matheson Tri-Gas, Inc.
    Inventors: Hans H. Funke, Dan Fraenkel, Virginia H. Houlding
  • Publication number: 20040068138
    Abstract: An improved catalyst comprising a noble metal and tellurium at the surface of a carbon support is provided. Also provided are novel methods for preparing such catalysts and novel processes for the use of such catalysts in liquid phase oxidation reactions, particularly the oxidation of N-(phosphonomethyl)iminodiacetic acid or a salt thereof.
    Type: Application
    Filed: June 30, 2003
    Publication date: April 8, 2004
    Applicant: Monsanto Technology LLC
    Inventor: Mark A. Leiber
  • Publication number: 20040058808
    Abstract: A method of preparing non-platinum composite electrocatalyst for a fuel cell cathode, comprising: (1) preparing a carbon supporting titanium dioxide; (2) compounding the carbon supporting titanium dioxide with a transition metal macrocyclic compound in an organic solvent to produce a carbon supporting titanium dioxide—transition metal macrocyclic compound comprising 0.1-5 g/L of macrocyclic compound; and (3) thermal treating the resulting compound in step (2) at 100-1000° C. to produce a composite catalyst. The composite catalyst prepared with the method according to the present invention also has the advantages of better resistance to methanol and lower cost over the Pt/C catalyst. The said composite catalyst would have better prospects in application.
    Type: Application
    Filed: July 3, 2003
    Publication date: March 25, 2004
    Applicant: Changchun Institute of Applied Chemisty Chinese Academy of Science
    Inventors: Tianhong Lu, Xuguang Li, Wei Xing
  • Publication number: 20040058807
    Abstract: A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.
    Type: Application
    Filed: September 25, 2003
    Publication date: March 25, 2004
    Applicant: Battele Memorial Institute
    Inventors: Todd Werpy, John G. Frye, Yong Wang, Alan H. Zacher
  • Publication number: 20040038808
    Abstract: Compositions and methods for the manufacture of electrodes for fuel cells. The compositions and methods are particularly useful for the manufacture of anodes and cathodes for proton exchange membrane fuel cells, particularly direct methanol fuel cells. The methods can utilize direct-write tools to deposit ink compositions and form functional layers of a membrane electrode assembly having controlled properties and enhanced performance.
    Type: Application
    Filed: April 16, 2003
    Publication date: February 26, 2004
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, Paolina Atanassova, Rimple Bhatia, Ross A. Miesem, Paul Napolitano, Gordon L. Rice
  • Patent number: 6696384
    Abstract: A new shaped activated carbon and the method of its manufacture are disclosed. The invention resides in the crosslinking of a polymeric cellulose, such as sodium carboxymethylcellulose (CMC), within the carbon bodies after they are shaped, employing the CMC as a binder for the activated carbon. The approach to attain product mechanical strength and water stability by crosslinking rather than high temperature heat treatment is not obvious from the prior art teaching. The crosslinking reaction occurs at temperatures below 270° C. In addition, this new binder technology produces shaped carbon bodies having key properties beyond the best level that has been accomplished with other binders.
    Type: Grant
    Filed: April 11, 2001
    Date of Patent: February 24, 2004
    Assignee: MeadWestvaco Corporation
    Inventors: Peter D. A. McCrae, Tiejun Zhang, David R. B. Walker
  • Patent number: 6689505
    Abstract: Electrocatalyst which are formed of a carbon support, which is a carbon black with an H content of >4000 ppm and, as the catalytically active component, platinum or bi- or multi-metallically doped or alloyed platinum. The electrocatalysts are prepared by deposition of noble metals on the carbon black surface. They can be used for the production of fuel cells.
    Type: Grant
    Filed: August 25, 2000
    Date of Patent: February 10, 2004
    Assignee: dmc
    Inventors: Peter Albers, Emmanuel Auer, Walther Behl, Karl Vogel, Conny Vogler
  • Patent number: 6689613
    Abstract: A combinatorial method is provided for the preparation and screening of heterogeneous catalysts. The method comprises the steps of: (I) providing a library of elemental catalysts; (II) reacting the catalysts with a carbon source to form product directly on the catalyst; and (III) screening the products to evaluate the catalysts.
    Type: Grant
    Filed: March 28, 2000
    Date of Patent: February 10, 2004
    Assignee: General Electric Company
    Inventors: Xiao-Dong Sun, Navjot Singh
  • Publication number: 20040023795
    Abstract: A tungsten-containing fuel cell catalyst having high electrochemical activity and its method of making are described. The tungsten-containing catalyst may be formed in situ in a fuel cell after the fuel cell is assembled.
    Type: Application
    Filed: July 31, 2003
    Publication date: February 5, 2004
    Inventors: Joel B. Christian, Robert G. Mendenhall
  • Patent number: 6686308
    Abstract: A supported catalyst is provided comprising catalyst metal nanoparticles having an average particle size of 3.0 nm or less, or more typically 2.0 nm or less, and typically having a standard deviation of particle size of 0.5 nm or less, which are supported on support particles at a loading of 30% or more. Typical catalyst metals are selected from platinum, palladium, ruthenium, rhodium, iridium, osmium, molybdenum, tungsten, iron, nickel and tin. Typical support particles are carbon. A method of making a supported catalyst is provided comprising the steps of: a) providing a solution of metal chlorides of one or more catalyst metals in solvent system containing at least one polyalcohol, typically ethylene glycol containing less than 2% water; b) forming a colloidal suspension of unprotected catalyst metal nanoparticles by raising the pH of the solution, typically to a pH of 10 or higher, and heating said solution, typically to 125 ° C.
    Type: Grant
    Filed: December 3, 2001
    Date of Patent: February 3, 2004
    Assignee: 3M Innovative Properties Company
    Inventors: Shane Shanhong Mao, Guoping Mao
  • Publication number: 20040010160
    Abstract: An oxidation catalyst is prepared by pyrolyzing a source of iron and a source of nitrogen on a carbon support. Preferably, a noble metal is deposited over the modified support which comprises iron and nitrogen bound to the carbon support. The catalyst is effective for oxidation reactions such as the oxidative cleavage of tertiary amines to produce secondary amines, especially the oxidation of N-(phosphonomethyl)iminodiacetic acid to N-(phosphonomethyl)-glycine.
    Type: Application
    Filed: February 14, 2003
    Publication date: January 15, 2004
    Applicant: Monsanto Technology LLC
    Inventors: James P. Coleman, Martin P. McGrath
  • Patent number: 6673738
    Abstract: A photocatalytic active carbon capable of demonstrating a stable deodorizing and adsorbing ability for a prolonged period of time is produced by depositing a coating of a photocatalyst on the surface of the active carbon by means of vapor deposition. Colored photocatalytic active carbon coloring active carbon including the photocatalytic active carbon, which while maintaining the adsorbing action and the decomposing and sterilizing action, comes to be rich in color variations and capable of improving visual design and handling are produced by subjecting the surface of the active carbon to coloring treatment and/or treatment with a compound having coloring or discoloring properties upon hydration.
    Type: Grant
    Filed: April 3, 2002
    Date of Patent: January 6, 2004
    Assignee: K.K. Ueda Shikimono Kojyo
    Inventors: Toshiya Ueda, Motoyoshi Nishimura
  • Patent number: 6660680
    Abstract: Electrocatalyst powders and methods for producing electrocatalyst powders, such as carbon composite electrocatalyst powders. The powders have a well-controlled microstructure and morphology. The method includes forming the particles from an aerosol of precursors by heating the aerosol to a relatively low temperature, such as not greater than about 400° C.
    Type: Grant
    Filed: March 22, 2000
    Date of Patent: December 9, 2003
    Assignee: Superior MicroPowders, LLC
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, Plamen Atanassov, Paolina Atanassova, Klaus Kunze, Paul Napolitano, David Dericotte
  • Patent number: 6656870
    Abstract: A tungsten-containing fuel cell catalyst having high electrochemical activity and its method of making are described. The tungsten-containing catalyst may be formed in situ in a fuel cell after the fuel cell is assembled.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: December 2, 2003
    Assignee: Osram Sylvania Inc.
    Inventors: Joel B. Christian, Robert G. Mendenhall
  • Patent number: 6645902
    Abstract: An adsorbent and process for producing an absorbent capable of decomposing an organic halogen compound, is provided. The adsorbent can adsorb organic halogen compounds contained in waste gases and can assuredly decompose them without synthesizing them. A salt of Pt and/or Pd, an organic titanium compound and an organic binder are reacted in a solvent, to thereby synthesize a dispersion of an organic metal compound precursor containing Pt and/or Pd and Ti in molecules thereof, a sol of TiO2 is added to the dispersion to prepare a catalyst-coating solution, an activated carbon is impregnated with the catalyst-coating solution, and the resulting mixture is heated, thereby allowing the activated carbon to carry thereon an organic halogen compound-decomposing catalyst comprising TiO2 and, dispersed therein, fine particles of Pt and/or Pd. In a low temperature range of 130 to 150° C.
    Type: Grant
    Filed: May 3, 2002
    Date of Patent: November 11, 2003
    Assignee: NGK Insulators, Ltd.
    Inventors: Masakatsu Hiraoka, Katsuhiro Tokura, Kazuyuki Oshita
  • Patent number: 6642168
    Abstract: A novel and efficient process for the loading of metals onto adsorbent beds in an overall adsorption system comprising at least two beds can overcome many of the problems associated with traditional metal-loaded adsorbent preparation techniques. These problems include waste stream generation and disposal, drying requirements, and shrinkage/swelling effects. In addition to an adsorption bed, the system includes either an upstream bed (e.g. a pretreatment bed) or a downstream bed (e.g. a post treatment bed). These supplemental beds are often not loaded initially with metal, but can serve to guard against poisons and foulants that detrimentally affect the overall adsorption. The method is useful for in-situ ion exchange loading of metals for which the adsorbent has a strong affinity. The method is particularly advantageous for loading iodine-reactive metals (e.g. silver) onto zeolitic or resin-based adsorbents used for treating iodine-containing feeds, such as commercial acetic acid product streams.
    Type: Grant
    Filed: April 27, 2001
    Date of Patent: November 4, 2003
    Assignee: UOP LLC
    Inventor: Donald G. Latus
  • Publication number: 20030198849
    Abstract: Electrocatalyst powders and energy devices fabricated using electrocatalyst powders and methods for making energy devices. The energy devices, such as fuel cells, have improved performance over a range of operating conditions.
    Type: Application
    Filed: October 24, 2002
    Publication date: October 23, 2003
    Inventors: Mark J. Hampden-Smith, Toivo Kodas, Paolina Atanassova, Paul Napolitano, Rimple Bhatia, James H. Brewster
  • Publication number: 20030199392
    Abstract: The present invention relates to novel singlet oxygen catalysts useful for the production of specialty chemicals. The catalysts include a core material selected from amine coated polymeric beads, amine coated glass beads and multi-generational dendrimers to which condensed carbon molecules are bonded. These catalysts may in turn give rise to other solid phase heterogeneous catalysts useful for stereoselective or regioselective reactions, by way of non-limiting example.
    Type: Application
    Filed: April 19, 2002
    Publication date: October 23, 2003
    Inventor: Anton W. Jensen
  • Patent number: 6627571
    Abstract: A method and system for the in situ synthesis of a combinatorial library including impregnating a first component with a second component. The method and system advantageously may be employed in the synthesis of materials for screening for usefulness as a catalyst.
    Type: Grant
    Filed: March 1, 2000
    Date of Patent: September 30, 2003
    Assignee: Symyx Technologies, Inc.
    Inventors: Claus G. Lugmair, Damodara M. Poojary, Alfred Hagemeyer
  • Publication number: 20030181315
    Abstract: To provide a purification adsorbent capable of effectively removing impurities contained in a perfluorocarbon and obtaining a perfluorocarbon reduced in the impurity content to 1 ppm by mass or less; a process for producing the adsorbent; high-purity octafluoropropane or octafluorocyclobutane; processes for purifying and for producing the octafluoropropane or octafluorocyclobutane; and uses thereof. Purification is performed using a purification adsorbent produced by a method comprising (1) washing an original coal with an acid and then with water, (2) deoxidizing and/or dehydrating the original coal, (3) re-carbonizing the original coal at a temperature of from 500 to 700° C. and (4) activating the original coal at a temperature of from 700 to 900° C. in a mixed gas stream containing an inert gas, carbon dioxide and water vapor.
    Type: Application
    Filed: March 6, 2003
    Publication date: September 25, 2003
    Inventors: Yasuhiro Suzuki, Hiroshi Atobe, Minako Horiba
  • Publication number: 20030181321
    Abstract: Electrocatalyst powders and methods for producing electrocatalyst powders, such as carbon composite electrocatalyst powders. The powders have a well-controlled microstructure and morphology. The method includes forming the particles from an aerosol of precursors by heating the aerosol to a relatively low temperature, such as not greater than about 400° C.
    Type: Application
    Filed: August 1, 2002
    Publication date: September 25, 2003
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, Plamen Atanassov, Paolina Atanassova, Klaus Kunze, Paul Napolitano, David Dericotte
  • Patent number: 6624112
    Abstract: A hydrogenolysis catalyst that possesses high hydrogenolysis performance at low temperatures and during the debenzylation reaction of a compound wherein a benzyl group combines with a nitrogen atom, which is difficult for conventional catalysts. The catalyst comprises (a) a component comprising at least one compound selected from the group consisting of palladium oxide, palladium oxide monohydrate, and palladium hydroxide wherein the oxidation state of palladium is divalent, and (b) a component comprising at least one element selected from the group consisting of Pt, Ru, Rh, Ir and Au, carried on a non-organic porous substance.
    Type: Grant
    Filed: February 7, 2002
    Date of Patent: September 23, 2003
    Assignee: N.E. Chemcat Corporation
    Inventors: Koji Hasegawa, Toshihiko Sakurai
  • Publication number: 20030176277
    Abstract: Disclosed is an aerogel type platinum-ruthenium-carbon catalyst, maintaining a long-term high catalytic activity, manufactured by a sol-gel process and supercritical drying process, and a method for manufacturing the same. Also disclosed is a direct methanol fuel cell employing the aerogel type platinum-ruthenium-carbon catalyst as an anode catalyst.
    Type: Application
    Filed: November 20, 2002
    Publication date: September 18, 2003
    Applicant: Korea Institute of Science and Technology
    Inventors: Dong Jin Suh, Tae-Jin Park, Young-Hyun Yoon, Kang Hee Lee, Il Gon Kim
  • Publication number: 20030173256
    Abstract: A catalyst for hydrotreating gas oil, which comprises an inorganic oxide support having provided thereon: at least one selected from metals in the Group 6 of the periodic table at from 10 to 30% by weight, at least one selected from metals in the Group 8 of the periodic table at from 1 to 15% by weight, phosphorus at from 1.5 to 6% by weight, and carbon at from 2 to 14% by weight, each in terms of a respective oxide amount based on the catalyst, wherein the catalyst has a specific surface area of from 220 to 300 m2/g, a pore volume of from 0.35 to 0.6 ml/g, and an average pore diameter of about from 65 to 95 Å; a process for producing the catalyst; and a method for hydrotreating gas oil, which comprises subjecting a gas oil fraction to a catalytic reaction in the presence of the catalyst under conditions at a hydrogen partial pressure of from 3 to 8 MPa, a temperature of from 300 to 420° C., and a liquid hourly space velocity of from 0.3 to 5 hr−1.
    Type: Application
    Filed: February 11, 2003
    Publication date: September 18, 2003
    Inventors: Takashi Fujikawa, Takayuki Osaki, Hiroshi Kimura, Hirofumi Mizuguchi, Minoru Hashimoto, Hiroyasu Tagami, Masahiro Kato