Electroanalysis Patents (Class 600/345)
  • Publication number: 20130035573
    Abstract: There are provided a biosensor, and a measurement device in which the biosensor is used, with which accurate puncture is enabled and reliability of measurement results are improved. The biosensor (4) comprises an element substrate (9), a detector (10), a connection terminal (11), a continuity path (12), and a cutout (13). The detector (10) is provided over the element substrate (9), and receives a specimen and detects a specific component contained in the specimen. The connection terminal (11) is provided over the element substrate (9) and acquires current corresponding to the specific component. The continuity path (12) connects the connection terminal (11) and the detector (10). The cutout (13) is formed along the outer periphery of the detector (10) so as to surround two or more directions of the detector (10).
    Type: Application
    Filed: June 20, 2011
    Publication date: February 7, 2013
    Inventor: Masaki Fujiwara
  • Patent number: 8369918
    Abstract: Body fluid sampling device comprising a sampling element having a fluid pathway (11) for receiving body fluid, at least a portion of the fluid pathway is open to the environment and further comprising a fluid receiving means (40) being spaced from the fluid pathway so that fluid in the pathway will not contact the fluid receiving means initially. The fluid receiving means has two or more test zones (45) for performing analytical reactions. Fluid from the channel is contacted with the fluid receiving means either by bringing the fluid receiving means and the fluid into mechanical contact or by electrically transporting fluid from the channel onto the fluid receiving means.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: February 5, 2013
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Irio G. Calasso, Patrick Griss, Emad Sarofim, Rainer Jaeggi, Uwe Kraemer, David Hasker, Volker Zimmer
  • Patent number: 8369919
    Abstract: Systems and methods for processing sensor data are provided. In some embodiments, systems and methods are provided for calibration of a continuous analyte sensor. In some embodiments, systems and methods are provided for classification of a level of noise on a sensor signal. In some embodiments, systems and methods are provided for determining a rate of change for analyte concentration based on a continuous sensor signal. In some embodiments, systems and methods for alerting or alarming a patient based on prediction of glucose concentration are provided.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: February 5, 2013
    Assignee: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, Paul V. Goode, James H. Brauker, James P. Thrower
  • Publication number: 20130027209
    Abstract: This invention relates to a system and method that can quickly and accurately detect and measure ethyl alcohol in the blood of a motorized vehicle driver transdermally and non-invasively within minutes of ethanol consumption and in the presence of interferents. The system includes an array of sensors embedded into the steering mechanism of a motorized vehicle, a data base of patterns produced through empirical testing of various analytes in various combinations and concentrations, neural net based pattern recognition algorithms to ascertain the driver's transdermal alcohol concentration and a database derived from human testing, correlating the driver's transdermal alcohol concentration with the driver's blood alcohol concentration. The detection system is integrated with a motor vehicle decision module which can prevent the operation of a motorized vehicle by a driver whose BAC exceeds a preset limit.
    Type: Application
    Filed: August 3, 2012
    Publication date: January 31, 2013
    Applicant: Sober Steering Sensors LLC
    Inventors: John Carroll, Dennis Bellehumeur, Catherine Carroll
  • Patent number: 8364228
    Abstract: A system and method for transdermal sampling wherein at least one pair of sample electrodes is adapted to provide voltage pulses capable of creating capillary openings in a subject's stratum corneum. Methods for using a transdermal sampling system by creating capillary openings in a subject's stratum corneum via the application of a series of voltage pulses to the stratum corneum and contacting at least a portion of at least one of the sample electrodes with interstitial fluid from the capillary openings are also presented.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: January 29, 2013
    Assignee: Flexible Medical Systems, LLC
    Inventors: John Frederick Currie, Makarand Paranjape
  • Patent number: 8364231
    Abstract: Systems and methods of use for continuous analyte measurement of a host's vascular system are provided. In some embodiments, a continuous glucose measurement system includes a vascular access device, a sensor and sensor electronics, the system being configured for insertion into communication with a host's circulatory system.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: January 29, 2013
    Assignee: Dexcom, Inc.
    Inventors: Apurv Ullas Kamath, Jacob S. Leach, Ying Li, Daiting Rong, Sean Saint, Peter C. Simpson, Mark Brister
  • Patent number: 8364229
    Abstract: Systems and methods of use involving sensors having a signal-to-noise ratio that is substantially unaffected by non-constant noise are provided for continuous analyte measurement in a host. In some embodiments, a continuous analyte measurement system is configured to be wholly, transcutaneously, intravascularly or extracorporeally implanted.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: January 29, 2013
    Assignee: DexCom, Inc.
    Inventors: Peter C. Simpson, Robert Boock, James R. Petisce, Mark Brister, Monica A. Rixman, Kum Ming Woo, Lisa Nguyen, Seth R. Brunner, Arthur Chee, Melissa A. Nicholas, Matthew Wightlin, Jack Pryor, Dubravka Markovic
  • Patent number: 8362904
    Abstract: Methods and systems for providing data communication in medical systems are disclosed.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: January 29, 2013
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Gary Hayter, Martin J. Fennell, Lei He, Mark K. Sloan
  • Patent number: 8364232
    Abstract: A plug capable of providing information relating to a physical or chemical property of a body fluid, or the presence or amount of a molecular component therein in a living organism is disclosed. Specifically, one embodiment plug is capable of being inserted into a portion of a human eyelid in order to provide information relating to tear fluid is disclosed. This embodiment plug includes a body having a passage which allows for the natural flow of tear fluid therethrough. In addition, a sensing mechanism is provided which is capable of measuring, for example, glucose levels in the body of a patient through the analysis of the tear fluid. Such plug may further be designed so as to double as a punctal plug useful in preventing dry eye. Methods of utilizing and implanting such plugs are also disclosed.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: January 29, 2013
    Inventor: Robin A. Felder
  • Patent number: 8364230
    Abstract: Systems and methods of use for continuous analyte measurement of a host's vascular system are provided. In some embodiments, a continuous glucose measurement system includes a vascular access device, a sensor and sensor electronics, the system being configured for insertion into communication with a host's circulatory system.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: January 29, 2013
    Assignee: Dexcom, Inc.
    Inventors: Peter C. Simpson, Mark Brister, Jacob S. Leach
  • Publication number: 20130023745
    Abstract: This document provides methods and materials involved in differentiating analytes detected using a FSCV method. For example, methods and materials for using paired pulse voltammetry to discriminate analytes based on their adsorption characteristics to an electrode (e.g., a carbon fiber electrode) are provided.
    Type: Application
    Filed: July 23, 2012
    Publication date: January 24, 2013
    Inventors: Kendall H. Lee, Dong-Pyo Jang, Inyong Kim
  • Patent number: 8357091
    Abstract: An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: January 22, 2013
    Assignee: Abbott Diabetes Care Inc.
    Inventors: James Say, Michael F. Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Ephraim Heller, Phillip John Plante, Mark S. Vreeke, Keith A. Friedman, Fredric C. Colman
  • Patent number: 8359081
    Abstract: Generally, embodiments of the invention relate to analyte determining devices (e.g., electrochemical analyte monitoring systems) that include an indicator element that provides information relating to service history of the analyte determining devices, including, for example, previous use of the analyte determining devices. Also provided are systems and methods of using the, for example electrochemical, analyte determining devices in analyte monitoring.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: January 22, 2013
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Zenghe Liu, Benjamin J. Feldman, Brian Cho
  • Publication number: 20130018243
    Abstract: A biosensor includes a microfluidics layer, a transduction layer and a transceiver layer. The transduction layer further includes a functionalized layer that reacts with a biomarker, and a plurality of carbon nanotubes adjacent the functionalized layer. The conductivity of the carbon nanotubes changes in response to a biomarker reacting with at least a portion of the functionalized layer. The functionalized layer can include dendrimers, such as a tadpole dendrimer scaffolding that includes a plurality of sites for receiving receptors for biomarkers.
    Type: Application
    Filed: July 13, 2012
    Publication date: January 17, 2013
    Applicant: LOCKHEED MARTIN CORPORATION
    Inventors: Patricia D. PALENA, Madiha JAFRI, Jason POLESKI, Sanipa K. ARNOLD
  • Patent number: 8354013
    Abstract: Generally, embodiments of the present disclosure relate to analyte determining methods and devices (e.g., electrochemical analyte monitoring systems) that have improved uniformity of distribution of the sensing layer by inclusion of a high-boiling point solvent, where the sensing layer is disposed proximate to a working electrode of in vivo and/or in vitro analyte sensors, e.g., continuous and/or automatic in vivo monitoring using analyte sensors and/or test strips. Also provided are systems and methods of using the, for example electrochemical, analyte sensors in analyte monitoring.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: January 15, 2013
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Balasubrahmanya S. Bommakanti, Gary Sandhu, Udo Hoss, Geoffrey V. McGarraugh
  • Patent number: 8348842
    Abstract: A method and system for monitoring and/or controlling a glycemic state of a subject, comprising a housing device having one or more chambers, extendable and retractable sensors, extendable and retractable catheters, insulin reservoir, neuroprotective agent reservoir, release mechanism for releasing insulin and neuroprotective agent into the subject, and a control mechanism with a processor for receiving and analyzing outputs from the sensors and for controlling the release mechanism, a clock mechanism for providing logging and/or circadian information to the processor.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: January 8, 2013
    Assignee: Flint Hills Scientific, L.L.C.
    Inventors: Ivan Osorio, Mark G. Frei
  • Patent number: 8352011
    Abstract: The invention provides methods and apparatus for detecting an analyte in blood. The apparatus is particularly suited for bringing a sensor into direct contact with blood in vivo. The apparatus comprises a sensor that detects the presence of an analyte and an assembly means. The assembly means has a sensor end, wherein the sensor end of the assembly means is affixed to the sensor, and the assembly means is adapted for coupling with a venous flow device. By coupling with a venous flow device, the assembly means brings the sensor into direct contact with blood flowing through the venous flow device. Examples of venous flow devices that bring the sensor into direct contact with the blood of a subject include, but are not limited to, intravenous catheters and external blood loops, such as are used in extra corporeal membrane oxygenation or hemodialysis.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: January 8, 2013
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Nannette M. Van Antwerp, Bradley J. Enegren, John J. Mastrototaro, Rajiv Shah, Udo Hoss, Yanan Zhang, Jenn-Hann Larry Wang, Kent L. Clark
  • Publication number: 20130006079
    Abstract: An analyte sensor for use in connection with a biofluid is described. The analyte sensor may comprise any suitable interface between the biofluid and a derivative of the biofluid and any suitable transducer of information concerning an analyte. At least one catalytic agent is provided in a locale or vicinity of the interface. The catalytic agent, such as a proteinaceous agent or a non-proteinaceous, organic-metal agent, is sufficient to catalyze the degradation of reactive oxygen and/or nitrogen species that may be present in the vicinity of the interface. An analyte-sensing kit and a method of sensing an analyte are also described.
    Type: Application
    Filed: April 2, 2012
    Publication date: January 3, 2013
    Inventors: Benjamin J. Feldman, Zenghe Liu, David C. Cohen, Adam Heller
  • Patent number: 8346337
    Abstract: In aspects of the present disclosure, a multi compatible or universal blood glucose monitoring unit including a calibration unit is integrated with one or more components of an analyte monitoring system to provide compatibility with in vitro test strip that require calibration code and test strips that do not require calibration code. Also disclosed are methods, systems, devices and kits for providing the same.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: January 1, 2013
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Adam Heller, Benjamin Jay Feldman, Shridhara Alva Karinka, Yi Wang, John R. Galasso
  • Patent number: 8346335
    Abstract: Methods and devices to detect analyte in body fluid are provided. Embodiments include positioning an analyte sensor in fluid contact with an analyte, detecting an attenuation in a signal from an analyte sensor after positioning during a predetermined time period, categorizing the detected attenuation in the analyte sensor signal based, at least in part, on one or more characteristics of the signal, performing signal processing to generate a reportable data associated with the detected analyte sensor signal during the predetermined time period, managing if and when to request additional reference signal measurements, and managing if and when to temporarily not display results.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: January 1, 2013
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Wesley Scott Harper, Timothy Christian Dunn, Erwin S. Budiman, Kenneth J. Doniger, Gary Hayter
  • Patent number: 8346336
    Abstract: An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: January 1, 2013
    Assignee: Abbott Diabetes Care Inc.
    Inventors: James Say, Michael F. Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Ephraim Heller, Phillip John Plante, Mark S. Vreeke, Keith A. Friedman, Fredric C. Colman
  • Publication number: 20120330119
    Abstract: An analyte testing device housing a lancet cartridge and a test strip cartridge is described. The testing device simplifies analyte testing/monitoring by providing an actuator and linkage mechanism that: (i) cocks a lancing device, (ii) exposes a test strip for use; and (iii) advances the lancet cartridge. The testing device also includes conversion electronics, which receives a signal from a test trip and converts the signal into readable data.
    Type: Application
    Filed: June 21, 2011
    Publication date: December 27, 2012
    Applicant: GADLIGHT, INC.
    Inventors: Gad Shaanan, Marc Goldman
  • Publication number: 20120323099
    Abstract: An implantable medical device (IMD) includes an electrode that forms a first snap-fit attachment area and an insulator that forms a through-hole, a second snap-fit attachment area and a third snap-fit attachment area. The second snap-fit attachment area mates with the first snap-fit attachment area of the electrode. The IMD further includes a body including an elongated conductive housing and a feedthrough wire extending therefrom. The body forms a fourth snap-fit attachment area on one end that mates with the third snap-fit attachment area of the insulator such that the feedthrough wire extends through the through-hole of the insulator. The housing encloses at least one of a battery, a sensor, and an electronic circuit. The insulator functions to electrically isolate the electrode from the housing of the body.
    Type: Application
    Filed: August 24, 2012
    Publication date: December 20, 2012
    Applicant: Medtronic, Inc.
    Inventors: Kamal D. Mothilal, George Patras, Can Cinbis
  • Publication number: 20120323098
    Abstract: Analyte sensor connectors that connect analyte sensors, e.g., conductive members of analyte sensors, to other devices such as sensor electronics units, e.g., sensor control units, are provided. Also provided are systems that include analyte sensors, analyte sensor connectors, and analyte sensor electronics units, as well as methods of establishing and maintaining connections between analyte sensors and analyte sensor electronics units, and methods of analyte monitoring/detection. Also provided are methods of making analyte sensor connectors and systems that include analyte sensor connectors.
    Type: Application
    Filed: June 18, 2012
    Publication date: December 20, 2012
    Inventors: Mohammad E. Moein, Louis G. Pace, Udo Hoss, Phu X. Le, Samuel M. Curry
  • Publication number: 20120323097
    Abstract: A patch for sampling one or more analytes through the skin of a patient comprises an electrode layer for positioning adjacent to the skin of a patient; and means for actuating the electrode layer to induce the withdrawal of analytes through the skin by reverse iontophoresis. A first reservoir in the patch contains an electrically conducting medium such as a liquid electrolyte, which can be controllably delivered onto a surface of the electrode layer adjacent to the skin to increase the conductivity between the electrode layer and the skin. Means are provided for transporting the analytes to a location where they are to be analysed. The patch may comprise a second reservoir containing a drug for transdermal delivery to the patient. An actuator may stretch and/or compress the reservoirs to expel their contents. The actuator may comprise a generally planar mesh formed from a shape memory alloy.
    Type: Application
    Filed: July 1, 2009
    Publication date: December 20, 2012
    Applicant: NEMAURA PHARMA LIMITED
    Inventor: Dewan Fazlul Hoque Chowdhury
  • Publication number: 20120312684
    Abstract: An article suitable for conducting one or more assays with an apparatus, e.g., a meter, for determining the presence or concentration of an analyte in a sample of biological fluid. The article contains a plurality of biosensors arranged in such a manner that each of the biosensors can be utilized before the article must be removed from the apparatus.
    Type: Application
    Filed: June 12, 2012
    Publication date: December 13, 2012
    Inventors: Yi Wang, Jared Lee Watkin, Chad Harold Mace, Michael Robert Zocchi, Shridhara Alva Karinka, Mark E. Tess
  • Patent number: 8332008
    Abstract: Systems and methods for processing sensor analyte data, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. During initial calibration, the analyte sensor data is evaluated over a period of time to determine stability of the sensor. The sensor may be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. The calibration may be updated after evaluating the calibration set for best calibration based on inclusion criteria with newly received reference analyte data. Fail-safe mechanisms are provided based on clinical acceptability of reference and analyte data and quality of sensor calibration. Algorithms provide for optimized prospective and retrospective analysis of estimated blood analyte data from an analyte sensor.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: December 11, 2012
    Assignee: DexCom, Inc.
    Inventors: Paul V. Goode, James Brauker, Apurv U. Kamath, Victoria E. Carr-Brendel
  • Publication number: 20120310056
    Abstract: The invention relates to a peritoneal dialysis sampling system to be used together with a peritoneal dialysis system which is programmed to deliver fluid to a peritoneal cavity of a patient and to drain the fluid from the cavity, said peritoneal dialysis system comprising a supplying line and supplying means for supplying dialysis fluid to the peritoneal cavity, a draining line and draining means for draining the fluid from the cavity, said peritoneal dialysis sampling system comprising an automatic sampling system which is able to automatically sample volumic fractions of the dialysate contained in the peritoneum of the patient at specific time intervals in order to evaluate the peritoneal membrane characteristics and/or improve the peritoneal dialysis for a given patient.
    Type: Application
    Filed: June 4, 2012
    Publication date: December 6, 2012
    Applicant: DEBIOTECH S.A.
    Inventor: Frédéric Neftel
  • Patent number: 8326393
    Abstract: An implantable sensor is provide which can be used for determining a concentration of at least one analyte in a medium, in particular a body tissue and/or a body fluid. The implantable sensor has a layered construction with at least one insulating carrier substrate and at least two electrodes which are arranged in at least two different layer planes of the implantable sensor and are electrically isolated from one another by the at least one insulating carrier substrate. The electrodes have electrode areas which face the medium when the sensor has been implanted, and are in contact with the medium over a large area and substantially uniformly, directly or via a generally analyte-permeable membrane layer.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: December 4, 2012
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Holger Kotzan, Gregor Bainczyk
  • Patent number: 8326412
    Abstract: Timed sensing of collection of saliva in a liquid collection element of predetermined volumetric capacity may be used to determine salivary secretion rate, as may be indicative of state of euhydration or dehydration. Sensing of salivary flow rate may be further augmented by sensing concentration of at least one analyte in saliva (e.g., with an immunochromatographic assay performed in a lateral flow device) in order to determine a state of euhydration or dehydration. Production of saliva may be stimulated, and collected saliva may be analyzed to generate an analyte detection signal that indicative of presence and/or correlative of concentration of at least one analyte in the collected saliva to sense a state of euhydration or dehydration.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: December 4, 2012
    Assignee: HydraDx, Inc.
    Inventors: Andrew S. Goldstein, Frank Bellizzi
  • Patent number: 8323467
    Abstract: A dual chamber, multi-analyte test strip has a first insulating layer, a first electrically conductive layer, with a first working electrode, disposed on the first insulating layer and a first patterned spacer layer positioned above the first electrically conductive layer. The first patterned spacer layer has a first sample-receiving chamber, with first and second end openings, defined therein that overlies the first working electrode. The test strip also includes a first counter/reference electrode layer that is exposed to the first sample receiving chamber and is in an opposing relationship to the first working electrode. The test strip further includes a counter/reference insulating layer disposed over the first counter/reference electrode layer and a second counter/reference electrode layer disposed on the counter/reference substrate. Also included in the test strip is a second patterned spacer layer that is positioned above the second counter/reference electrode layer.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: December 4, 2012
    Assignee: LifeScan Scotland Limited
    Inventors: Gavin MacFie, Graeme Webster, Marco F. Cardosi, Christopher Philip Leach, Steven Setford, Selwayan Saini
  • Publication number: 20120296186
    Abstract: Embodiments of the present disclosure relate to analyte determining methods and devices (e.g., electrochemical analyte monitoring systems) that have a membrane with low temperature sensitivity. The sensing layer is disposed on a working electrode of in vivo and/or in vitro analyte sensors, e.g., continuous and/or automatic in vivo monitoring using analyte sensors and/or test strips. Also provided are systems and methods of using the, for example electrochemical, analyte sensors in analyte monitoring.
    Type: Application
    Filed: December 20, 2011
    Publication date: November 22, 2012
    Inventors: Tianmei Ouyang, Zenghe Liu, Yohannes Goti, Benjamin J. Feldman, Udo Hoss
  • Patent number: 8313434
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host and associated methods of manufacture. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host and associated methods of manufacture.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: November 20, 2012
    Assignee: DexCom, Inc.
    Inventors: Mark Brister, Daniel S. Kline, Steve Masterson, Sean Saint
  • Publication number: 20120283537
    Abstract: Sensors for measuring an analyte in a subject comprising at least one electrode having an electroactive surface, at least one interferent-reducing layer comprising vinyl ester monomeric units disposed distally from the electroactive surface, an enzyme layer disposed distally from the electroactive surface and a flux-limiting membrane disposed over the at least one interferent-reducing layer and the enzyme layer. Methods of measuring an analyte in a subject comprising providing the electrochemical analyte sensor, contacting a sample comprising an analyte and an interferent with the at least one interferent-reducing layer comprising vinyl ester monomeric units, and measuring the analyte, where the amount of interferent reaching the electroactive surface is reduced.
    Type: Application
    Filed: October 28, 2010
    Publication date: November 8, 2012
    Inventors: James R. Petisce, Henry W. Oviatt
  • Patent number: 8306598
    Abstract: An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: November 6, 2012
    Assignee: Abbott Diabetes Care Inc.
    Inventors: James Say, Michael F. Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Ephraim Heller, Phillip John Plante, Mark S. Vreeke, Keith A. Friedman, Fredric C. Colman
  • Publication number: 20120277546
    Abstract: A medical monitoring device for monitoring electrical signals from the body of a subject is described. The medical monitoring device monitors electrical signals originating from a cardiac cycle of the subject and associates each cardiac cycle with a time index. The medical monitoring device applies a forward computational procedure to generate a risk score indicative of hyperkalemia, hypokalemia or arrhythmia of the subject. The medical monitoring device can adjust the forward computational procedure based upon clinical data obtained from the subject.
    Type: Application
    Filed: April 19, 2012
    Publication date: November 1, 2012
    Applicant: MEDTRONIC, INC.
    Inventors: Orhan Soykan, VenKatesh R. Manda, Martin T. Gerber, Christopher M. Hobot
  • Patent number: 8298158
    Abstract: The present disclosure provides electrode structures and integrated electrode structures having one or more conductive materials coextruded with one or more dielectric materials. The disclosed electrode structures can be configured for use as analyte sensors. Also provided, are methods of making and using the electrode structures and integrated electrode structures described herein.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: October 30, 2012
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Songbiao Zhang, John C. Mazza
  • Patent number: 8298142
    Abstract: Systems and methods of use for continuous analyte measurement of a host's vascular system are provided. In some embodiments, a continuous glucose measurement system includes a vascular access device, a sensor and sensor electronics, the system being configured for insertion into communication with a host's circulatory system.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: October 30, 2012
    Assignee: DexCom, Inc.
    Inventors: Peter C. Simpson, Michael J. Estes, Paul V. Neale, Robert Boock, Jacob S. Leach, Richard C. Yang, Mark Brister
  • Publication number: 20120271132
    Abstract: A portable measuring system which analyzes a liquid sample for at least one analyte. The portable measuring system has a substantially moisture-proof housing with an internal atmosphere. The housing prevents moisture from the air and water vapor from penetrating into the housing. The portable measuring system also has at least one test element support inserted into the internal atmosphere of the housing. The test element support is equipped with a retaining structure and a test element that is supported by the retaining structure. The test element support is designed such that, after insertion into the internal atmosphere, the test element is exposed to the internal atmosphere. A release mechanism is also provided which can convey at least one test element into an application position within the internal atmosphere of the housing. In this application position, the liquid sample can be applied to the test element.
    Type: Application
    Filed: June 29, 2012
    Publication date: October 25, 2012
    Inventor: Joachim Hoenes
  • Patent number: 8292810
    Abstract: Systems and methods for minimizing or eliminating transient non-glucose related signal noise due to non-glucose rate limiting phenomenon such as ischemia, pH changes, temperatures changes, and the like. The system monitors a data stream from a glucose sensor and detects signal artifacts that have higher amplitude than electronic or diffusion-related system noise. The system replaces some or the entire data stream continually or intermittently including signal estimation methods that particularly address transient signal artifacts. The system is also capable of detecting the severity of the signal artifacts and selectively applying one or more signal estimation algorithm factors responsive to the severity of the signal artifacts, which includes selectively applying distinct sets of parameters to a signal estimation algorithm or selectively applying distinct signal estimation algorithms.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: October 23, 2012
    Assignee: DexCom, Inc.
    Inventors: Paul V. Goode, Jr., James H. Brauker, Apurv U. Kamath, James Patrick Thrower, Victoria Carr-Brendel
  • Patent number: 8292808
    Abstract: Systems and methods for non-vascular sensor implantation and for measuring physiological parameters in areas of a body where the physiological parameters are heterogeneous. An implant unit is implanted in an area of a body and a foreign body capsule is allowed to form around the implant unit area. A sensor may be directed into a body cavity such as, for example, the peritoneal space, subcutaneous tissues, the foreign body capsule, or other area. A subcutaneous area of the body may be tunneled for sensor placement. Spatially separated sensing elements may be used for detecting individual amounts of the physiological parameter. An overall amount of the physiological parameter may be determined by calculating a statistical measurement of the individual sensed amounts in the area. Another embodiment of the invention, a multi-analyte measuring device, may include a substrate having an electrode array on one side and an integrated circuit on another side.
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: October 23, 2012
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Michael E. Miller, Rajiv Shah
  • Patent number: 8290559
    Abstract: Systems and methods for processing sensor data are provided. In some embodiments, systems and methods are provided for calibration of a continuous analyte sensor. In some embodiments, systems and methods are provided for classification of a level of noise on a sensor signal. In some embodiments, systems and methods are provided for determining a rate of change for analyte concentration based on a continuous sensor signal. In some embodiments, systems and methods for alerting or alarming a patient based on prediction of glucose concentration are provided.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: October 16, 2012
    Assignee: DexCom, Inc.
    Inventors: Mohammad Ali Shariati, Ying Li, Apurv Ullas Kamath, Aarthi Mahalingam
  • Patent number: 8287453
    Abstract: Systems and methods of use for continuous analyte measurement of a host's vascular system are provided. In some embodiments, a continuous glucose measurement system includes a vascular access device, a sensor and sensor electronics, the system being configured for insertion into communication with a host's circulatory system.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: October 16, 2012
    Assignee: DexCom, Inc.
    Inventors: Ying Li, Apurv Ullas Kamath, Mark Brister
  • Patent number: 8290561
    Abstract: Systems and methods for dynamically and intelligently estimating analyte data from a continuous analyte sensor, including receiving a data stream, selecting one of a plurality of algorithms, and employing the selected algorithm to estimate analyte values. Additional data processing includes evaluating the selected estimative algorithms, analyzing a variation of the estimated analyte values based on statistical, clinical, or physiological parameters, comparing the estimated analyte values with corresponding measure analyte values, and providing output to a user. Estimation can be used to compensate for time lag, match sensor data with corresponding reference data, warn of upcoming clinical risk, replace erroneous sensor data signals, and provide more timely analyte information encourage proactive behavior and preempt clinical risk.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: October 16, 2012
    Assignee: DexCom, Inc.
    Inventors: James H. Brauker, Victoria Carr-Brendel, Paul V. Goode, Apurv U. Kamath, James P. Thrower, Ben Xavier
  • Patent number: 8290562
    Abstract: Systems and methods for processing sensor analyte data, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. During initial calibration, the analyte sensor data is evaluated over a period of time to determine stability of the sensor. The sensor may be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. The calibration may be updated after evaluating the calibration set for best calibration based on inclusion criteria with newly received reference analyte data. Fail-safe mechanisms are provided based on clinical acceptability of reference and analyte data and quality of sensor calibration. Algorithms provide for optimized prospective and retrospective analysis of estimated blood analyte data from an analyte sensor.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: October 16, 2012
    Assignee: DexCom, Inc.
    Inventors: Paul V. Goode, Jr., James H. Brauker, Apurv U. Kamath, Victoria Carr-Brendel
  • Patent number: 8290560
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: October 16, 2012
    Assignee: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, James H. Brauker, J. Michael Dobbles
  • Patent number: 8285354
    Abstract: Systems and methods for processing sensor analyte data, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. During initial calibration, the analyte sensor data is evaluated over a period of time to determine stability of the sensor. The sensor may be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. The calibration may be updated after evaluating the calibration set for best calibration based on inclusion criteria with newly received reference analyte data. Fail-safe mechanisms are provided based on clinical acceptability of reference and analyte data and quality of sensor calibration. Algorithms provide for optimized prospective and retrospective analysis of estimated blood analyte data from an analyte sensor.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: October 9, 2012
    Assignee: DexCom, Inc.
    Inventors: Paul V. Goode, James Brauker, Apurv U. Kamath, Victoria E. Carr-Brendel
  • Patent number: 8280474
    Abstract: The present application provides Ag/AgCl based reference electrodes having an extended lifetime that are suitable for use in long term amperometric sensors. Electrochemical sensors equipped with reference electrodes described herein demonstrate considerable stability and extended lifetime in a variety of conditions.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: October 2, 2012
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Zenghe Liu, Benjamin J. Feldman, Brian Cho, Udo Hoss
  • Patent number: 8280476
    Abstract: One aspect of the invention provides a glucose monitor having a plurality of tissue piercing elements, each tissue piercing element having a distal opening, a proximal opening and interior space extending between the distal and proximal openings; a sensing area in fluid communication with the proximal openings of the tissue piercing elements; sensing fluid extending from the sensing area into substantially the entire interior space of the tissue piercing elements; and a glucose sensor adapted to detect a concentration of glucose in the sensing fluid within the sensing area.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: October 2, 2012
    Assignee: Arkal Medical, Inc.
    Inventor: Arvind N. Jina
  • Patent number: 8280475
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: October 2, 2012
    Assignee: DexCom, Inc.
    Inventors: Mark Brister, Daniel Kline, Steve Masterson, Sean Saint