Electroanalysis Patents (Class 600/345)
  • Patent number: 8742623
    Abstract: A wearable device includes a sensor, auxiliary electronics, a primary power supply configured to harvest radio frequency (RF) radiation received from an external reader and use the harvested RF radiation to power the sensor, and an auxiliary power supply configured to harvest energy other than that received from the external reader and use the harvested energy to supply power to the sensor and/or the auxiliary electronics. The external reader may supply less power in response to operation of the auxiliary power supply. Additionally or alternatively, in response to a determination that the auxiliary power supply is unable to supply power, the wearable device may disable all auxiliary electronics but for the sensor. In response to a determination that the primary power supply is unable to supply power but the auxiliary power supply is able to supply power, the wearable device may retain operating parameters in the memory storage unit using the auxiliary power supply.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: June 3, 2014
    Assignee: Google Inc.
    Inventors: William James Biederman, Nathan Pletcher, Andrew Nelson, Daniel Yeager
  • Patent number: 8744545
    Abstract: An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: June 3, 2014
    Assignee: Abbott Diabetes Care Inc.
    Inventors: James Say, Michael F. Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Ephraim Heller, Phillip John Plante, Mark S. Vreeke, Fredric C. Colman
  • Publication number: 20140148667
    Abstract: Devices and methods are described for providing continuous measurement of an analyte concentration. In some embodiments, the device has a sensing mechanism and a sensing membrane that includes at least one surface-active group-containing polymer and that is located over the sensing mechanism. The sensing membrane may have a bioprotective layer configured to substantially block the effect and/or influence of non-constant noise-causing species.
    Type: Application
    Filed: January 30, 2014
    Publication date: May 29, 2014
    Applicant: DexCom, Inc.
    Inventors: Robert Boock, Monica Rixman Swinney, Huashi Zhang, Michael J. Estes, Kristina Lawrence
  • Publication number: 20140148665
    Abstract: On-body units are provided and include a transcutaneous analyte sensor, electronic circuitry electrically coupled to the sensor, and an on-body housing having electrical contacts disposed thereon. The on-body housing comprises a substantially flat surface and a curved and convex surface opposite the substantially flat surface. Systems and methods including the on-body units are also provided. Methods for performing continuity measurements using on-body units are also provided. The methods include positioning an on-body unit (OBU) on a skin of a subject, contacting a continuity test instrument to the OBU; and performing a continuity measurement with the continuity test instrument. An AC signal may be provided across two electrical contacts, or a DC signal may be provided across two electrical contacts in opposite directions for the same amount of time. The measurement may be performed with one electrical contact, or with isolated electrical contacts.
    Type: Application
    Filed: December 13, 2011
    Publication date: May 29, 2014
    Applicant: Abbott Diabetes Care Inc.
    Inventor: Daniel M. Bernstein
  • Publication number: 20140148666
    Abstract: Devices and methods are described for providing continuous measurement of an analyte concentration. In some embodiments, the device has a sensing mechanism and a sensing membrane that includes at least one surface-active group-containing polymer and that is located over the sensing mechanism. The sensing membrane may have a bioprotective layer configured to substantially block the effect and/or influence of non-constant noise-causing species.
    Type: Application
    Filed: January 30, 2014
    Publication date: May 29, 2014
    Applicant: DexCom, Inc.
    Inventors: Robert Boock, Monica Rixman Swinney, Huashi Zhang, Michael J. Estes, Kristina Lawrence
  • Patent number: 8734346
    Abstract: An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: May 27, 2014
    Assignee: Abbott Diabetes Care Inc.
    Inventors: James Say, Michael F. Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Ephraim Heller, Phillip John Plante, Mark S. Vreeke, Keith A. Friedman, Fredric C. Colman
  • Patent number: 8738109
    Abstract: An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: May 27, 2014
    Assignee: Abbott Diabetes Care Inc.
    Inventors: James Say, Michael F. Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Ephraim Heller, Phillip John Plante, Mark S. Vreeke, Keith A. Friedman, Fredric C. Colman
  • Patent number: 8727983
    Abstract: A catheter-based medical device includes a catheter that is configured and arranged for at least partial insertion into a patient and that defines at least one lumen that is configured and arranged to receive a first fluid. A conductive-fluid detector is coupled to the at least one lumen and is configured and arranged to detect when a second fluid is disposed within the at least one lumen that is more conductive than the first fluid. The conductive-fluid detector includes a plurality of axially-positioned bodies, each body defining a lumen. The lumens of the axially-positioned bodies are aligned to form a shared lumen in fluid communication with the at least one lumen of the catheter. Spaced apart electrodes are disposed within the shared lumen.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: May 20, 2014
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Charlotte F. Kinnison
  • Publication number: 20140134561
    Abstract: The present embodiments relate to health monitoring systems and, in certain embodiments, to take-home monitoring systems designed for oral appliance monitoring. Embodiments include a method for obtaining data from an oral appliance. The method comprises placing an oral appliance comprising embedded electronics in an oral cavity, wherein the embedded electronics collect data; transmitting the data to a reader, wherein the reader comprises a computer, tablet computer, smart device, reader box, relay transmitter, or a combination thereof.
    Type: Application
    Filed: November 11, 2013
    Publication date: May 15, 2014
    Inventors: Stéphane Louis Smith, Yves Kevin Smith
  • Patent number: 8721545
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: May 13, 2014
    Assignee: DexCom, Inc.
    Inventors: Mark Brister, Paul V. Neale, Sean Saint, James Patrick Thrower, Thomas F. McGee, Daniel Shawn Codd, David Michael Petersen, Daniel S. Kline
  • Patent number: 8721544
    Abstract: The analyte concentration, such as glucose, in a human or animal body is measured with an implantable sensor that generates measurement signals. The measurement signals are compressed through statistical techniques to produced compressed measurement data that can is easier to process and communicate. A base station carries the implantable sensor along with a signal processor, memory, and a transmitter. A display device is also disclosed that can receive the compressed measurement data from the base station for further processing and display.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: May 13, 2014
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Bernd Roesicke, Karin Obermaier, Stefan Lindegger, Andreas Menke, Joerg Scherer, Karin Schwind, Otto Gaa, Gregor Bainczyk, Michael Marquant, Sandro Niederhäuser, Michael Schoemaker, Martin Mueri
  • Patent number: 8718739
    Abstract: Methods and devices to detect analyte in body fluid are provided. Embodiments include positioning an analyte sensor in fluid contact with an analyte, detecting an attenuation in a signal from an analyte sensor after positioning during a predetermined time period, categorizing the detected attenuation in the analyte sensor signal based, at least in part, on one or more characteristics of the signal, performing signal processing to generate a reportable data associated with the detected analyte sensor signal during the predetermined time period, managing if and when to request additional reference signal measurements, and managing if and when to temporarily not display results.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: May 6, 2014
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Wesley Scott Harper, Timothy Christian Dunn, Erwin Satrya Budiman, Kenneth J. Doniger, Gary Alan Hayter
  • Publication number: 20140121485
    Abstract: A device contains individually controllable sites for electrochemically monitoring an analyte in interstitial fluid of a user. The sites include a conductive pattern attached at a first and second ends thereof to electrode material in a closed-circuit configuration for receiving a first predetermined voltage applied thereto in order to thermally ablate a stratum corneum of a user's skin to access the interstitial fluid and form an open-circuit configuration including first and second portions of the electrode material that are electrically isolated from each other; a sensing area deposited on at least one of the first and second portions of the electrode material; and a measuring component for receiving individual measurement data from the sensing area in response to a second predetermined voltage applied to the open circuit configuration. The individual measurement data is indicative of an amount of the analyte in the interstitial fluid.
    Type: Application
    Filed: April 30, 2012
    Publication date: May 1, 2014
    Applicant: Georgetown University
    Inventors: Makarand Paranjape, Arend Jasper Nijdam, Yogesh Ekanath Kashte
  • Patent number: 8712495
    Abstract: A measurement device includes an electronic component device, a perspiration acceleration device, and a perspiration collection device. The perspiration acceleration device or the perspiration collection device is removably coupled to the electronic component device. The electronic component device is attached to a measurement site with a belt. A perspiration accelerating performance is made with respect to the measurement site with the perspiration acceleration device coupled to the electronic component device, and thereafter, the perspiration acceleration device is replaced with the perspiration collection device with the electronic component device attached to the measurement site, and the perspiration collection and measurement computation performance are made.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: April 29, 2014
    Assignee: Omron Healthcare Co., Ltd.
    Inventor: Muneo Tokita
  • Publication number: 20140114153
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Application
    Filed: December 30, 2013
    Publication date: April 24, 2014
    Applicant: DexCom, Inc.
    Inventors: Sebastian Bohm, Daiting Rong, Peter C. Simpson
  • Publication number: 20140114155
    Abstract: A self-contained hand-held test device for the single-use determination of an analyte (such as glucose) in a bodily fluid sample (for example, a whole blood sample) includes a housing with proximal and distal ends, a housing cap configured for removable attachment to the distal end of the housing, a single analytical test strip (e.g., a single electrochemical-based analytical test strip) disposed partially in the housing and extending from the distal end thereof, a meter module disposed in the housing, and a lancing module attached to the proximal end of the housing. The lancing module is configured to lance a user's target site (such as a fingertip or other suitable site) for the expression of a bodily fluid sample. In addition, the single analytical test strip has a bodily fluid sample application portion and a meter module contact portion and is operably connected to the meter module in user irreplaceable manner.
    Type: Application
    Filed: October 18, 2012
    Publication date: April 24, 2014
    Applicant: Animals Corporation
    Inventor: Michael HUTCHINSON
  • Publication number: 20140114156
    Abstract: Systems and methods for processing sensor data and self-calibration are provided. In some embodiments, systems and methods are provided which are capable of calibrating a continuous analyte sensor based on an initial sensitivity, and then continuously performing self-calibration without using, or with reduced use of, reference measurements. In certain embodiments, a sensitivity of the analyte sensor is determined by applying an estimative algorithm that is a function of certain parameters. Also described herein are systems and methods for determining a property of an analyte sensor using a stimulus signal. The sensor property can be used to compensate sensor data for sensitivity drift, or determine another property associated with the sensor, such as temperature, sensor membrane damage, moisture ingress in sensor electronics, and scaling factors.
    Type: Application
    Filed: December 30, 2013
    Publication date: April 24, 2014
    Applicant: DexCom, Inc.
    Inventors: Sebastian Bohm, Daiting Rong, Peter C. Simpson
  • Publication number: 20140114154
    Abstract: Systems and methods for processing sensor data are provided. In some embodiments, systems and methods are provided for calibration of a continuous analyte sensor. In some embodiments, systems and methods are provided for classification of a level of noise on a sensor signal. In some embodiments, systems and methods are provided for determining a rate of change for analyte concentration based on a continuous sensor signal. In some embodiments, systems and methods for alerting or alarming a patient based on prediction of glucose concentration are provided.
    Type: Application
    Filed: December 30, 2013
    Publication date: April 24, 2014
    Applicant: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, Michael Robert Mensinger, Ying Li, Aarthi Mahalingam, John Michael Dobbles
  • Patent number: 8706180
    Abstract: An electrochemical analyte sensor formed using conductive traces on a substrate can be used for determining and/or monitoring a level of analyte in in vitro or in vivo analyte-containing fluids. For example, an implantable sensor may be used for the continuous or automatic monitoring of a level of an analyte, such as glucose, lactate, or oxygen, in a patient. The electrochemical analyte sensor includes a substrate and conductive material disposed on the substrate, the conductive material forming a working electrode. In some sensors, the conductive material is disposed in recessed channels formed in a surface of the sensor. An electron transfer agent and/or catalyst may be provided to facilitate the electrolysis of the analyte or of a second compound whose level depends on the level of the analyte. A potential is formed between the working electrode and a reference electrode or counter/reference electrode and the resulting current is a function of the concentration of the analyte in the body fluid.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: April 22, 2014
    Assignee: Abbott Diabetes Care Inc.
    Inventors: James L. Say, Michael Francis Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Phillip John Plante
  • Patent number: 8702932
    Abstract: The present disclosure relates to a sensor including an elongated member including at least a portion that is electrically conductive. The elongated member includes a sensing layer adapted to react with a material desired to be sensed. An insulating layer surrounds the elongated member. The insulating layer defines at least one access opening for allowing the material desired to be sensed to enter an interior region defined between the elongated member and the insulating layer. The insulating layer has an inner transverse cross-sectional profile that is different from an outer transverse cross-sectional profile of the elongated member. The difference in transverse cross-sectional profiles between the elongated member and the insulating layer provides channels at the interior region defined between the insulating layer and the elongated member. The channels extend generally along the length of the elongated member and are sized to allow the material desired to be sensed to move along the length of the sensor.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: April 22, 2014
    Assignee: Pepex Biomedical, Inc.
    Inventor: James L. Say
  • Patent number: 8701282
    Abstract: A sensor utilizing a non-leachable or diffusible redox mediator is described. The sensor includes a sample chamber to hold a sample in electrolytic contact with a working electrode, and in at least some instances, the sensor also contains a non-leachable or a diffusible second electron transfer agent. The sensor and/or the methods used produce a sensor signal in response to the analyte that can be distinguished from a background signal caused by the mediator. The invention can be used to determine the concentration of a biomolecule, such as glucose or lactate, in a biological fluid, such as blood or serum, using techniques such as coulometry, amperometry; and potentiometry. An enzyme capable of catalyzing the electrooxidation or electroreduction of the biomolecule is typically provided as a second electron transfer agent.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: April 22, 2014
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Benjamin J. Feldman, Adam Heller, Ephraim Heller, Fei Mao, Joseph A. Vivolo, Jeffery V. Funderburk, Fredric C. Colman, Rajesh Krishnan
  • Patent number: 8702961
    Abstract: According to one embodiment of the present invention, an electrochemical sensor (10) for detecting the concentration of analyte in a fluid test sample is disclosed. The sensor (10) includes a counter electrode having a high-resistance portion for use in detecting whether a predetermined amount of sample has been received by the test sensor.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: April 22, 2014
    Assignee: Bayer HealthCare LLC
    Inventors: Dijia Huang, Steven C. Charlton, Suny J. George, Andrew J. Edelbrock
  • Publication number: 20140107445
    Abstract: An eye-mountable device includes an electrochemical sensor embedded in a polymeric material configured for mounting to a surface of an eye. The electrochemical sensor includes a working electrode, a reference electrode, and a reagent that selectively reacts with an analyte to generate a sensor measurement related to a concentration of the analyte in a fluid to which the eye-mountable device is exposed. The working electrode can have at least one dimension less than 25 micrometers. The reference electrode can have an area at least five times greater than an area of the working electrode. A portion of the polymeric material can surround the working electrode and the reference electrode such that an electrical current conveyed between the working electrode and the reference electrode is passed through the at least partially surrounding portion of the transparent polymeric material.
    Type: Application
    Filed: September 19, 2013
    Publication date: April 17, 2014
    Applicant: Google Inc.
    Inventor: Zenghe Liu
  • Publication number: 20140107444
    Abstract: An eye-mountable device includes an electrochemical sensor embedded in a polymeric material configured for mounting to a surface of an eye. The electrochemical sensor includes a working electrode, a reference electrode, and a reagent that selectively reacts with an analyte to generate a sensor measurement related to a concentration of the analyte in a fluid to which the eye-mountable device is exposed. The working electrode can have at least one dimension less than 25 micrometers. The reference electrode can have an area at least five times greater than an area of the working electrode. A portion of the polymeric material can surround the working electrode and the reference electrode such that an electrical current conveyed between the working electrode and the reference electrode is passed through the at least partially surrounding portion of the transparent polymeric material.
    Type: Application
    Filed: October 12, 2012
    Publication date: April 17, 2014
    Applicant: Google Inc.
    Inventor: Zenghe Liu
  • Publication number: 20140107446
    Abstract: A stiffener-reinforced microelectrode array device and fabrication method having a plurality of polymer layers surroundably encapsulating one or more electrodes connected to one or more metal traces so that the one or more electrodes are exposed. A stiffening shank is also integrally embedded in the polymer layers adjacent an insertion end of the device near the electrodes to provide mechanical support during insertion.
    Type: Application
    Filed: October 11, 2013
    Publication date: April 17, 2014
    Inventors: Vanessa Tolosa, Satinderpall S. Pannu, Angela C. Tooker, Sarah H. Felix, Kedar G. Shah, Heeral Sheth
  • Publication number: 20140107447
    Abstract: An eye-mountable device includes an electrochemical sensor embedded in a polymeric material configured for mounting to a surface of an eye. The electrochemical sensor includes a working electrode, a reference electrode, and a reagent that selectively reacts with an analyte to generate a sensor measurement related to a concentration of the analyte in a fluid to which the eye-mountable device is exposed. A calibration-solution measurement is obtained while the eye-mountable device is exposed to a calibration solution. A calibration value is determined based on at least the calibration-solution measurement and an analyte concentration of the calibration solution. A tear-film measurement is obtained while the eye-mountable device is mounted to an eye so as to be exposed to tear film. The analyte concentration of the tear film is determined based on at least the tear-film measurement and the calibration value.
    Type: Application
    Filed: October 12, 2012
    Publication date: April 17, 2014
    Applicant: Google Inc.
    Inventors: Zenghe Liu, Brian Otis
  • Publication number: 20140107436
    Abstract: Methods and devices to detect analyte in body fluid are provided. Embodiments include enhanced analyte monitoring devices and systems.
    Type: Application
    Filed: December 18, 2013
    Publication date: April 17, 2014
    Applicant: Abbott Diabetes Care Inc.
    Inventors: Daniel Milfred Bernstein, Jared Watkin, Martin J. Fennell, Mark Kent Sloan, Michael Love, Namvar Kiaie, Jean-Pierre Cole, Steve Scott
  • Publication number: 20140107448
    Abstract: An eye-mountable device includes an electrochemical sensor embedded in a polymeric material configured for mounting to a surface of an eye. The electrochemical sensor includes a working electrode, a reference electrode, and a reagent that selectively reacts with an analyte to generate a sensor measurement related to a concentration of the analyte in a fluid to which the eye-mountable device is exposed. A calibration-solution measurement is obtained while the eye-mountable device is exposed to a calibration solution. A calibration value is determined based on at least the calibration-solution measurement and an analyte concentration of the calibration solution. A tear-film measurement is obtained while the eye-mountable device is mounted to an eye so as to be exposed to tear film. The analyte concentration of the tear film is determined based on at least the tear-film measurement and the calibration value.
    Type: Application
    Filed: September 19, 2013
    Publication date: April 17, 2014
    Applicant: Google Inc.
    Inventors: Zenghe Liu, Brian Otis
  • Patent number: 8700117
    Abstract: Systems and methods for processing sensor analyte data, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. During initial calibration, the analyte sensor data is evaluated over a period of time to determine stability of the sensor. The sensor may be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. The calibration may be updated after evaluating the calibration set for best calibration based on inclusion criteria with newly received reference analyte data. Fail-safe mechanisms are provided based on clinical acceptability of reference and analyte data and quality of sensor calibration. Algorithms provide for optimized prospective and retrospective analysis of estimated blood analyte data from an analyte sensor.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: April 15, 2014
    Assignee: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, Paul V. Goode, James H. Brauker
  • Patent number: 8690775
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: April 8, 2014
    Assignee: DexCom, Inc.
    Inventors: Mark Brister, Paul V. Neale, James H. Brauker
  • Publication number: 20140094671
    Abstract: Devices are provided for measurement of an analyte concentration, e.g., glucose in a host. The device can include a sensor configured to generate a signal associated with a concentration of an analyte; and a sensing membrane located over the sensor. The sensing membrane comprises a diffusion resistance domain configured to control a flux of the analyte therethrough. The diffusion resistance domain comprises one or more zwitterionic compounds and a base polymer comprising both hydrophilic and hydrophobic regions.
    Type: Application
    Filed: February 27, 2013
    Publication date: April 3, 2014
    Applicant: DEXCOM, INC.
    Inventors: Robert J. Boock, Chris W. Dring
  • Patent number: 8688188
    Abstract: In aspects of the present disclosure, a no coding blood glucose monitoring unit including a calibration unit is integrated with one or more components of an analyte monitoring system to provide compatibility with in vitro test strip that do not require a calibration code is provided. Also disclosed are methods, systems, devices and kits for providing the same.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: April 1, 2014
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Adam Heller, Benjamin Jay Feldman, Shridhara Alva Karinka, Yi Wang, John R. Galasso
  • Publication number: 20140088390
    Abstract: Methods and apparatus for providing a power supply to a device, including an inductive rechargeable power supply for a data monitoring and management system in which a high frequency magnetic field is generated to provide power supply to a rechargeable power source such as a battery of a transmitter unit in the data monitoring and management system are provided.
    Type: Application
    Filed: November 25, 2013
    Publication date: March 27, 2014
    Applicant: Abbott Diabetes Care Inc.
    Inventor: Lei He
  • Publication number: 20140088389
    Abstract: In one embodiment, a continuous analyte sensor having more than one working electrode, and configured to reduce or eliminate crosstalk between the working electrodes. In another embodiment, a continuous analyte sensor having more than one working electrode, and configured so that a membrane system has equal thicknesses over each of the electrodes, despite having differing numbers of layers over each of the electrodes. In another embodiment, a configuration for connecting a continuous analyte sensor to sensor electronics. In another embodiment, methods for forming precise windows in an insulator material on a multi-electrode assembly. In another embodiment, a contact assembly for a continuous analyte sensor having more than one working electrode.
    Type: Application
    Filed: March 7, 2013
    Publication date: March 27, 2014
    Applicant: DexCom, Inc.
    Inventors: Peter C. Simpson, Sebastian Bohm, Robert J. Boock, Matthew D. Wightlin, Huashi Zhang
  • Publication number: 20140088372
    Abstract: Systems, apparatus and methods including a contact lens that facilitates collection and/or processing of information associated with sensed features are provided. In one aspect, a system can include a contact lens and an analysis component external to the contact lens. The contact lens can include: a substrate; and a circuit, disposed on or within the substrate. The circuit can include: a plurality of sensors configured to sense respective features associated with a wearer of the contact lens; and a communication component configured to communicate information indicative of sensed features. The analysis component can be configured to: receive the information indicative of the sensed features; and generate statistical information based, at least, on the information indicative of the sensed features.
    Type: Application
    Filed: September 25, 2012
    Publication date: March 27, 2014
    Applicant: GOOGLE INC.
    Inventors: Ehsan Saeedi, Babak Amirparviz
  • Publication number: 20140088391
    Abstract: Systems and methods of use for continuous analyte measurement of a host's vascular system are provided. In some embodiments, a continuous glucose measurement system includes a vascular access device, a sensor and sensor electronics, the system being configured for insertion into communication with a host's circulatory system.
    Type: Application
    Filed: October 21, 2013
    Publication date: March 27, 2014
    Applicant: DEXCOM, INC.
    Inventors: Jacob S. Leach, Peter C. Simpson, Richard C. Yang, Mark Brister
  • Patent number: 8682408
    Abstract: Devices and methods are described for providing continuous measurement of an analyte concentration. In some embodiments, the device has a sensing mechanism and a sensing membrane that includes at least one surface-active group-containing polymer and that is located over the sensing mechanism. The sensing membrane may have a bioprotective layer configured to substantially block the effect and/or influence of non-constant noise-causing species.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: March 25, 2014
    Assignee: DexCom, Inc.
    Inventors: Robert Boock, Monica A. Rixman, Huashi Zhang, Michael J. Estes, Kristina Lawrence
  • Patent number: 8676287
    Abstract: Systems and methods for processing sensor analyte data, including initiating calibration, updating calibration, evaluating clinical acceptability of reference and sensor analyte data, and evaluating the quality of sensor calibration. During initial calibration, the analyte sensor data is evaluated over a period of time to determine stability of the sensor. The sensor may be calibrated using a calibration set of one or more matched sensor and reference analyte data pairs. The calibration may be updated after evaluating the calibration set for best calibration based on inclusion criteria with newly received reference analyte data. Fail-safe mechanisms are provided based on clinical acceptability of reference and analyte data and quality of sensor calibration. Algorithms provide for optimized prospective and retrospective analysis of estimated blood analyte data from an analyte sensor.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: March 18, 2014
    Assignee: DexCom, Inc.
    Inventors: Apurv Ullas Kamath, Paul V. Goode, Jr., James H. Brauker
  • Patent number: 8672845
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for processing sensor data, including calculating a rate of change of sensor data and/or determining an acceptability of sensor or reference data.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: March 18, 2014
    Assignee: DexCom, Inc.
    Inventors: Apurv Kamath, Ying Li, John Michael Dobbles, Aarthi Mahalingam
  • Patent number: 8676288
    Abstract: Devices and methods for determining analyte levels are described. The devices and methods allow for the implantation of analyte-monitoring devices, such as glucose monitoring devices, that result in the delivery of a dependable flow of blood to deliver sample to the implanted device. The devices comprise a unique microarchitectural arrangement in the sensor region that allows accurate data to be obtained over long periods of time.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: March 18, 2014
    Assignee: DexCom, Inc.
    Inventors: Mark C. Shults, Stuart J. Updike, Rathbun K. Rhodes
  • Patent number: 8663109
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: March 4, 2014
    Assignee: DexCom, Inc.
    Inventors: Mark Brister, Steve Masterson, J. Michael Dobbles, Michael Robert Mensinger, Sean Saint, Apurv Ullas Kamath
  • Patent number: 8666469
    Abstract: An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: March 4, 2014
    Assignee: Abbott Diabetes Care Inc.
    Inventors: James Say, Michael F. Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Ephraim Heller, Phillip John Plante, Mark S. Vreeke, Fredric C. Colman
  • Patent number: 8665091
    Abstract: Methods and systems for determining elapsed sensor life in medical systems, and more specifically continuous analyte monitoring systems.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: March 4, 2014
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Martin J. Fennell, Saeed Nekoomaram
  • Publication number: 20140058236
    Abstract: A glucose monitoring system, includes a glucose sensor strip or package of strips. The strip includes a substrate and a glucose monitoring circuit that has electrodes and a bodily fluid application portion of selected chemical composition. An antenna is integrated with the glucose sensor strip. An RFID sensor chip is coupled with the glucose sensor strip and the antenna. The chip has a memory containing digitally-encoded data representing calibration and/or expiration date information for the strip.
    Type: Application
    Filed: November 1, 2013
    Publication date: February 27, 2014
    Applicant: ABBOTT DIABETES CARE INC.
    Inventors: Timothy T. Goodnow, Lei He
  • Publication number: 20140058235
    Abstract: Systems and methods of use for continuous analyte measurement of a host's vascular system are provided. In some embodiments, a continuous glucose measurement system includes a vascular access device, a sensor and sensor electronics, the system being configured for insertion into communication with a host's circulatory system.
    Type: Application
    Filed: November 5, 2013
    Publication date: February 27, 2014
    Applicant: DexCom, Inc.
    Inventors: Ying Li, Apurv Ullas Kamath, Richard C. Yang, Mark C. Brister
  • Patent number: 8660627
    Abstract: An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: February 25, 2014
    Assignee: Abbott Diabetes Care Inc.
    Inventors: James Say, Michael F. Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Ephraim Heller, Phillip John Plante, Mark S. Vreeke, Keith A. Friedman, Fredric C. Colman
  • Patent number: 8660628
    Abstract: Embodiments of the invention provide analyte sensors having elements designed to modulate their chemical reactions as well as methods for making and using such sensors. In certain embodiments of the invention, the sensor includes an analyte modulating membrane that comprises a blended mixture of a linear polyurethane/polyurea polymer, and a branched acrylate polymer.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: February 25, 2014
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Jenn-Hann Larry Wang, Tri T. Dang, Brooks B. Cochran, John J. Mastrototaro, Rajiv Shah
  • Patent number: 8657747
    Abstract: The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for processing sensor data, including calculating a rate of change of sensor data and/or determining an acceptability of sensor or reference data.
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: February 25, 2014
    Assignee: DexCom, Inc.
    Inventors: Apurv Kamath, Ying Li, John Michael Dobbles, Aarthi Mahalingam
  • Patent number: 8657746
    Abstract: Disclosed are methods, apparatuses, etc. for glucose sensor signal purity analysis. In certain example embodiments, a series of samples of at least one sensor signal that is responsive to a blood glucose level of a patient may be obtained. Based at least partly on the series of samples, at least one metric may be determined to characterize one or more non-physiological anomalies of a representation of the blood glucose level of the patient by the at least one sensor signal. A reliability of the at least one sensor signal to represent the blood glucose level of the patient may be assessed based at least partly on the at least one metric. Other example embodiments are disclosed herein.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: February 25, 2014
    Assignee: Medtronic Minimed, Inc.
    Inventor: Anirban Roy
  • Publication number: 20140051957
    Abstract: An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte.
    Type: Application
    Filed: September 14, 2013
    Publication date: February 20, 2014
    Applicant: Abbott Diabetes Care Inc.
    Inventors: James Say, Michael F. Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Ephraim Heller, Phillip John Plante, Mark S. Vreeke, Keith A. Friedman, Fredric C. Colman