Respiratory Patents (Class 600/529)
  • Patent number: 8696589
    Abstract: An evaluation of heart failure status is provided based on a disordered breathing index. Patient respiration is sensed and a respiration signal is generated. Disordered breathing episodes are detected based on the respiration signal. A disordered breathing index is determined based on the disordered breathing episodes. The disordered breathing index is trended and used to evaluate heart failure status. The disordered breathing index may be combined with additional information and/or may take into account patient activity, posture, sleep stage, or other patient information.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: April 15, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jonathan T. Kwok, Marina Brockway, Kent Lee, Quan Ni, Yachuan Pu, Jeffrey E. Stahmann, Yi Zhang, Jesse W. Hartley
  • Patent number: 8696588
    Abstract: A device (1) and a corresponding method are provided for determining and/or monitoring the respiration rate based on measurement with more than one sensor (5, 7, 9, 13, 15). The device may be part of a monitor for determining and/or monitoring the respiration rate. The second and/or additional sensors are different form the first sensor and have a different manor of operation from the first sensor.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: April 15, 2014
    Assignee: Dräger Medical GmbH
    Inventors: Hans-Ullrich Hansmann, Tilman von Blumenthal, Peter Tschuncky, Andreas Hengstenberg, Frank Mett, Uwe Kühn, Frank Franz, Kai Kück, Steffen Schmitt
  • Patent number: 8696592
    Abstract: A breath biofeedback method and system for encouraging a subject to modify respiration. The system includes a thoracic volume input module measuring thoracic volume data of the subject and a pattern module providing target breathing patterns in communication with a display generator. The display generator producing display information representing a displayable image including a first object having a first position determined as a function of the thoracic volume data and a second object having a second position determined as a function of the target breathing pattern and the thoracic volume data. The displayable image is designed such that when displayed on the display device the displayable image encourages the subject viewing the displayable image to modify respiration.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: April 15, 2014
    Assignee: University of Vermont and State Agricultural College
    Inventors: Peter M. Bingham, Jason H. Bates
  • Patent number: 8696590
    Abstract: Vital sign monitoring is especially challenging in small animals, given the high metabolic rates and small volumes under consideration. An embodiment of the present invention includes a unique nose-cone design and associated instrumentation which allows for measurement of respiratory parameters, including anesthesia gas concentration, inspiratory and expiratory O2, and inspiratory and expiratory CO2 (capnometry). Such instrumentation facilitates a physiologic assessment of small animals undergoing general anesthesia, an increasingly important consideration as small animals play a greater role in in vivo biomedical studies. In addition, the techniques proposed herein are suitable for measurement on small respiratory volumes associated with neonatal monitoring.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: April 15, 2014
    Assignee: Criticare Systems, Inc.
    Inventors: Firas Sultan, David P. Klemer
  • Patent number: 8690784
    Abstract: A monitoring system for cardiac operations with cardiopulmonary bypass comprising: a processor operatively connected to a heart-lung machine; a pump flow detecting device connected to a pump of the heart-lung machine to continuously measure the pump flow value and send it to the processor; a hematocrit reading device inserted inside the arterial or venous line of the heart-lung machine to continuously measure the blood hematocrit value and to send it to the processor; a data input device to allow the operator to manually input data regarding the arterial oxygen saturation and the arterial oxygen tension; computing means integrated in the processor to compute the oxygen delivery value on the basis of the measured pump flow, the measured hematocrit value, the preset value of arterial oxygen saturation, and the preset value of arterial oxygen tension; and a display connected to the processor to display in real-time the computed oxygen delivery value.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: April 8, 2014
    Assignee: Sorin Group Italia S.r.l.
    Inventor: Marco Ranucci
  • Patent number: 8688219
    Abstract: Dynamic sampling of physiological parameters based on the next anticipated occurrence of a relatively periodic physiological event. Embodiments of the invention may be used to increase the battery life or effective data storage capacity of implantable medical devices while retaining or improving measurement resolution.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: April 1, 2014
    Assignee: Medronic, Inc.
    Inventor: Scott A. Ransom
  • Patent number: 8679029
    Abstract: Improved apparatus and methods for monitoring, diagnosing and treating at least one medical respiratory condition of a patient are provided, including a medical data input interface adapted to provide at least one medical parameter relating at least to the respiration of the patient, and a medical parameter interpretation functionality (104, 110) adapted to receive the at least one medical parameter relating at least to the respiration (102) of the patient and to provide at least one output indication (112) relating to a degree of severity of at least one medical condition indicated by the at least one medical parameter.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: March 25, 2014
    Assignees: Oridion Medical (1987) Ltd., Children's Medical Center Corporation
    Inventors: Baruch Schlomo Krauss, David Robert Hampton, Ephraim Carlebach
  • Publication number: 20140081164
    Abstract: According to various embodiments, methods and systems for determining pressure in the lungs may employ intracuff pressure measurements. The intracuff pressure measurements may calibrated or adjusted based on a set of calibration coefficients or a set of calibration curves, which may reflect patient parameters and cuff/tube geometry factors. The resulting calibration may be used to determine a more accurate estimate of lung pressure, which in turn may be used to control a ventilator and provide breathing assistance to a patient. Also provided are tracheal tubes with couplers or other memory devices for storing calibration information. Such tubes may allow calibration at the level of an individual tracheal tube to account for changes in tube geometry and individual patient factors.
    Type: Application
    Filed: November 15, 2013
    Publication date: March 20, 2014
    Applicant: COVIDIEN LP
    Inventors: Lockett E. Wood, Sarah Hayman, Youzhi Li
  • Publication number: 20140081100
    Abstract: Systems and method for monitoring patient physiological data are presented herein. In one embodiment, a physiological sensor and a mobile computing device can be connected via a cable or cables, and a processing board can be connected between the sensor and the mobile computing device to conduct advanced signal processing on the data received from the sensor before the data is transmitted for display on the mobile computing device.
    Type: Application
    Filed: September 20, 2013
    Publication date: March 20, 2014
    Applicant: MASIMO CORPORATION
    Inventors: Bilal Muhsin, Sujin Hwang, Benjamin C. Triman
  • Publication number: 20140081091
    Abstract: An electronic and transducer device can be attached, adhered, or otherwise embedded into or upon a removable oral appliance or other oral device to form a two-way communication assembly. The device contains a motion sensor to detect external forces imposed on the user such as an explosion, for example. The information is stored for medical treatment, among others. In another embodiment, the device provides an electronic and transducer device that can be attached, adhered, or otherwise embedded into or upon a removable oral appliance or other oral device to form a medical tag containing patient identifiable information. Such an oral appliance may be a custom-made device fabricated from a thermal forming process utilizing a replicate model of a dental structure obtained by conventional dental impression methods.
    Type: Application
    Filed: November 19, 2013
    Publication date: March 20, 2014
    Applicant: SONITUS MEDICAL, INC.
    Inventors: Amir A. ABOLFATHI, John SPIRIDIGLIOZZI
  • Patent number: 8672853
    Abstract: Pressure sensing devices for use with an inflatable bladder and monitoring apparatus for an at rest subject are disclosed herein. The device can comprise a housing comprising a recess and configured to be welded in a seam of the inflatable bladder. A pressure sensor can be located within the recess with a sensing side configured to be exposed to the cavity of the inflatable bladder and a reference side configured to be exposed to ambient air. A printed circuit board can be located within the recess and coupled to the pressure sensor. The pressure sensor is operable to detect a pressure change within the cavity due to a force exerted by a subject on the inflatable bladder.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: March 18, 2014
    Assignee: BAM Labs, Inc.
    Inventor: Steven J. Young
  • Patent number: 8672858
    Abstract: A method of creating a noninvasive predictor of both physiologic and imposed patient effort of breathing from airway pressure and flow sensors attached to the patient using an adaptive mathematical model. The patient effort is commonly measured via work of breathing, power of breathing, or pressure-time product of esophageal pressure and is important for properly adjusting ventilatory support for spontaneously breathing patients. The method of calculating this noninvasive predictor is based on linear or non-linear calculations using multiple parameters derived from the above-mentioned sensors.
    Type: Grant
    Filed: February 20, 2012
    Date of Patent: March 18, 2014
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Neil R. Euliano, Victor L. Brennan, Paul B. Blanch, Michael J. Banner
  • Publication number: 20140074407
    Abstract: The present invention relates to a device and method for estimating energy expenditure during exercise. The device includes a module for estimating whether a person is exceeding their anaerobic threshold and, if they are exceeding their anaerobic threshold calculating the additional energy expenditure due to the anaerobic metabolism of ATP. The additional energy expenditure can then be added to an estimate of the energy expenditure due to aerobic metabolism and output to the user in order to provide an estimate of the energy expenditure occurring during anaerobic exercise.
    Type: Application
    Filed: September 9, 2013
    Publication date: March 13, 2014
    Applicant: TOUMAZ HEALTHCARE LIMITED
    Inventors: Miguel HERNANDEZ-SILVEIRA, Su-Shin ANG
  • Patent number: 8668652
    Abstract: This invention relates to systems and methods for site selection and placement of extra-anatomic passages altering gaseous flow in a diseased lung.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: March 11, 2014
    Assignee: Broncus Medical Inc.
    Inventors: Henky Wibowo, Edmund J. Roschak, Thomas Keast, Cary Cole
  • Patent number: 8668653
    Abstract: The present invention provides a garment for measuring biological information, a biological information measurement system, a biological information measurement device and a method of controlling thereof capable of measuring biological information with accuracy regardless of variations of the constitution of each examinee yet a simple structure. A resistance value sensor 21 senses variation of electric resistances of a chest respiratory information sensor 502 and a chest respiratory information sensor 504 on a shirt 500 of a biological information measuring shirt. A CPU 10 of an analysis device 100 calculates variation cycles of resistance in accordance with the resistance data and outputs respiration values based on the calculation results.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: March 11, 2014
    Assignee: Nihon Kohden Corporation
    Inventors: Shinya Nagata, Ryuji Nagai
  • Patent number: 8663125
    Abstract: Dual path noise detection and isolation for an acoustic respiration monitoring system detects noise in an acoustic signal recording lung sounds using two discrete noise detection techniques. A first technique detects portions of the signal that exhibit long-term, moderate amplitude noise by analyzing cumulative energy in the signal. A second technique detects portions of the signal that exhibit short-term, high amplitude noise by analyzing peak energy in the signal. Noisy portions of the signal are isolated using the combined results of the dual path detection. A respiration parameter is estimated using the signal without resort to the noisy portions and information based at least in part on the respiration parameter is outputted.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: March 4, 2014
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Yongji Fu, Yungkai Kyle Lai, Bryan Severt Hallberg
  • Patent number: 8663126
    Abstract: The wearable acoustic device for monitoring breathing sounds includes an acoustic sensor and audible/visual indicators triggered by device electronics indicating normal, abnormal, and severity of abnormal bronchial asthmatic breathing. An elastic belt holds the device. Fasteners disposed on the belt allow the belt to be secured around the baby's chest. An oximeter may be connected to the device to measure percentage oxygen intake of the baby. A processor disposed in the device processes the oximeter and acoustic signals via an algorithmic sequence that looks for oxygen intake and the presence of bronchial asthmatic breathing vs. a normal breathing/oxygen intake sample stored in memory on the device. A transmitter powered by rechargeable batteries wirelessly transmits the alarm condition to the baby's caretaker. Depending on the normality/severity of the infant's breathing, an audible alarm sounds. The visual indicator displays severity of the breathing condition.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: March 4, 2014
    Inventor: Fatemah S. Al Thalab
  • Patent number: 8663124
    Abstract: A multistage system and method for estimating respiration parameters from an acoustic signal. At a first stage, the method and system detect and isolate portions of the signal that exhibit long-term, moderate amplitude noise by analyzing cumulative energies in the signal, and portions of the signal that exhibit short-term, high amplitude noise by analyzing peak energies in the signal. At a second stage, the method and system filter heart sound from the signal energy envelope by applying an adaptive filter that minimizes the loss of respiration sound. At a third stage, the system and method isolate respiration phases in the signal by identifying trends in the energy envelope. Once respiration phases are isolated, these phases are used to estimate respiration parameters, such as respiration rate and I/E ratio.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: March 4, 2014
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Yongji Fu, Yungkai Kyle Lai, Bryan Severt Hallberg
  • Patent number: 8666467
    Abstract: The disclosed embodiments relate to a system and method for analyzing data. An exemplary method comprises the acts of receiving data corresponding to at least one time series, and computing a plurality of sequential instability index values of the data. An exemplary system comprises a source of data indicative of at least one time series of data, and a processor that is adapted to compute at least one of a plurality of sequential instability index values of the data.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: March 4, 2014
    Inventors: Lawrence A. Lynn, Eric N. Lynn
  • Patent number: 8657756
    Abstract: Methods and systems for evaluating a pathological condition include acquiring movement information, such as electromyogram (EMG) information, and sleep disordered breathing (SDB) information, and detecting the presence of a pathological condition using both movement and SDB information. Methods may involve sensing physiological signals including at least muscle movement signals. Sleep-related disorders are detected using the sensed physiological signals, the sleep-related disorders including at least an involuntary muscle movement disorder and sleep-disordered breathing. Methods and systems also provide for detecting and treating a sleep-related disorder using movement and SDB information. Cardiac, respiratory, nerve stimulation, drug, or a combination of such therapies may be delivered to treat a detected or diagnosed pathological condition.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: February 25, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Jeffrey E. Stahmann, Jesse W. Hartley, Kent Lee, Quan Ni
  • Patent number: 8657757
    Abstract: A method for determining a pulmonary volume change includes: receiving a respiration event from a subject in an airflow chamber; interrupting the respiration event by an occlusion of the airflow chamber initiated at a first time instant and terminated at a second time instant subsequent to the first time instant; taking a plurality of measurements of airflow rate through the airflow chamber between the second time instant and a third time instant subsequent to the second time instant; and determining a pulmonary volume change substantially equal to a reduction of a pulmonary air volume by a pulmonary response air volume and a normal air volume, wherein the pulmonary volume change is related to a change in density of air in the airflow chamber.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: February 25, 2014
    Assignee: Pulmone Advanced Medical Devices, Ltd.
    Inventors: Avi Lazar, Ori Adam
  • Patent number: 8644957
    Abstract: A device according to some embodiments may include an implantable flexible carrier and a pair of electrodes located on the carrier. The electrodes may be spaced from each other by a distance greater than 3 mm, and may be configured to cause, when supplied with an electrical signal, a unidirectional electric field sufficient to modulate at least one nerve.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: February 4, 2014
    Assignee: Nyxoah SA
    Inventor: Adi Mashiach
  • Patent number: 8641637
    Abstract: The present invention provides a method of measuring an acoustic impedance of a respiratory system. The method comprises selecting a frequency range for an acoustic wave, directing the acoustic wave into the respiratory system and receiving an acoustic wave from the respiratory system. The method also comprises determining the acoustic impedance for a plurality of volumes or volume ranges of the respiratory system. Each volume, or the volumes within each volume range, is larger than RV or FRC and smaller than TLC whereby the determined acoustic impedances are specific for respective volumes or volume ranges. Further, the method includes determining a volume, or volume range, dependency of the acoustic impedance of the respiratory system and characterizing the respiratory system by analyzing the dependency of the acoustic impedance on the volume or volume range.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: February 4, 2014
    Assignee: Telethon Institute for Child Health Research
    Inventors: Peter Sly, Zoltan Hantos, Cindy Thamrin
  • Publication number: 20140031705
    Abstract: A garment for ambulatory, physiological monitoring of a patient includes a belt, having first and second end portion with closures at the end portions to wrap around a user's chest, a strap having a first end coupled to a portion of the belt with the strap having a second end, a pair of shoulder strap portions each shoulder strap portion having a first end coupled together at the second end of the strap and a second end, and a back portion that joins the second ends of the pair of shoulder strap portions, with at least one of the belt, strap portions and back portion having an accommodation for carrying a sensor. Other embodiments are described.
    Type: Application
    Filed: July 26, 2013
    Publication date: January 30, 2014
    Applicant: Medicomp, Inc.
    Inventors: Raymond C. Kurzweil, Paul Albrecht, Brandon Craft, Lucy Gibson, Mark Lutwyche, Vishal Dua, Aaron Kleiner, Michelle Daniels
  • Patent number: 8638200
    Abstract: This disclosure describes systems and methods for monitoring and evaluating ventilatory parameters, analyzing those parameters and providing useful notifications and recommendations to clinicians. That is, modern ventilators monitor, evaluate, and graphically represent a myriad of ventilatory parameters. However, many clinicians may not easily identify or recognize data patterns and correlations indicative of certain patient conditions, changes in patient condition, and/or effectiveness of ventilatory treatment. Further, clinicians may not readily determine appropriate ventilatory adjustments that may address certain patient conditions and/or the effectiveness of ventilatory treatment. Specifically, clinicians may not readily detect or recognize the presence of Auto-PEEP during volume ventilation of a non-triggering patient.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: January 28, 2014
    Assignee: Covidien LP
    Inventors: Gary Milne, Kirk Hensley, Peter R. Doyle, Gardner Kimm
  • Patent number: 8639343
    Abstract: An electronic stimulation system to be worn in, behind or on a human ear having a casing; a detection device to sense breathing activity from a human being and to generate a detection signal; electronics within the casing and having a controller connected to the detection device to process the detection signal and generate a control signal when the controller has determined that the human being is in a state of developing apnoea; a stimulation device to receive the control signal from the electronics and to provide stimuli to one or more points of the human ear; wherein when the electronic stimulation system is worn in, behind or on the human ear, the stimulation device is pushed against a predetermined portion of the human ear.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: January 28, 2014
    Assignee: NasoPhlex B.V.
    Inventor: Gerrit Johannis De Vos
  • Patent number: 8636670
    Abstract: Systems and methods are described for obtaining and acting upon information indicative of circulatory health and related phenomena in human beings or other subjects.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: January 28, 2014
    Assignee: The Invention Science Fund I, LLC
    Inventors: Bran Ferren, Jeffrey John Hagen, Roderick A. Hyde, Muriel Y. Ishikawa, Eric C. Leuthardt, Dennis J. Rivet, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 8638364
    Abstract: A thermal imaging interface for control of a computer program may obtain one or more thermal infrared images of one or more objects with one or more thermographic cameras. The images may be analyzed to identify one or more characteristics of the objects. Such characteristics may be used as a control input in the computer program.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: January 28, 2014
    Assignee: Sony Computer Entertainment Inc.
    Inventors: Ruxin Chen, Steven Osman
  • Publication number: 20140024958
    Abstract: Various embodiments relate to a method, apparatus, system, and a computer program product for suppressing an oscillatory signal Sosc. In the method a composite signal S comprising said Sosc and a modulating signal Smod are provided and the S is high pass filtered to produce estimates of the Sosc and the Smod, wherein the estimate of the Sosc comprises first oscillations during a first state of the modulating signal and second oscillations during a second state of the modulating signal. A first bin associated with said first state and a second bin associated with said second state are defined and assigned for said first oscillation and the second bin for said second oscillation according to a state defined from the estimate of the Smod. A first average waveform for said first oscillations and a second average waveform for said second oscillations are formed and used to suppress the Sosc signal from the composite signal S.
    Type: Application
    Filed: February 2, 2012
    Publication date: January 23, 2014
    Applicant: TTY-SÄÄTIÖ (Tampere University of Technology Foundation)
    Inventors: Ville-Pekka Seppä, Jari Viik, Jari Hyttinen
  • Publication number: 20140018650
    Abstract: A device having a sensor detecting patient physiological data, a detection element detecting whether a medical professional is present in a patient's room and a display. If a medical professional is present in the patient's room, the display displays a first display mode, the first display mode including the patient physiological data. If a medical professional is not present in the patient's room, the display displays a second display mode, the second display mode being adapted for viewing by lay viewers.
    Type: Application
    Filed: March 22, 2012
    Publication date: January 16, 2014
    Applicant: KONINKLIJK PHILIPS N.V.
    Inventors: William Palmer Lord, Cornelis Conradus Adrianus Maria Van Zon, Steffen Clarence Pauws, Juergen Te Vrugt
  • Patent number: 8630811
    Abstract: A method of pattern recognition for classifying the functional status of patients with chronic disease comprising characterizing the functional status based on a multivariable index (MVI) scoring system wherein the MVI is computed by summing a plurality of individual variable values as individual variable indexes (IVI) and dividing the sum by the number of variables and wherein the plurality of IVI includes rest PetCO2, ?PetCO2, SaO2, QUES, Ve/VCO2 slope and Pcap and wherein each IVI is given an equivalent value of <1.00 to >=4.00, the number increasing with increasing severity yielding an MVI value ranging from <1.00 to >=4.00, normal to severe-very severe.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: January 14, 2014
    Assignee: Shape Medical Systems, Inc.
    Inventors: Stephen T. Anderson, Dean J. MacCarter, Bruce D. Johnson
  • Patent number: 8628480
    Abstract: This invention provides methods and systems for non-invasively determining the presence (and amount) or absence of dynamic hyperinflation in a subject. The invention is based on a novel combination of respiratory parameters that can be measured in a way that is non-invasive and unobtrusive to the subject. Dynamic hyperinflation is often a significant factor in the quality of life of patients suffering from a variety of obstructive pulmonary diseases, and this invention permits simple, routine tracking and management of dynamic hyperinflation in affected patients.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: January 14, 2014
    Assignee: adidas AG
    Inventor: P. Alexander Derchak
  • Patent number: 8628479
    Abstract: A plethysmograph is described that includes a test chamber having an opening; a sealing member including an annular flexible seal to receive at least a part of the head of the test animal mounted across the opening whereby the animal breathes air outside the test chamber, while the animal's body is within the test chamber; and a restraining member attachable to the sealing member, the restraining member including a clamp positionable behind the test animal's head, to prevent the animal from withdrawing its head from the restraining member. The animal is positioned in the restraining member and the sealing member is attached to the restraining member before insertion of the animal and assembly into the test chamber, avoiding previous difficulties in simultaneously placing an animal into the chamber while inserting the animal's nose into the seal. The plethysmograph also eliminates the necessity for a plunger to prevent rearward movement of the animal.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: January 14, 2014
    Assignee: Buxco Electronics, Inc.
    Inventors: Joseph Lomask, Yuval Shemesh, Richard A. Shafer, Chau Hong Le, Hai dang Nguyen
  • Patent number: 8627822
    Abstract: The invention comprises a semi-vertical patient positioning, alignment, and/or control method and apparatus used in conjunction with charged particle or proton beam radiation therapy of cancerous tumors. Patient positioning constraints are used to maintain the patient in a treatment position, including one or more of: a seat support, a back support, a head support, an arm support, a knee support, and a foot support. One or more of the positioning constraints are movable and/or under computer control for rapid positioning and/or immobilization of the patient. The system optionally uses an X-ray beam that lies in substantially the same path as a proton beam path of a particle beam cancer therapy system. The generated image is usable for: fine tuning body alignment relative to the proton beam path, to control the proton beam path to accurately and precisely target the tumor, and/or in system verification and validation.
    Type: Grant
    Filed: June 28, 2009
    Date of Patent: January 14, 2014
    Inventor: Vladimir Balakin
  • Patent number: 8627821
    Abstract: Methods and devices to determine rate of particle production and the size range for the particles produced for an individual are described herein. The device (10) contains a mouthpiece (12), a filter (14), a low resistance one-way valve (16), a particle counter (20) and a computer (30). Optionally, the device also contains a gas flow meter (22). The data obtained using the device can be used to determine if a formulation for reducing particle exhalation should be administered to an individual.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: January 14, 2014
    Assignee: Pulmatrix, Inc.
    Inventors: David A. Edwards, Mark J. Gabrielson, Robert William Clarke, Wesley H. Dehaan, Matthew Frederick Brande, Jonathan Chun-Wah Man
  • Patent number: 8628481
    Abstract: The present application is directed to a detector to detect or generate measuring signals that are indicative of the respiration of a person, wherein said detector can be used advantageously in view of hygiene and stands out due to a simple and robust configuration. According to a first aspect, the detector detects a signal that is indicative of the activity of the respiratory muscles of a person to be examined, the detector comprising a band which, in the application position, is passed around a torso region which widens and narrows when the person to be examined breathes, as well as a structure that is included in the band and loaded in accordance with the narrowing or widening of the torso region. The structure is configured such that it causes a change in the volume of a measuring space device depending on a tensile force.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: January 14, 2014
    Assignee: Map Medizin-Technologie GmbH
    Inventors: Bernd Lang, Stefan Schatzl
  • Publication number: 20140012111
    Abstract: Systems and methods of monitoring a subject's neurological condition are provided. In some embodiments, the method includes the steps of analyzing a physiological signal (such as an EEG) from a subject to determine if the subject is in a contra-ictal condition; and if the subject is in a contra-ictal condition, providing an indication (e.g., to the subject and/or to a caregiver) that the subject is in the contra-ictal condition. The systems and methods may utilize a minimally invasive, leadless device to monitor the subject's condition. In some embodiments, if the subject is in a pro-ictal condition, the method includes the step of providing an indication (such as a red light) that the subject is in the pro-ictal condition.
    Type: Application
    Filed: September 9, 2013
    Publication date: January 9, 2014
    Applicant: Cyberonics, Inc
    Inventors: David Snyder, Kent W. Leyde, John F. Harris
  • Publication number: 20140012149
    Abstract: A wireless stethoscope is described, having wireless sensors that are enclosed in disposable pads so that the same pads are not used on more than one patient, preventing cross-infection of patients associated with conventional stethoscopes. The present wireless stethoscope also detects pulmonary sounds and cardiac sounds, allowing the user to monitor one or the other without interference. Also described is a method for diagnosing a pulmonary condition using the wireless stethoscope.
    Type: Application
    Filed: March 14, 2013
    Publication date: January 9, 2014
    Applicant: PULMONARY APPS, LLC
    Inventor: Kevin TRICE
  • Publication number: 20140012099
    Abstract: Apparatus and methods are provided including sensing at least one parameter of a subject while the subject sleeps. The parameter is analyzed, and a condition of the subject is determined at least in part responsively to the analysis. The subject is alerted to the condition only after the subject awakes. Other applications are also described.
    Type: Application
    Filed: September 6, 2013
    Publication date: January 9, 2014
    Applicant: EarlySense Ltd.
    Inventors: Avner Halperin, Itzhak Pinhas, Yossi Gross
  • Publication number: 20140012102
    Abstract: Wearable patches comprising multiple separable adhesive layers. One or more of the layers can comprise electronics, mechanical components, gauze, medicine and/or other types of hardware suitable for the intended use of the patch. In use, a first layer of the patch is adhered to a user. When it is time to change layers, the patch is removed from the user, the first layer is removed from the patch to expose a second adhesive layer, and the second layer is applied to the user. The process may be repeated until the remaining layers of the patch have been used.
    Type: Application
    Filed: September 11, 2013
    Publication date: January 9, 2014
    Applicant: ZANSORS LLC
    Inventors: RANJIT DAS, MARK TRAVAGLINI
  • Publication number: 20140012150
    Abstract: This disclosure describes improved systems and methods for displaying respiratory data to a clinician in a ventilatory system. Respiratory data may be displayed by any number of suitable means, for example, via appropriate graphs, diagrams, charts, waveforms, and other graphic displays. The disclosure describes novel systems and methods for determining and displaying ineffective patient inspiratory or expiratory efforts or missed breaths in a manner easily deciphered by a clinician.
    Type: Application
    Filed: July 9, 2012
    Publication date: January 9, 2014
    Applicant: Nellcor Puritan Bennett LLC
    Inventors: Gary Milne, David Hyde
  • Patent number: 8622922
    Abstract: The invention provides a multi-sensor system that uses an algorithm based on adaptive filtering to monitor a patient's respiratory rate. The system features a first sensor which is selected from the group consisting of an impedance pneumography sensor, an ECG sensor, and a PPG sensor; and a motion sensor (e.g., an accelerometer) configured to attach to the patient's torso and measure therefrom a motion signal. The system further comprises (iii) a processing system, configured to operably connect to the first and motion sensors, and to determine a respiration rate value by applying filter parameters obtained from the first sensor signals to the motion sensor signals.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: January 7, 2014
    Assignee: Sotera Wireless, Inc.
    Inventors: Matt Banet, Devin McCombie, Marshal Dhillon
  • Patent number: 8622920
    Abstract: The disclosure relates to breath test devices and methods for the evaluation of liver functional and metabolic capacity or to assess liver heath and/or degree of liver injury. Specifically, there is provided a method of evaluating a liver condition, the method includes on-line monitoring a metabolic product of methacetin, a salt or a derivative of methacetin, in a subject's breath after administering to the subject isotope labeled methacetin, a salt or a derivative thereof in water solution form. There is also provided a device for evaluating a liver condition, the device includes one or more sensors adapted to monitor on-line an isotope level of a metabolic product of labeled methacetin, or a salt or a derivative of methacetin in a subject's breath and a controller adapted to sample measurements of the one or more sensors at a continuous mode.
    Type: Grant
    Filed: November 12, 2006
    Date of Patent: January 7, 2014
    Assignee: Exalenz Bioscience Ltd.
    Inventors: Ilan Ben-Oren, Avraham Hershkowitz, Eli Kaplan, Yaron Ilan
  • Patent number: 8622916
    Abstract: Present embodiments are directed to a system and method capable of detecting and graphically indicating physiologic patterns in patient data. For example, present embodiments may include a monitoring system that includes a monitor capable of receiving input relating to patient physiological parameters and storing historical data related to the parameters. Additionally, the monitoring system may include a screen capable of displaying the historical data corresponding to the patient physiological parameters. Further, the monitoring system may include a pattern detection feature capable of analyzing the historical data to detect a physiologic pattern in a segment of the historical data and capable of initiating a graphical indication of the segment on the screen when the physiologic pattern is present in the segment.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: January 7, 2014
    Assignee: Covidien LP
    Inventors: Keith Batchelder, Scott Amundson, Mark Brecht
  • Publication number: 20140005564
    Abstract: A non-transitory computer-readable storage medium storing a set of instructions executable by a processor. The set of instructions is operable to receive a set of data relating to a current symptom of a patient; determine one of a current level of breathlessness and a current level of edema for the patient based on the received data; and provide an alert to one of the patient and a medical professional, if the determined one of the current level of breathlessness and the current level of edema is greater than an acceptable level.
    Type: Application
    Filed: March 9, 2012
    Publication date: January 2, 2014
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Ana Ivanovic, Aleksandra Tesanovic, Joseph Ernest Rock
  • Patent number: 8617080
    Abstract: Methods, systems and devices are provided for reducing the amount of data, processing and/or power required to analyze hemodynamic signals such as photoplethysmography (PPG) signals, pressure signals, and impedance signals. In response to detecting a specific event associated with a cyclical body function, a hemodynamic signal is continuously sampled during a window following the detecting of the specific event, wherein the window is shorter than a cycle associated with the cyclical body function. The hemodynamic signal is then analyzed based on the plurality of samples. This description is not intended to be a complete description of, or limit the scope of, the invention. Other features, aspects, and objects of the invention can be obtained from a review of the specification, the figures, and the claims.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: December 31, 2013
    Assignee: Pacesetter, Inc.
    Inventor: Robert G. Turcott
  • Patent number: 8617068
    Abstract: Systems and/or methods for assessing the sleep quality of a patient in a sleep session are provided. Data is collected from the patient and/or physician including, for example, sleep session data in the form of one or more physiological parameters of the patient indicative of the patient's sleep quality during the sleep session, a subjective evaluation of sleep quality, etc.; patient profile data; etc. A sleep quality index algorithm, which optionally may be an adaptive algorithm, is applied, taking into account some or all of the collected data. Sleep quality data may be presented to at least the patient, and it may be displayed in any suitable format (e.g., a format useful for the patient to be appraised on the progress of the treatment, a format useful for a sleep clinician to monitor progress and/or assess the effectiveness of differing treatment regimens, etc).
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: December 31, 2013
    Assignee: ResMed Limitied
    Inventors: Renee Francis Doherty, Philip Rodney Kwok, Muditha Pradeep Dantanarayana, Ron Richard
  • Patent number: 8617083
    Abstract: A method of creating a non-invasive predictor of both physiologic and imposed patient effort from airway pressure and flow sensors attached to the patient using an adaptive mathematical model. The patient effort is commonly measured via work of breathing, power of breathing, or pressure-time product of esophageal pressure and is important for properly adjusting ventilatory support for spontaneously breathing patients. The method of calculating this non-invasive predictor is based on linear or nonlinear calculations using multiple parameters derived from the above-mentioned sensors.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: December 31, 2013
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Neil R. Euliano, Victor L. Brennan, Paul B. Blanch, Michael J. Banner
  • Patent number: 8618939
    Abstract: A mobile electronic device comprising an odor sensor and methods of operation are disclosed. An odor is detected using an odor sensor coupled to the mobile electronic device, and a predetermined process is performed if the odor is a predefined odor.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: December 31, 2013
    Assignee: KYOCERA Corporation
    Inventors: Toshihisa Nabata, Toshikazu Hiramoto
  • Publication number: 20130345585
    Abstract: The invention relates to a monitoring apparatus for monitoring a physiological signal. A segmentation unit (4) determines signal segments from a physiological signal, which correspond to periods of the physiological signal, a classification unit (5) classifies the signal segments into a valid class and a non-valid class based on characteristics related to the signal segments, and a physiological information determination unit (7) determines physiological information from at least one of i)signal segments classified into the valid class and ii) signal segments classified into the non-valid class. The physiological information can therefore be determined based on the knowledge whether the respective signal segment is valid or not. For example, a physiological parameter like a breathing rate can be determined depending on valid adapted segments of the physiological signal, which are adapted to periods of the physiological signal.
    Type: Application
    Filed: February 8, 2012
    Publication date: December 26, 2013
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Mathan Kumar Gopal Samy, Bin Yin