Of Specified Inorganic Semiconductor Composition (e.g., Periodic Table Group Iv-vi Compositions, Etc.) Patents (Class 977/813)
  • Patent number: 7405001
    Abstract: The present disclosure relates to a nanoparticle containing at least one metal sulfide nanocrystal having a surface modified with a carboxylic acid, wherein the carboxylic acid has at least one aryl group. The present disclosure also describes a method of preparing the nanoparticle, the method consisting of: (a) providing a first solution having a first organic solvent, and a non-alkali metal salt and a carboxylic acid dissolved therein, wherein the carboxylic acid has at least one aryl group; (b) providing a sulfide material; and (c) combining the first solution and the sulfide material to form a reaction solution, thereby forming a nanoparticle containing at least one metal sulfide nanocrystal having a surface modified with the carboxylic acid, wherein the carboxylic acid has at least one aryl group.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: July 29, 2008
    Assignee: 3M Innovative Properties Company
    Inventors: Igor Y. Denisyuk, Todd R. Williams
  • Patent number: 7393410
    Abstract: There is provided a method of manufacturing a nano-wire using a crystal structure. In the method of manufacturing a nano-wire, a crystal grain having a plurality of crystal faces is used as a seed, and a crystal growing material having a lattice constant difference within a predetermined range is deposited on the crystal grain, thereby allowing the nano-wire to grow from at least one of the crystal faces. Therefore, it is possible to give the positional selectivity with a simple process using a principle of crystal growth and to generate a nano-structure such as a nano-wire, etc. having good crystallinity. Further, it is possible to generate a different-kind junction structure having various shapes by adjusting a feature of a crystal used as a seed.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: July 1, 2008
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Sang-Hyun Lee, Tae-Won Jeong, Jeong-Na Huh
  • Patent number: 7378151
    Abstract: The invention provides a semiconductor nanoparticle comprising a semiconductor nanoparticle core on the surface of which electron-releasing groups are arranged, the semiconductor nanoparticle having a fluorescent property and water-solubility. The invention also provides a water-soluble semiconductor nanoparticle with an excellent fluorescent property that can be easily prepared by adding a surface-treating material for providing a semiconductor nanoparticle with one or more kinds of electron-releasing groups, and arranging the electron-releasing groups on the surface of the semiconductor nanoparticle core.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: May 27, 2008
    Assignee: Hitachi Software Engineering Co., Ltd.
    Inventors: Keiichi Sato, Susumu Kuwabata
  • Publication number: 20080118941
    Abstract: The present invention provides signal peptide-semiconductor nanocrystal-peptide conjugates and methods for using the conjugates in methods for imaging live cells and subcellular trafficking processes.
    Type: Application
    Filed: September 2, 2005
    Publication date: May 22, 2008
    Applicant: The Regents of the University of California
    Inventors: Fanqing Chen, Daniele Gerion
  • Patent number: 7365395
    Abstract: Artificial dielectrics using nanostructures, such as nanowires, are disclosed. In embodiments, artificial dielectrics using other nanostructures, such as nanorods, nanotubes or nanoribbons and the like are disclosed. The artificial dielectric includes a dielectric material with a plurality of nanowires (or other nanostructures) embedded within the dielectric material. Very high dielectric constants can be achieved with an artificial dielectric using nanostructures. The dielectric constant can be adjusted by varying the length, diameter, carrier density, shape, aspect ratio, orientation and density of the nanostructures. Additionally, a controllable artificial dielectric using nanostructures, such as nanowires, is disclosed in which the dielectric constant can be dynamically adjusted by applying an electric field to the controllable artificial dielectric. A wide range of electronic devices can use artificial dielectrics with nanostructures to improve performance.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: April 29, 2008
    Assignee: Nanosys, Inc.
    Inventors: David P. Stumbo, Stephen A. Empedocles, Francisco Leon, J. Wallace Parce
  • Patent number: 7338618
    Abstract: A doped-type metal sulfide phosphor nanoparticle dispersion, comprising a doped-type metal sulfide phosphor nanoparticle dispersed in a hydrophobic organic solvent, wherein the doped-type metal sulfide phosphor nanoparticle comprises a surface that is modified with a surface modifier, the surface modifier being a compound represented by formula [I]: HS-L-WFormula [I] wherein L represents a divalent linking group; and W represents COOM or NH2, in which M represents a hydrogen atom, an alkali metal atom, or NX4, in which X represents a hydrogen atom or an alkyl group.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: March 4, 2008
    Assignee: Fujifilm Corporation
    Inventors: Hiroyuki Hirai, Keiko Sugihara, Junji Nishigaki
  • Patent number: 7335418
    Abstract: Disclosed is a semiconductor nanoparticle having excellent chemical durability and high luminescence properties. The chemical durability of the particle is provided by coating the semiconductor nanoparticle having high luminescence properties dispersed in an organic solvent using a surface-active agent, an amphipathic molecule, and a lipid composed of a combination of two or more layers selected from a polar group, a hydrophobic group, a hydrophilic group, and a functional group (herein, the hydrophobic group is a necessary element and the hydrophilic group and the functional group are optional).
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: February 26, 2008
    Assignee: Hitachi Software Engineering Co., Ltd.
    Inventors: Keiichi Sato, Susumu Kuwabata
  • Patent number: 7326365
    Abstract: Temperature-sensing compositions can include an inorganic material, such as a semiconductor nanocrystal. The nanocrystal can be a dependable and accurate indicator of temperature. The intensity of emission of the nanocrystal varies with temperature and can be highly sensitive to surface temperature. The nanocrystals can be processed with a binder to form a matrix, which can be varied by altering the chemical nature of the surface of the nanocrystal. A nanocrystal with a compatibilizing outer layer can be incorporated into a coating formulation and retain its temperature sensitive emissive properties.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: February 5, 2008
    Assignee: Massachusetts Institute of Technology
    Inventors: Moungi G. Bawendi, Vikram C. Sundar
  • Patent number: 7318957
    Abstract: The resistance of a semiconductor nanoparticle provided with a surface treatment, such as an OH coating or ammonia treatment, against external factors is improved. A semiconductor nanoparticle provided with a surface treatment such as an OH coating or ammonia treatment and having high-emission properties is coated with an organic material, such as hexylamine, dodecylamine, trioctylmethylammonium, tridodecilmethylammonium, and similar organic material, by migrating the semiconductor nanoparticle from an aqueous phase to an organic solvent, such as hexane or toluene, thereby providing it with durability against external factors.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: January 15, 2008
    Assignee: Hitachi Software Engineering Co., Ltd.
    Inventors: Keiichi Sato, Susumu Kuwabata
  • Publication number: 20070289491
    Abstract: A semiconductor nanocrystal composition comprising a Group V to VI semiconductor material and a method of making same. The method includes synthesizing a semiconductor nanocrystal core, where the synthesizing includes dissolving a Group V to VI anion gas in a first solvent to produce a Group V to VI anion precursor, preparing a cation precursor, and reacting the Group V to VI anion precursor with the cation precursor in the presence of a second solvent. The reacting may occur in a high pressure vessel.
    Type: Application
    Filed: February 28, 2007
    Publication date: December 20, 2007
    Applicant: EVIDENT TECHNOLOGIES, INC.
    Inventors: Adam Peng, Margaret Hines, Susanthri Perera
  • Patent number: 7309525
    Abstract: Nanocrystal comprising an inorganic core consisting of least one metal and/or at least one semi-conductor compound comprising at least one metal, the external surface of said nanocrystal being provided with an organic coating layer, consisting of at least one ligand compound of formula (I): X—Y-Z??(I) in which X represents a 1,1-dithiolate or 1,1-diselenoate group that is linked by the two atoms of sulphur or selenium to an atom of metal of the external surface of said nanocrystal; Y represents a spacer group, such as a group capable of allowing a transfer of charge or an insulating group; Z is a group chosen from among groups capable of communicating specific properties to the nanocrystal. Their methods of manufacture.
    Type: Grant
    Filed: December 1, 2004
    Date of Patent: December 18, 2007
    Assignee: Commissariat l'Energie Atomique
    Inventors: Peter Reiss, Claudia Querner, Nicolas Charvet
  • Patent number: 7303736
    Abstract: A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: December 4, 2007
    Assignee: The Regents of the University of California
    Inventors: Andrew J. Williamson, Fernando A. Reboredo
  • Patent number: 7267810
    Abstract: A method of making nanocrystals involves adding a chalocogen source to a hot solution of a metal-containing non-organometallic compound, such as CdO, in a first ligand solvent, such as TOP, and preferably subsequently cooling the resulting mixture to a lower temperature to grow the nanocrystals at said lower temperature. The method can involve either one ligand or two-ligand systems.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: September 11, 2007
    Assignee: National Research Council of Canada
    Inventors: Kui Yu, John Ripmeester
  • Patent number: 7255846
    Abstract: The present invention provides methods for synthesis of IV–VI nanostructures, and thermoelectric compositions formed of such structures. In one aspect, the method includes forming a solution of a Group IV reagent, a Group VI reagent and a surfactant. A reducing agent can be added to the solution, and the resultant solution can be maintained at an elevated temperature, e.g., in a range of about 20° C. to about 360° C., for a duration sufficient for generating nanoparticles as binary alloys of the IV–VI elements.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: August 14, 2007
    Assignees: Massachusetts Institute of Technology, The Trustees of Boston College
    Inventors: Zhifeng Ren, Gang Chen, Bed Poudel, Shankar Kumar, Wenzhong Wang, Mildred Dresselhaus
  • Patent number: 7214599
    Abstract: Silicon nanocrystals with chemically accessible surfaces are produced in solution in high yield. Silicon tetrahalide such as silicon tetrachloride (SiCl4) can be reduced in organic solvents, such as 1,2-dimethoxyethane(glyme), with soluble reducing agents, such as sodium naphthalenide, to give halide-terminated (e.g., chloride-terminated) silicon nanocrystals, which can then be easily functionalized with alkyl lithium, Grignard or other reagents to give easily processed silicon nanocrystals with an air and moisture stable surface. The synthesis can be used to prepare alkyl-terminated nanocrystals at ambient temperature and pressure in high yield. The two-step process allows a wide range of surface functionality.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: May 8, 2007
    Assignee: Evergreen Solar Inc.
    Inventors: Susan M. Kauzlarich, Richard K. Baldwin
  • Patent number: 7208133
    Abstract: A high temperature non-aqueous synthetic procedure for the preparation of substantially monodisperse IV-VI semiconductor nanoparticles is provided. The procedure includes introducing a first precursor selected from the group consisting of a molecular precursor of a Group IV element and a molecular precursor of a Group VI element into a reaction vessel that comprises at least an organic solvent to form a mixture. Next, the mixture is heated and thereafter a second precursor of a molecular precursor of a Group IV element or a molecular precursor of a Group VI element that is different from the first is added. The reaction mixture is then mixed to initiate nucleation of IV-VI nanocrystals and the temperature of the reaction mixture is controlled to provide nanoparticles having a diameter of about 20 nm or less.
    Type: Grant
    Filed: November 22, 2004
    Date of Patent: April 24, 2007
    Assignee: International Business Machines Corporation
    Inventors: Kyung-Sang Cho, Wolfgang Gaschler, Christopher B. Murray, Dmitri Talapin
  • Patent number: 7181266
    Abstract: A lymphatic system can be imaged with emissive semiconductor nanocrystals, for example, in the near infrared.
    Type: Grant
    Filed: February 6, 2004
    Date of Patent: February 20, 2007
    Assignees: Massachusetts Institute of Technology, Beth Isreal Deaconess Medical Center, Inc.
    Inventors: John V. Frangioni, Moungi G. Bawendi, Sungjee Kim, Yong Taik Lim
  • Patent number: 7150910
    Abstract: A structure including a grating and a semiconductor nanocrystal layer on the grating, can be a laser. The semiconductor nanocrystal layer can include a plurality of semiconductor nanocrystals including a Group II–VI compound, the nanocrystals being distributed in a metal oxide matrix. The grating can have a periodicity from 200 nm to 500 nm.
    Type: Grant
    Filed: November 15, 2002
    Date of Patent: December 19, 2006
    Assignee: Massachusetts Institute of Technology
    Inventors: Hans J. Eisler, Vikram C. Sundar, Michael E. Walsh, Victor I. Klimov, Moungi G. Bawendi, Henry I. Smith
  • Patent number: 7138098
    Abstract: A method of manufacturing a nanocrystallite from a M-containing salt forms a nanocrystallite. The nanocrystallite can be a member of a population of nanocrystallites having a narrow size distribution and can include one or more semiconductor materials. Semiconducting nanocrystallites can photoluminesce and can have high emission quantum efficiencies.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: November 21, 2006
    Assignee: Massachusetts Institute of Technology
    Inventors: Moungi Bawendi, Nathan E. Stott
  • Patent number: 7125605
    Abstract: A nanocrystal capable of light emission includes a nanoparticle having photoluminescence having quantum yields of greater than 30%.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: October 24, 2006
    Assignee: Massachusetts Institute of Technology
    Inventors: Moungi Bawendi, Klavs F. Jensen, Bashir O. Dabbousi, Javier Rodriguez-Viejo, Frederic Victor Mikulec
  • Patent number: 7122133
    Abstract: A stabilized dispersion of metal fine particles comprising, fine particles of metal which is obtained by reducing at least one metallic acid or salt thereof selected from the group consisting of haloauric acid, haloplatinic acid, silver nitrate and halorhodic acid by a reducing agent in the aqueous solution of (1) R-PEG-SX [R is a functional group selected from the group consisting of acetal, aldehyde, hydroxyl group, amino group, carboxyl group, active ester group, azide group, biotin group, monosaccharide, oligosaccharide, amino acid, nucleic acid, allyl group, vinyl benzyl group, methacryloyl group and acryloyl group, PEG is —(CH2CH2O)n—, X is H or pyridylthio group] or (2) R-PEG/PAMA (given structural formula A), and said fine particles load a polymer having PEG unit possessing above mentioned functional group on the surface.
    Type: Grant
    Filed: February 14, 2001
    Date of Patent: October 17, 2006
    Assignee: Japan Science & Technology Agency
    Inventors: Kazunori Kataoka, Yukio Nagasaki, Hidenori Otsuka, Takehiko Ishii