Integrated Circuit Structure With Electrically Isolated Components Patents (Class 257/499)
  • Publication number: 20130105935
    Abstract: The layout of an LSI is previously designed so that cells below pads which will be affected by stress are arranged so that the occurrence of a malfunction of the LSI which will be caused by the influence of stress is reduced or prevented. In addition to or instead of the cell arrangement, the arrangement of pads, bumps or the like may be adjusted.
    Type: Application
    Filed: September 14, 2012
    Publication date: May 2, 2013
    Inventor: Kenji YOKOYAMA
  • Publication number: 20130105936
    Abstract: A layout structure of a semiconductor integrated circuit is provided with which narrowing and breaking of metal interconnects near a cell boundary can be prevented without increasing the data amount and processing time for OPC. A cell A and a cell B are adjacent to each other along a cell boundary. The interconnect regions of metal interconnects from which to the cell boundary no other interconnect region exists are placed to be substantially axisymmetric with respect to the cell boundary, while sides of diffusion regions facing the cell boundary are asymmetric with respect to the cell boundary.
    Type: Application
    Filed: December 13, 2012
    Publication date: May 2, 2013
    Applicant: PANASONIC CORPORATION
    Inventor: PANASONIC CORPORATION
  • Publication number: 20130105937
    Abstract: A method for fabricating a semiconductor device comprises patterning a layer of photoresist material to form a plurality of mandrels. The method further comprises depositing an oxide material over the plurality of mandrels by an atomic layer deposition (ALD) process. The method further comprises anisotropically etching the oxide material from exposed horizontal surfaces. The method further comprises selectively etching photoresist material.
    Type: Application
    Filed: December 21, 2012
    Publication date: May 2, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Micron Technology, Inc.
  • Publication number: 20130099348
    Abstract: A non-volatile semiconductor memory device includes: a cell array including a plurality of first wirings, a plurality of second wirings that intersects the plurality of first wirings, and memory cells that are formed at intersections of the first wirings and the second wirings and are connected between the first and second wirings; a first contact plug that comes into contact with a side portion of the first wiring provided at a first position and extends to the first wiring provided at a second position higher than the first position in a laminated direction; and a second contact plug that comes into contact with a side portion of the second wiring provided at a third position between the first position and the second position and extends to the second wiring provided at a fourth position higher than the second position in the laminated direction.
    Type: Application
    Filed: December 17, 2012
    Publication date: April 25, 2013
    Inventor: Hiroyuki NAGASHIMA
  • Publication number: 20130088263
    Abstract: A charge flow circuit for a time measurement, including a plurality of elementary capacitive elements electrically in series, each elementary capacitive element leaking through its dielectric space.
    Type: Application
    Filed: September 13, 2012
    Publication date: April 11, 2013
    Applicant: STMicroelectronics (Rousset) SAS
    Inventors: Francesco La Rosa, Pascal Fornara
  • Publication number: 20130087880
    Abstract: A MEMS logic device comprising agate which pivots on a torsion hinge, two conductive channels on the gate, one on each side of the torsion hinge, source and drain landing pads under the channels, and two body bias elements under the gate, one on each side of the torsion hinge, so that applying a threshold bias between one body bias element and the gate will pivot the gate so that one channel connects the respective source and drain landing pad, and vice versa. An integrated circuit with MEMS logic devices on the dielectric layer, with the source and drain landing pads connected to metal interconnects of the integrated circuit. A process of forming the MEM switch.
    Type: Application
    Filed: October 8, 2012
    Publication date: April 11, 2013
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: TEXAS INSTRUMENTS INCORPORATED
  • Publication number: 20130087881
    Abstract: An interconnect plug which connects a first circuit metal interconnect to a second circuit metal interconnect provided above the first circuit metal interconnect is disposed near a feeding plug which connects a first feeding metal interconnect to a second feeding metal interconnect provided above the first feeding metal interconnect. The feeding plug and the interconnect plug are displaced relative to each other in a direction in which the first feeding metal interconnect extends.
    Type: Application
    Filed: November 30, 2012
    Publication date: April 11, 2013
    Applicant: PANASONIC CORPORATION
    Inventor: PANASONIC CORPORATION
  • Publication number: 20130082350
    Abstract: A silicon-on-insulator device having multiple crystal orientations is disclosed. In one embodiment, the silicon-on-insulator device includes a substrate layer, an insulating layer disposed on the substrate layer, a first silicon layer, and a strained silicon layer. The first silicon layer has a first crystal orientation and is disposed on a portion of the insulating layer, and the strained silicon layer is disposed on another portion of the insulating layer and has a crystal orientation different from the first crystal orientation.
    Type: Application
    Filed: November 27, 2012
    Publication date: April 4, 2013
    Inventor: Infineon Technologies AG
  • Publication number: 20130082235
    Abstract: A monolithic three dimensional integrated circuit device includes a first layer having first active devices. The monolithic three dimensional integrated circuit device also includes a second layer having second active devices that each include a graphene portion. The second layer can be fabricated on the first layer to form a stack of active devices. A base substrate may support the stack of active devices.
    Type: Application
    Filed: October 4, 2012
    Publication date: April 4, 2013
    Applicant: Qualcomm Incorporated
    Inventor: Qualcomm Incorporated
  • Patent number: 8399954
    Abstract: A semiconductor integrated circuit device according to an embodiment of the invention includes: a protective element formed on a semiconductor substrate; and a plurality of wiring layers composed of insulating layers including a layer that is a low dielectric-constant film, and metal lines, in which a metal line in a second wiring layer and a metal line in a first wiring layer among the plurality of wiring layers extend from the other region above the semiconductor substrate to a region electrically connected with the protective element.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: March 19, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Hiroshi Furuta
  • Patent number: 8400806
    Abstract: A technology that makes it possible to reduce fluctuation in operating voltage for operating the circuits formed in the core region of a semiconductor device is provided. This semiconductor device is so arranged that the core region is divided into multiple functional blocks and power can be supplied and this power supply can be interrupted with respect to each of the divided functional blocks. The core region formed in the semiconductor chip is divided into multiple functional blocks. A power switch row in which multiple power switches are arranged is disposed in the boundaries between the divided functional blocks. These power switches have a function of controlling the supply of reference potential to each of functional blocks and the interruption of this supply. A feature of the invention is that reference pads are disposed directly above the power switch rows. This shortens the wires coupling together the reference pads and the power switches.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: March 19, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Toshio Sasaki, Yoshihiko Yasu, Takashi Kuraishi, Ryo Mori
  • Patent number: 8399955
    Abstract: A method of forming patterns of a semiconductor device comprises forming a number of first insulating patterns that define sidewalls by patterning a first insulating layer formed over a semiconductor substrate, forming second insulating patterns, each second insulating pattern comprising a horizontal portion having two ends and being parallel to the semiconductor substrate and spaced protruding portions protruding from both ends of the horizontal portion parallel to the sidewalls of the first insulating patterns, forming third insulating patterns each filling a space between the protruding portions, removing the protruding portions to form trenches, and forming conductive patterns within the respective trenches.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: March 19, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventor: Tae Kyung Kim
  • Publication number: 20130062724
    Abstract: A power module includes a semiconductor chip, a first coupling conductor with one main surface coupled to one main surface of the semiconductor chip, a second coupling conductor with one main surface coupled to the other main surface of the semiconductor chip, a coupling terminal supplied with electrical power from the direct current power source, and resin material to seal the semiconductor chip, and in which the resin member has a protruding section that protrudes from the space where the first and second coupling conductors are formed opposite each other, and the coupling terminal is clamped on the protruding section, and at least one of the first or second coupling conductors is coupled to a coupling terminal by way of a metallic material that melts at a specified temperature.
    Type: Application
    Filed: March 30, 2011
    Publication date: March 14, 2013
    Inventors: Takeshi Tokuyama, Kinya Nakatsu, Toshiya Satoh, Hideaki Ishikawa
  • Patent number: 8384426
    Abstract: A novel Integrated Circuit device including a plurality of antifuse-configurable interconnect circuits, each circuit including: at least two interconnects, and at least one antifuse, wherein the antifuse is adapted to directly connect at least two interconnects. The Integrated Circuit device also includes a plurality of transistors adapted to configure at least one antifuse of the antifuse-configurable interconnect circuits, wherein the transistors are above the antifuse-configurable interconnect circuits.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: February 26, 2013
    Assignee: MonolithIC 3D Inc.
    Inventor: Zvi Or-Bach
  • Patent number: 8384221
    Abstract: A semiconductor device includes a substrate, and a semiconductor thin film bonded to the substrate, wherein the semiconductor thin film includes a plurality of discrete operating regions and an element isolating region which isolates the plurality of discrete operating regions, and the element isolating region is etched to a shallower depth than a thickness of the semiconductor thin film, and is a thinner region than the plurality of discrete operating regions.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: February 26, 2013
    Assignee: Oki Data Corporation
    Inventors: Takahito Suzuki, Hiroyuki Fujiwara
  • Publication number: 20130043553
    Abstract: An integrated circuit includes an active layer including an active pattern diffusion region. The integrated circuit further includes at least one guard band conforming to a shape of the active layer, the at least one guard band comprising a dummy diffusion layer, wherein the guard bans is spaced from the active layer at a first constant spacing in an X-axis direction and a second constant spacing in a Y-axis direction, which is perpendicular to the X-axis direction. The integrated circuit further includes a plurality of dummy diffusion patterns outside the at least one guard band.
    Type: Application
    Filed: October 23, 2012
    Publication date: February 21, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Taiwan Semiconductor Manufacturing Copmany
  • Publication number: 20130043531
    Abstract: A semiconductor device is disclosed having vertically stacked (also referred to as vertically offset) transistors in a semiconductor fin. The semiconductor fin may include lower transistors separated by a first trench and having a source and drain in a first doped region of the fin. The semiconductor fin also includes upper transistors vertically offset from the first transistors and separated by a second trench and having a source and drain in a second doped region of the fin. Upper and lower stacked gates may be disposed on the sidewalls of the fin, such that the lower transistors are activated by biasing the lower gates and upper transistors are activated by biasing the upper gates. Methods of manufacturing and operating the device are also disclosed.
    Type: Application
    Filed: October 22, 2012
    Publication date: February 21, 2013
    Applicant: Micron Technology, Inc.
    Inventor: Micron Technology, Inc.
  • Patent number: 8362482
    Abstract: A semiconductor device including a first layer including first transistors, wherein first logic circuits are constructed by the first transistors, and wherein the first logic circuits include at least one of Inverter, NAND gate, or NOR gate; and a second layer overlaying said first layer, the second layer including second transistors, wherein second logic circuits are constructed by the second transistors; wherein each logic circuit in the first logic circuits has inputs and at least one first output, the inputs are connected to the second logic circuits; wherein each logic circuit in the second logic circuits has a second output, and wherein the first transistors include first selectors adapted to selectively replace at least one of the at least one first outputs with at least one of the second outputs.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: January 29, 2013
    Assignee: MonolithIC 3D Inc.
    Inventors: Zvi Or-Bach, Brian Cronquist, Israel Beinglass, Jan Lodewijk de Jong, Deepak C. Sekar, Paul Lim
  • Publication number: 20130020673
    Abstract: A protection diode includes a semiconductor substrate having a first region, a second region surrounding the first region, and a third region surrounding the second region; a first insulation layer disposed between the second region and the third region; a first conductive type semiconductor portion disposed in the third region; a second conductive type semiconductor portion disposed in the second region; and a capacity reduction layer disposed in the first region.
    Type: Application
    Filed: July 12, 2012
    Publication date: January 24, 2013
    Inventors: Atsushi HIRAMA, Masahiko Higashi
  • Publication number: 20130015551
    Abstract: A method for fabricating a memory array includes providing a semiconductor substrate having thereon a plurality of line-shaped active areas and intermittent line-shaped trench isolation regions between the plurality of line-shaped active areas, which extend along a first direction; forming buried word lines extending along a second direction in the semiconductor substrate, the buried word lines intersecting with the line-shaped active areas and the intermittent line-shaped trench isolation regions, wherein the second direction is not perpendicular to the first direction; forming buried digit lines extending along a third direction in the semiconductor substrate, wherein the third direction is substantially perpendicular to the second direction; and forming storage nodes at storage node sites between the buried digit lines.
    Type: Application
    Filed: July 14, 2011
    Publication date: January 17, 2013
    Inventor: Kuo-Chen Wang
  • Publication number: 20130009275
    Abstract: A semiconductor integrated circuit device includes a first standard cell and a second standard cell adjacent to the first standard cell in a first direction. An interconnect is provided to extend in the first direction to electrically connect input and output terminal portions, which extend in a second direction orthogonal to the first direction. The output terminal portion extends in a first sub-direction of the second direction from a region connected to the interconnect, but not in a second sub-direction opposite to the first sub-direction. The input terminal portion extends in a second sub-direction of the second direction from a region connected to the interconnect, but not in the first sub-direction.
    Type: Application
    Filed: September 15, 2012
    Publication date: January 10, 2013
    Applicant: Panasonic Corporation
    Inventors: Atsushi TAKAHATA, Hiroyuki Uehara
  • Publication number: 20130009274
    Abstract: Provided are a memory having a 3-dimensional structure and a method of fabricating the same, by which high integration density can be obtained. A contact region connected to a word line is formed to extend from a cell region in a first direction. A plurality of step difference layers constituting the contact region are formed to have step differences in a second direction different from the first direction. Also, provided is a method of fabricating a nonvolatile memory by which step differences are formed in a direction substantially perpendicular to a direction in which active regions are aligned. An insulating layer and etching layers are sequentially formed. By performing a selective etching process and pattern transfer, step differences are formed in a direction perpendicular to a direction in which multilayered active layers are disposed.
    Type: Application
    Filed: December 29, 2010
    Publication date: January 10, 2013
    Applicant: Industry-University Cooperation Foundation Hanyang University
    Inventors: Seungbeck Lee, Seulki Oh, Junhyuk Lee
  • Publication number: 20130009230
    Abstract: A die is formed with different and optimized critical dimensions in different device levels and areas of those device levels using photolithography and etch techniques. One aspect of the invention provides for a memory array formed above a substrate, with driver circuitry formed in the substrate. A level of the memory array consists of, for example, parallel rails and a fan-out region. It is desirable to maximize density of the rails and minimize cost of lithography for the entire memory array. This can be achieved by forming the rails at a tighter pitch than the CMOS circuitry beneath it, allowing cheaper lithography tools to be used when forming the CMOS, and similarly by optimizing lithography and etch techniques for a device level to produce a tight pitch in the rails, and a more relaxed pitch in the less-critical fan-out region.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 10, 2013
    Inventors: James M. Cleeves, Roy E. Scheuerlein
  • Patent number: 8350330
    Abstract: A method of forming an integrated circuit structure on a chip includes extracting an active pattern including a diffusion region; enlarging the active pattern to form a dummy-forbidden region having a first edge and a second edge perpendicular to each other; and adding stress-blocking dummy diffusion regions throughout the chip, which includes adding a first stress-blocking dummy diffusion region adjacent and substantially parallel to the first edge of the dummy-forbidden region; and adding a second stress-blocking dummy diffusion region adjacent and substantially parallel to the second edge of the dummy-forbidden region. The method further includes, after the step of adding the stress-blocking dummy diffusion regions throughout the chip, adding general dummy diffusion regions into remaining spacings of the chip. A structure includes a target diffusion region including a first edge with a first length and a second edge with a second edge perpendicular to the first length.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: January 8, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Lee-Chung Lu, Chien-Chih Kuo, Jian-Yi Li, Sheng-Jier Yang
  • Publication number: 20130001736
    Abstract: A high-voltage integrated circuit device has formed therein a high-voltage junction terminating region that is configured by a breakdown voltage region formed of an n-well region, a ground potential region formed of a p-region, a first contact region and a second contact region. An opposition section of the high-voltage junction terminating region, whose distance to an intermediate-potential region formed of a p-drain region is shorter than those of other sections, is provided with a resistance higher than those of the other sections. Accordingly, a cathode resistance of a parasitic diode formed of the p-region and the n-well region increases, locally reducing the amount of electron holes injected at the time of the input of a negative-voltage surge. As a result, an erroneous operation or destruction of a logic part of a high-side circuit can be prevented when the negative-voltage surge is applied to an H-VDD terminal or a Vs terminal.
    Type: Application
    Filed: September 12, 2011
    Publication date: January 3, 2013
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventor: Masaharu Yamaji
  • Publication number: 20130001735
    Abstract: A galvanic isolation integrated circuit system includes a semiconductor substrate; a layer of thermally conductive material, e.g., CVD nano- or poly-diamond thin film or boron nitride CVD thin film, formed over the semiconductor substrate; a first integrated circuit structure formed over the layer of thermally conductive material; a second integrated circuit structure formed over the layer of thermally conductive material, the second integrated circuit structure being spaced apart from the first integrated circuit structure; and a galvanic isolation structure formed over the layer of thermally conductive material between the first and second integrated circuit structures and connected to the first integrated circuit structure and the second integrated circuit structure.
    Type: Application
    Filed: June 28, 2011
    Publication date: January 3, 2013
    Inventors: Peter J. Hopper, William French, Ann Gabrys
  • Publication number: 20120326263
    Abstract: A semiconductor diode includes a semiconductor substrate having a lightly doped region with a first conductivity type therein. A first heavily doped region with a second conductivity type opposite to the first conductivity type is in the lightly doped region. A second heavily doped region with the first conductivity type is in the lightly doped region and is in direct contact with the first heavily doped region. A first metal silicide layer is on the semiconductor substrate and is in direct contact with the first heavily doped region. A second metal silicide layer is on the semiconductor substrate and is in direct contact with the second heavily doped region. The second metal silicide layer is spaced apart from the first metal silicide layer.
    Type: Application
    Filed: June 24, 2011
    Publication date: December 27, 2012
    Applicant: MEDIATEK INC.
    Inventors: Ming-Tzong Yang, Tung-Hsing Lee
  • Publication number: 20120326264
    Abstract: A method of fabricating a semiconductor device of the present invention includes the steps of forming a single crystal semiconductor device, attaching the single crystal semiconductor device on a substrate, forming a TFT on a glass substrate, and electrically connecting the single crystal semiconductor device and the TFT. In the step of forming a single crystal semiconductor device, an alignment mark is provided at the single crystal semiconductor device. In the step of attaching a single crystal semiconductor device, the single crystal semiconductor device is positioned and attached on the glass substrate based on the machining accuracy of an attachment device. In the step of forming a TFT, the TFT is positioned and provided on the glass substrate based on the alignment mark provided at the single crystal semiconductor device.
    Type: Application
    Filed: May 18, 2010
    Publication date: December 27, 2012
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Yasumori Fukushima, Yutaka Takafuji, Kenshi Tada
  • Publication number: 20120313213
    Abstract: A semiconductor structure having: a wafer; and a plurality of chips disposed on the wafer, each one of the chips having a linear array of a plurality of transistors, the linear array being at an oblique angle with respect to grid lines in the wafer separating the chips. Each one of the transistors has a plurality of parallel control electrodes extending longitudinally along an axis perpendicular to the axis along which the plurality of transistors is distributed. A matching circuit is disposed on the integrated circuit chip between a corner of the integrated circuit chip and the plurality of transistors.
    Type: Application
    Filed: June 7, 2011
    Publication date: December 13, 2012
    Applicant: Raytheon Company
    Inventors: Paul M. Head, Michael T. Borkowski, Robert B. Hallock
  • Publication number: 20120313111
    Abstract: A semiconductor chip comprises: a semiconductor structure having a single crystal substrate having a non-cubic crystallographic structure and epitaxial layers disposed on the substrate wherein adjacent sides of the semiconductor structure are at oblique angles. A method for separating a plurality of integrated circuit chips. The method includes: providing a semiconductor wafer having single crystal substrate, such substrate having a non-cubic crystallographic structure with an epitaxial layer disposed on the substrate; forming scribe lines at oblique angles to one another in the epitaxial layer; and cutting or cleaving through the substrate along the scribe lines to separate the chips.
    Type: Application
    Filed: June 7, 2011
    Publication date: December 13, 2012
    Applicant: Raytheon Company
    Inventors: Robert B. Hallock, Paul M. Head
  • Publication number: 20120306045
    Abstract: A semiconductor device includes CMP dummy tiles (36) that are converted to active tiles by forming well regions (42) at a top surface of the dummy tiles, forming silicide (52) on top of the well regions, and forming a metal interconnect structure (72, 82) in contact with the silicided well tie regions for electrically connecting the dummy tiles to a predetermined supply voltage to provide latch-up protection.
    Type: Application
    Filed: June 1, 2011
    Publication date: December 6, 2012
    Inventors: Robert S. Ruth, Mark A. Kearney, Bernard J. Pappert, Juxiang Ren, Jeff L. Warner
  • Publication number: 20120306024
    Abstract: The invention relates to semiconductor components, in particular to a scalable construction for lateral semiconductor components having high current-carrying capacity. A transistor cell according to the invention comprises a control electrode (203), a plurality of source fields (201) and a plurality of drain fields (202). The control electrode completely encloses at least one of the source fields or drain fields. A transistor according to the invention comprises a plurality of transistor cells on a substrate, each of which comprises a source contact field (206) and/or a drain contact field (207). The source contact fields are conductively connected to each other on the other side of the substrate and the drain contact fields are likewise conductively connected to each other on the other side of the substrate.
    Type: Application
    Filed: February 10, 2011
    Publication date: December 6, 2012
    Inventors: Oliver Hilt, Hans-Joachim Wuerfl
  • Publication number: 20120306018
    Abstract: A monolithic integrated circuit and method includes a substrate, a plurality of semiconductor device layers monolithically integrated on the substrate, and a metal wiring layer with vias interconnecting the plurality of semiconductor device layers. The semiconductor device layers are devoid of bonding or joining interface with the substrate.
    Type: Application
    Filed: May 31, 2011
    Publication date: December 6, 2012
    Applicant: International Business Machines Corporation
    Inventors: Stephen M. Gates, Daniel C. Edelstein, Satyanarayana V. Nitta
  • Publication number: 20120305941
    Abstract: A well region formation method and a semiconductor base in the field of semiconductor technology are provided. A method comprises: forming isolation regions in a semiconductor substrate to isolate active regions; selecting at least one of the active regions, and forming a first well region in the selected active region; forming a mask to cover the selected active region, and etching the rest of the active regions, so as to form grooves; and growing a semiconductor material by epitaxy to till the grooves. Another method comprises: forming isolation regions in a semiconductor substrate for isolating active regions; forming well regions in the active regions; etching the active regions to form grooves, such that the grooves have a depth less than or equal to a depth of the well regions; and growing a semiconductor material by epitaxy to till the grooves.
    Type: Application
    Filed: July 26, 2011
    Publication date: December 6, 2012
    Inventors: Haizhou Yin, Huilong Zhu, Zhijong Luo
  • Publication number: 20120299145
    Abstract: Apparatus configured for the fabrication of three-dimensional integrated devices and three-dimensional integrated devices fabricated therefrom are described. A device side of a donor wafer is coated with a polymer film and exposure of a substrate side to an oxidizing plasma creates a continuous SiO2 film. Portions of the substrate side are selectively coated with a polymer film and etching of uncoated areas removes at least a substantial portion of the crystalline substrate. A plasma etch tool etches a crystalline substrate to within a pre-determined thickness. The silicon portions of the substrate side are etched by exposure to TMAH. After etching, the donor semiconductor wafer is supported by portions of the substrate that were not etched. The supporting structure allows flexing of the donor semiconductor wafer within the etched areas to enable conformality and reliable bonding to the device surfaces of an acceptor wafer to form a three dimensional integrated device.
    Type: Application
    Filed: August 9, 2012
    Publication date: November 29, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Douglas C. LA TULIPE, JR., Sampath PURUSHOTHAMAN, James VICHICONTI
  • Patent number: 8319471
    Abstract: A system and method for digital management and control of power conversion from battery cells. The system utilizes a power management and conversion module that uses a CPU to maintain a high power conversion efficiency over a wide range of loads and to manage charge and discharge operation of the battery cells. The power management and conversion module includes the CPU, a current sense unit, a charge/discharge unit, a DC-to-DC conversion unit, a battery protection unit, a fuel gauge and an internal DC regulation unit. Through intelligent power conversion and charge/discharge operations, a given battery type is given the ability to emulate other battery types by conversion of the output voltage of the battery and adaptation of the charging scheme to suit the battery.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: November 27, 2012
    Assignee: Solaredge, Ltd.
    Inventors: Meir Adest, Lior Handelsman, Yoav Galin, Amir Fishelov, Guy Sella
  • Publication number: 20120292735
    Abstract: The threshold voltage of parasitic transistors formed at corners of shallow trench isolation regions is increased and mobility decreased by employing a high-K dielectric material. Embodiments include STI regions comprising a liner of a high-K dielectric material extending proximate trench corners. Embodiments also include STI regions having a recess formed in the trench, wherein the recess contains a high-K dielectric material, in the form of a layer or spacer, extending proximate trench corners.
    Type: Application
    Filed: May 20, 2011
    Publication date: November 22, 2012
    Applicant: GLOBALFOUNDRIES Singapore Pte.Ltd.
    Inventors: Shyue Seng (Jason) Tan, Ying Keung Leung, Elgin Quek
  • Patent number: 8314472
    Abstract: A semiconductor structure comprises a substrate and a metal layer disposed over the substrate. The metal layer comprises a first electrical trace and a second electrical trace. The semiconductor structure comprises a conductive pillar disposed directly on and in electrical contact with the first electrical trace; and a dielectric layer selectively disposed between the metal layer and the conductive pillar. The dielectric layer electrically isolates the second electrical trace from the pillar.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: November 20, 2012
    Assignee: Avago Technologies Wireless IP (Singapore) Pte. Ltd.
    Inventors: Ray Parkhurst, Tarak Railkar, William Snodgrass
  • Patent number: 8314635
    Abstract: A method of designing integrated circuits includes providing a first chip and a second chip identical to each other. Each of the first chip and the second chip includes a base layer including a Logic Transistor Unit (LTU) array. The LTU array includes LTUs identical to each other and arranged in rows and columns. The method further includes connecting the base layer of the first chip to form a first application chip; and connecting the base layer of the second chip to form a second application chip different from the first application chip.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: November 20, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Oscar M. K. Law, Kuo H. Wu
  • Patent number: 8310025
    Abstract: An interconnect substrate is placed over a first inductor of a semiconductor chip and a second inductor of another semiconductor chip. The interconnect substrate includes a third inductor and a fourth inductor. The third inductor is located above the first inductor. The distance from the first inductor to the third inductor is longer than the distance from the second inductor to the fourth inductor.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: November 13, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Yasutaka Nakashiba
  • Publication number: 20120280354
    Abstract: An integrated circuit device having a plurality of lines is described in which the widths of the lines, and the spacing between adjacent lines, vary within a small range which is independent of variations due to photolithographic processes, or other patterning processes, involved in manufacturing the device. A sequential sidewall spacer formation process is described for forming an etch mask for the lines, which results in first and second sets of sidewall spacers arranged in an alternating fashion. As a result of this sequential sidewall spacer process, the variation in the widths of the lines across the plurality of lines, and the spacing between adjacent lines, depends on the variations in the dimensions of the sidewall spacers. These variations are independent of, and can be controlled over a distribution much less than, the variation in the size of the intermediate mask element caused by the patterning process.
    Type: Application
    Filed: May 5, 2011
    Publication date: November 8, 2012
    Applicant: SYNOPSYS, INC.
    Inventors: VICTOR MOROZ, XI-WEI LIN
  • Publication number: 20120273788
    Abstract: This invention generally relates to a patterned substrate for an electronic device and to electronic devices, device arrays, field effect transistors and transistor arrays comprising the patterned substrate. The invention also relates to a logic circuit, display, memory or sensor device comprising the patterned substrate. Further the invention relates to a method of patterning a substrate for an electronic device. In an embodiment, a patterned substrate for an electronic device comprises: a first body having an edge; a second body comprising an elongate plurality of printed droplets having an edge adjacent to and substantially aligned to said first body edge; and a separation between said first body edge and said second body edge, wherein said elongate plurality of printed droplets is at an angle of about 5 degrees to about 90 degrees to said first body edge.
    Type: Application
    Filed: July 29, 2010
    Publication date: November 1, 2012
    Inventors: Henning Sirringhaus, Mario Carioni, Enrico Gili
  • Patent number: 8299560
    Abstract: An electronic device can include a buried conductive region, a buried insulating layer over the buried conductive region, and a semiconductor layer disposed over the buried insulating layer, wherein the semiconductor layer has a primary surface and an opposing surface, and the buried conductive region is disposed closer to the opposing surface than to the primary surface. The electronic device can also include a current-carrying electrode of a first transistor, wherein the current carrying electrode is disposed along the primary surface and spaced apart from the buried conductive layer. The electronic device can also include a vertical conductive structure extending through the buried insulating layer, wherein the vertical conductive structure is electrically connected to the current-carrying electrode and the buried conductive region.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: October 30, 2012
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Gary H. Loechelt, Gordon M. Grivna, Peter J. Zdebel
  • Patent number: 8299562
    Abstract: An isolation structure is described, including a doped semiconductor layer disposed in a trench in a semiconductor substrate and having the same conductivity type as the substrate, gate dielectric between the doped semiconductor layer and the substrate, and a diffusion region in the substrate formed by dopant diffusion through the gate dielectric from the doped semiconductor layer. A device structure is also described, including the isolation structure and a vertical transistor in the substrate beside the isolation structure. The vertical transistor includes a first S/D region beside the diffusion region and a second S/D region over the first S/D region both having a conductivity type different from that of the doped semiconductor layer.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: October 30, 2012
    Assignee: Nanya Technology Corporation
    Inventors: Chung-Ren Li, Shing-Hwa Renn, Yu-Teh Chiang
  • Patent number: 8299564
    Abstract: Formation of transistors, such as, e.g., PMOS transistors, with diffusion regions having different depths for equalization of performance among transistors of an integrated circuit is described. Shallow-trench isolation structures are formed in a substrate formed at least in part of silicon for providing the transistors with at least substantially equivalent channel widths and lengths. A series of masks and etches is performed to form first recesses and second recesses defined in the silicon having different depths and respectively associated with first and second transistors. The second recesses are deeper than the first recesses. A silicon germanium film is formed in the first recesses and the second recesses. The silicon germanium film in the second recesses is thicker than the silicon germanium film in the first recesses, in order to increase performance of the second transistor so it is closer to the performance of the first transistor.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: October 30, 2012
    Assignee: Xilinx, Inc.
    Inventors: Yun Wu, Bei Zhu, Zhiyuan Wu, Michael J. Hart
  • Patent number: 8299561
    Abstract: Integrated circuits having doped bands in a substrate and beneath high-voltage semiconductor-on-insulator (SOI) devices are provided. In one embodiment, the invention provides an integrated circuit comprising: a semiconductor-on-insulator (SOI) wafer including: a substrate; a buried oxide (BOX) layer atop the substrate; and a semiconductor layer atop the BOX layer; a plurality of high voltage (HV) devices connected in series within the semiconductor layer; a doped band within the substrate and below a first of the plurality of HV devices; and a contact extending from the semiconductor layer and through the BOX layer to the doped band.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: October 30, 2012
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, Beth Ann Rainey, Yun Shi
  • Patent number: 8299559
    Abstract: An analog portion of a mixed-mode integrated circuit system includes a plurality of analog input cells, a plurality of analog output cells, and an interconnect array. The input cells are, configured to program analog functions. The output cells are configured to provide Analog and digital outputs corresponding to the programmed analog functions. The interconnect array processes the programmed analog functions into signals indicative of the analog functions. The interconnect array selectively provides the signals to the plurality of analog output cells.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: October 30, 2012
    Inventor: Hagop Nazarian
  • Publication number: 20120267751
    Abstract: A method for making an interconnection component is disclosed, including forming a plurality of metal posts extending away from a reference surface. Each post is formed having a pair of opposed end surface and an edge surface extending therebetween. A dielectric layer is formed contacting the edge surfaces and filling spaces between adjacent ones of the posts. The dielectric layer has first and second opposed surfaces adjacent the first and second end surfaces. The dielectric layer has a coefficient of thermal expansion of less than 8 ppm/° C. The interconnection component is completed such that it has no interconnects between the first and second end surfaces of the posts that extend in a lateral direction. First and second pluralities of wettable contacts are adjacent the first and second opposed surfaces. The wettable contacts are usable to bond the interconnection component to a microelectronic element or a circuit panel.
    Type: Application
    Filed: April 21, 2011
    Publication date: October 25, 2012
    Applicant: TESSERA RESEARCH LLC
    Inventors: Belgacem Haba, Ilyas Mohammed
  • Patent number: 8293545
    Abstract: Test structures including test trenches are used to define critical dimension of trenches in a via level of an integrated circuit to produce substantially the same depth. The trenches are formed at the periphery of the IC to serve as guard rings.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: October 23, 2012
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Hai Cong, Yan Shan Li, Chun Hui Low, Yelehanka Ramachandramurthy Pradeep, Liang Choo Hsia
  • Publication number: 20120261786
    Abstract: A semiconductor device includes: a semiconductor substrate including an active element formation face on which an active element is formed; detection electrodes detecting a remaining amount of ink by being wet in the ink; an antenna transmitting and receiving information; a storage circuit storing information relating to the ink; and a control circuit controlling the detection electrodes, the antenna, and the storage circuit.
    Type: Application
    Filed: June 29, 2012
    Publication date: October 18, 2012
    Applicant: SEIKO EPSON CORPORATION
    Inventor: Nobuaki HASHIMOTO