Electrophoretic Or Electro-osmotic Apparatus Patents (Class 204/600)
  • Patent number: 12179203
    Abstract: An electrowetting system for actuating droplets of a first composition and of a second composition. The system includes: a plurality of electrodes configured to manipulate droplets of fluid in a microfluidic space, each electrode being coupled to circuitry which applies driving voltages to the electrode; and a processing unit operably connected to a look up table correlating drive sequences to chemical species and at least one composition parameter. The processing unit is configured to: receive data of a first chemical species and a first composition parameter of the first composition; receive data of a second chemical species and a second composition parameter of the second composition; correlate a first drive sequence with the first chemical species and the first composition parameter; correlate a second drive sequence with the second chemical species and the second composition parameter; and output the first drive sequence and the second drive sequence to the electrodes.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: December 31, 2024
    Assignee: NUCLERA LTD
    Inventors: Richard J. Paolini, Jr., Luke M. Slominski, Timothy J. O'Malley, David Zhitomirsky
  • Patent number: 12181393
    Abstract: The invention is directed to a scalable concentration device and method of use thereof based on electrokinetics.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: December 31, 2024
    Inventors: Jongyoon Han, Hyuckjin Kwon
  • Patent number: 12163872
    Abstract: Provided is a particle sorting kit provided with a sample accommodation unit that accommodates a sample liquid containing particles, a microchip provided with a sample flow path through which the sample liquid flows and a sorting flow path in which target particles are sorted from the sample liquid, and a filter unit provided with a filter and a tapered portion that decreases a flow path diameter in a flow direction downstream of the filter.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: December 10, 2024
    Assignee: SONY GROUP CORPORATION
    Inventors: Shinji Tashiro, Tatsumi Ito
  • Patent number: 12158409
    Abstract: Disclosed are a blood analysis system, a blood analyzer, a blood analysis method and a storage medium. The blood analysis method includes: acquiring at least two types of optical signals of a test sample derived from a blood sample, wherein red blood cells in the test sample are lysed, blood cells in the test sample are stained by a fluorescence dye, and the at least two types of optical signals include scattered light signals and/or fluorescent signals; generating a scattergram based on the at least two types of optical signals; identifying a preset region in the scattergram based on the at least two types of optical signals; and acquiring detection data of a platelet subpopulation based on the preset region.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: December 3, 2024
    Assignee: Shenzhen Mindray Bio-Medical Electronics Co., Ltd.
    Inventors: Bo Ye, Huan Qi, Wenbo Zheng, Yi Ye
  • Patent number: 12157117
    Abstract: A pipette dispenser vision system and method are disclosed. For example, a pipette dispenser vision system is provided for tracking pipettes with respect to dispensing liquid into target fluid wells, vessels, and/or reservoirs. The presently disclosed pipette dispenser vision system may include, for example, a computing device, a red/green/blue (RGB) imaging device, an infrared (IR) imaging device, an IR illumination source, and an IR sensor; all arranged with respect to, for example, a single-channel and/or a multi-channel pipette for dispensing liquid into a dispensing platform. Further, a method of using the presently disclosed pipette dispenser vision system is provided. For example, the method processes image data from the RGB imaging device and/or the IR imaging device to monitor/verify certain operations of the pipetting process and/or dispensing platform.
    Type: Grant
    Filed: September 7, 2021
    Date of Patent: December 3, 2024
    Assignee: Nicoya Lifesciences Inc.
    Inventors: Ryan Cameron Denomme, Krishna Iyer, Patrick Sterlina, Gordon H. Hall, Arjun Sudarsan
  • Patent number: 12145096
    Abstract: A planar separation component for gas chromatograph includes a substrate made of aluminum, a porous anodic aluminum oxide separation member, and a cover unit. The substrate has a planar body, and a first flow channel having a first inlet and a first outlet. The separation member is formed on the substrate, and has a channel-defining wall defining the first flow channel and a plurality of nanosized pores in spatial communication with the first flow channel. The cover unit is bonded to the planar body for covering the first flow channel. Methods for manufacturing the planar separation component and separating a mixture containing compounds different in boiling point using the planar separation component are also disclosed.
    Type: Grant
    Filed: July 1, 2021
    Date of Patent: November 19, 2024
    Assignee: National Taiwan Normal University
    Inventors: Chia-Jung Lu, Chih-Chieh Fan
  • Patent number: 12129520
    Abstract: Disclosed is a DNA sequencing method. The DNA sequencing method of this invention comprises: (1) adding a tag sequence at the 3? terminus of the DNA to be sequenced so as to form a DNA to be sequenced including the tag sequence, the nucleotide sequence of said tag sequence being the reverse complement of the nucleotide sequence of the sequencing primer; (2) mixing the DNA to be sequenced including the tag sequence and the sequencing primer so as to form a product having a 5? terminus double strand and a single main strand; (3) after step (2) is completed, the product is mixed separately with dATP, dCTP, dTTP, and dGTP to obtain four systems, each system is separately added to a single-molecule device modified by a DNA polymerase, and electric signals are read. Experiments verify that the method of this invention performs DNA sequencing and has important application value.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: October 29, 2024
    Assignee: PEKING UNIVERSITY
    Inventors: Xuefeng Guo, Xiaolong Wang, Haina Ci
  • Patent number: 12105082
    Abstract: A method for separating a target substance includes: forming a mixture containing: a target substance-magnetic particle complex that includes: a sample containing a target substance, and magnetic particles to which a first receptor is fixed, wherein the first receptor is adapted to specifically recognize a site of the target substance; and separating the target substance-magnetic particle complex from the mixture by magnetism and electrophoresis.
    Type: Grant
    Filed: April 21, 2021
    Date of Patent: October 1, 2024
    Assignee: TERUMO KABUSHIKI KAISHA
    Inventor: Hiroya Sato
  • Patent number: 12085545
    Abstract: A process of determining a modified separation method for a sample separation apparatus based on an initial separation method, including carrying out the initial separation method on a sample separation apparatus, detecting sensor data at the sample separation apparatus during carrying out the initial separation method, and carrying out a numerical analysis for determining the modified separation method by modifying at least one operation parameter of the initial separation method and by using the detected sensor data.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: September 10, 2024
    Assignee: Agilent Technologies, Inc.
    Inventors: Bettina Schuhn, Uwe Effelsberg
  • Patent number: 12083521
    Abstract: The present invention relates to a sample cartridge for incubating and/or analyzing a dispersion of particles, cells or droplets and/or for performing biochemical reactions with or in such dispersion. The present invention furthermore relates to a device for incubating a dispersion of particles, cells or droplets and/or for performing a biochemical reaction therewith. Moreover, the present invention also relates to the use of a sample cartridge or of a device for generating and/or processing a dispersion of particles, cells or droplets. Moreover, the present invention relates to a method of processing a dispersion of particles, cells or droplets. Furthermore, the present invention relates to a method of generating a dispersion of droplets and to a method of generating a dispersion of solid or semi-solid particles.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: September 10, 2024
    Assignee: BLINK AG
    Inventors: Torsten Schulz, Eugen Ermantraut, Katrin Steinmetzer, Alrik Wolff
  • Patent number: 12070748
    Abstract: A well plate for measuring an analyte in a sample is disclosed. The well plate includes at least a first, a second, and a third electrode. The first electrode has a higher sensitivity to a first analyte than the second and third electrodes. The second electrode has a higher sensitivity to a second analyte than the first and third electrodes.
    Type: Grant
    Filed: April 11, 2020
    Date of Patent: August 27, 2024
    Assignee: Colorado State University Research Foundation
    Inventors: Thomas W. Chen, Daniel S. Ball, Caleb R. Begly
  • Patent number: 12066395
    Abstract: The subject of the present invention is the sensor for the impedance measurements of the biological or chemical factor sample in the potentiostat system comprising the reference electrode RE and counting electrode CE with the electric contacts leading to the edge of the sensor in the form of the edge connector characterised in that it contains n working electrodes WEn, wherein n>2 and preferably n is in the range 2 to 256, and the reference electrode RE is common for all working electrodes WEn and the fragment thereof present by the working electrode WEn forms the measuring segment RE-CE-WEn. The subject of the invention is also the detection method of the chemical or biological factor in the sample using such a sensor.
    Type: Grant
    Filed: February 6, 2019
    Date of Patent: August 20, 2024
    Inventors: Artur Kupczunas, Dawid Nidzworski, Krzysztof Urbanski, Jakub Mnich, Katarzyna Pala, Tomasz Gondek, Elzbieta Czaczyk, Karolina Dziabowska
  • Patent number: 12050198
    Abstract: Aiming at achievement of timely installation of the cartridge, sequential execution of the pretreatment process in the order of installation of the cartridge, and individual shifting of the process to the electrophoresis process upon completion of the pretreatment process, the electrophoresis device according to the present invention includes a plurality of capillaries each filled with a separation medium, a thermostat chamber for holding the capillaries at a predetermined temperature, an irradiation detector which executes light irradiation and detection in an electrophoresis process using the capillaries, a high voltage power supply unit for voltage application to the capillaries, a liquid feeding mechanism for feeding the separation medium to the capillaries, and an autosampler for conveying containers each holding a reagent or a sample to the capillary. The voltage application to the capillaries by the high voltage power supply unit is controlled for each of the capillaries.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: July 30, 2024
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Taro Nakazawa, Shuhei Yamamoto, Shunichi Kariya, Katsuhiro Aritome, Ayaka Okuno, Ryoji Inaba
  • Patent number: 12007653
    Abstract: A glazing unit with electrically controllable optical properties having multiple independent switching regions includes a laminated glass pane with an electrically controllable functional element and a control unit to control the optical properties of the functional element. The functional element has an active layer with electrically controllable optical properties between a first planar electrode and a second planar electrode. The first planar electrode is subdivided by at least one insulation line into at least two separate electrode segments, wherein a voltage is applicable independently between each electrode segment of the first planar electrode and the second planar electrode in order to control the optical properties of the section of the active layer located between them. The control unit is adapted to apply an AC voltage between at least two electrode segments of the first planar electrode and the second planar electrode, wherein the AC voltages are phase-shifted.
    Type: Grant
    Filed: April 29, 2022
    Date of Patent: June 11, 2024
    Assignee: SAINT-GOBAIN GLASS FRANCE
    Inventor: Richard Stelzer
  • Patent number: 11946783
    Abstract: The present application relates to a photon measuring and reading device, which belongs to the field of detection equipment, including a mounting seat and a photon counter. The photon counter can move up and down on the mounting seat. The mounting seat is provided with a vertically arranged sliding trough, and the photon counter is provided with a sliding rod slidably connected with the sliding trough. A double head motor is arranged on the mounting base, and a linkage mechanism is arranged between the output shaft at the tail end of the double head motor and the sliding rod. The bottom end of the photon counter is fixed with a box body.
    Type: Grant
    Filed: January 6, 2022
    Date of Patent: April 2, 2024
    Assignee: SOPHONIX CO., LTD.
    Inventors: Kuiliang Han, Shiliang Zhou, Xiqiang Zhang, Yongcheng Sun, Haiyang Zhang
  • Patent number: 11927740
    Abstract: An active matrix electrowetting on dielectric (AM-EWoD) device including a substrate with thin-film transistors (TFT), a dielectric layer, and a spatially variable wettability layer covering the dielectric layer. As depicted herein, the spatially variable wettability layer may include a plurality of portions having different contact angles, one or more contact angle gradients, or both.
    Type: Grant
    Filed: November 19, 2020
    Date of Patent: March 12, 2024
    Assignee: Nuclera LTD
    Inventor: David Zhitomirsky
  • Patent number: 11927773
    Abstract: A liquid lens comprising: a lens body including a cavity, a control electrode, and a common electrode; a first liquid disposed within the cavity and in electrical communication with the common electrode; a second liquid disposed within the cavity; an insulating layer in contact with the first liquid and the second liquid and separating the first liquid and the second liquid from the control electrode; and a driver driving a voltage differential across the common electrode and the control electrode, with the first liquid resisting current flow between the common electrode and the control electrode and thereby raising a temperature of the first liquid from a current temperature to a predetermined temperature, which is higher than the current temperature. The driver raises the temperature of the first liquid from the current temperature to the predetermined temperature by increasing a frequency of a voltage waveform of the voltage differential.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: March 12, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Ian Armour McKay, Dragan Pikula, Dean Michael Thelen
  • Patent number: 11927560
    Abstract: Described are methods and devices that can accelerate the process and quantify the parameters for bio/chemical material samples. In some embodiments, a QMAX (Q: quantification; M: magnifying; A: adding reagents; X: acceleration) device having two or more electrodes capable of accelerating the electrical measurement process of the samples. In addition, the electrical measurement technology of the QMAX device enables for extraction, separation, and purification of sample components, such as but not limited to nucleic acids. In some embodiments, the QMAX device includes a plate for hosting a small sensing chip to facilitate a bio/chemical sensing of the sensing chip.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: March 12, 2024
    Assignee: Essenlix Corporation
    Inventors: Stephen Y. Chou, Wei Ding, Yufan Zhang
  • Patent number: 11874216
    Abstract: The present disclosure relates to a biochemical detection instrument. The technical solution is an automatic reactive oxygen species content detection system suitable for a cell microenvironment that includes: a sample transmission reaction system and a detection system which are communicated in sequence through a light avoiding pipeline. A washing system is in communication with the sample transmission reaction system through a water pipeline, and a purge system is in communication with the sample transmission reaction system through a gas pipeline. The sample transmission reaction system further includes a sample injector and a DCFH supply bin which are communicated with a reaction bin through light avoiding pipelines after being connected in parallel. Sample injection valves are respectively configured between the sample injection valve and the reaction bin and between the DCFH supply bin and the reaction bin.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: January 16, 2024
    Assignee: ZHEJIANG UNIVERSITY
    Inventors: Yongdong Dai, Lulu Liu, Songying Zhang, Xiaomei Tong, Xiaona Lin, Xiang Lin, Yonghang Shen
  • Patent number: 11867208
    Abstract: A method is provided for producing a vortex ring in a liquid medium. The method includes concatenating pairs of insulated anode and cathode rings into a stack; inserting the stack into a vertically oriented chamber; disposing a cylindrical cavity below the chamber; inserting a piston into the cavity; connecting the chamber to the medium; and raising the piston to displace the medium while the stack produces an annular bubble that induces the vortex ring. In particular, the medium is water and the stack separates the medium into hydrogen and oxygen gas.
    Type: Grant
    Filed: September 29, 2021
    Date of Patent: January 9, 2024
    Assignee: United States of America, as represented by the Secretary of the Navy
    Inventor: Christopher J. Weiland
  • Patent number: 11865543
    Abstract: An apparatus for forming a plurality of microdroplets from a droplet includes a substrate, a dielectric layer on the substrate and having a plurality of hydrophilic surface regions spaced apart from each other by a hydrophobic surface, and a plurality of electrodes covered by the dielectric layer. The electrodes are configured to form an electric field across the droplet in response to voltages provided by a control circuit to move the droplet across the dielectric layer in a lateral direction while leaving portions of the droplet on the hydrophilic surface regions to form the plurality of microdroplets on the hydrophilic surface regions.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: January 9, 2024
    Assignee: MGI Tech Co., Ltd.
    Inventors: Jian Gong, Liang Wang, Yan-You Lin, Cheng Frank Zhong
  • Patent number: 11854448
    Abstract: A method for driving electro-optic displays including electro-optic material disposed between a common electrode and a backplane. The backplane includes an array of pixel electrodes, each coupled to a transistor. A display controller applies waveforms to the pixel electrodes. The method includes applying first measurement waveforms to a first portion of the pixel electrodes. During each frame of the first measurement waveforms, the same time-dependent voltages are applied to each pixel electrode of the first portion of pixel electrodes. The method includes determining the impedance of the electro-optic material in proximity to the first portion of pixel electrodes based on a measurement of the current flowing through a current measurement circuit and the time-dependent voltages applied to each pixel electrode during the first measurement waveforms, and selecting driving waveforms based on the impedance of the electro-optic material in proximity to the first portion of pixel electrodes.
    Type: Grant
    Filed: December 27, 2022
    Date of Patent: December 26, 2023
    Assignee: E Ink Corporation
    Inventors: Karl Raymond Amundson, Teck Ping Sim, Michael D. McCreary, Yi Lu, Kosta Ladavac
  • Patent number: 11834650
    Abstract: The present invention relates to methods of transforming a cell by use of an acoustic transducer. In particular embodiments, the radiofrequency signal to the transducer can be tuned to provide optimal membrane disruption of the cell; and an agent, such as a nucleic acid, can then be delivered to the cell.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: December 5, 2023
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Anne Ruffing, Darren W. Branch, Ronald P. Manginell
  • Patent number: 11806729
    Abstract: The present technology relates to improved device and methods of use of insulator-based dielectrophoresis. This device provides a multi-length scale element that provides enhanced resolution and separation. The device provides improved particle streamlines, trapping efficiency, and induces laterally similar environments. Also provided are methods of using the device.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: November 7, 2023
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Mark Hayes, Claire Crowther, Paul Jones
  • Patent number: 11779926
    Abstract: An electrowetting-based droplet actuator includes top and bottom substrates, a droplet-operation gap between the top and bottom substrates, the droplet-operation gap including a gradually-reduced gap height in a direction of droplet flow when in use, and spaced electrodes embedded in the bottom substrate spanning a region thereof corresponding to the gradually-reduced gap height. A method includes gradually reducing a gap height in section(s) of a droplet-operation gap between top and bottom substrates of an electrowetting-based droplet actuator, the gradually reducing being in a direction of droplet flow when in use from a large-gap inlet to a small-gap outlet (relative sizes), the large-gap inlet being larger in height, the bottom substrate including spaced electrodes embedded therein spanning a region of the bottom substrate corresponding to the gradually reduced gap height, and moving dispensed droplet(s) of liquid in the direction of droplet flow using the spaced electrodes and an applied voltage.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: October 10, 2023
    Assignee: ILLUMINA, INC.
    Inventors: Jennifer Olivia Foley, Darren Segale, Cyril Delattre
  • Patent number: 11747796
    Abstract: The system and method described allow for real-time control over positioning of a micro-object. A movement of at least one micro-object suspended in a medium can be induced by a generation of one or more forces by electrodes proximate to the micro-object. Prior to inducing the movement, a simulation is used to develop a model describing a parameter of an interaction between each of the electrodes and the micro-object. A function describing the forces generated by an electrode and an extent of the movement induced due to the forces is generated using the model. The function is used to design closed loop policy control scheme for moving the micro-object towards a desired position. The position of the micro-object is tracked and taken into account when generating voltage patterns in the scheme.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: September 5, 2023
    Assignee: XEROX CORPORATION
    Inventors: Ion Matei, Jeng Ping Lu, Saigopal Nelaturi, Julie A. Bert, Lara S. Crawford, Armin R. Volkel, Eugene M. Chow
  • Patent number: 11732229
    Abstract: Fluidic multiwell bioreactors are provided as a microphysiological platform for in vitro investigation of multi-organ crosstalks for an extended period of time of at least weeks and months. The disclosed platform is featured with one or more improvements over existing bioreactors, including on-board pumping for pneumatically driven fluid flow, a redesigned spillway for self-leveling from source to sink, a non-contact built-in fluid level sensing device, precise control on fluid flow profile and partitioning, and facile reconfigurations such as daisy chaining and multilayer stacking. The platform supports the culture of multiple organs in a microphysiological, interacted systems, suitable for a wide range of biomedical applications including systemic toxicity studies and physiology-based pharmacokinetic and pharmacodynamic predictions. A process to fabricate the disclosed bioreactors is also provided.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: August 22, 2023
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Linda Griffith, David Trumper, Collin Edington, Gaurav Rohatgi, Duncan Freake, Luis Soenksen, Brij Mohan Bhushan
  • Patent number: 11713261
    Abstract: Self-cleaning electrochemical cells, systems including self-cleaning electrochemical cells, and methods of operating self-cleaning electrochemical cells are disclosed. The self-cleaning electrochemical cell can include a plurality of concentric electrodes disposed in a housing, for example, a cathode and an anode, a fluid channel defined between the concentric electrodes, a separator residing between the concentric electrodes, first and second end caps coupled to respective ends of the housing, and an inlet cone. The separators may be configured to localize the electrodes and dimensioned to minimize a zone of reduced velocity occurring downstream from the separator. The end caps and inlet cone may be dimensioned to maintain fully developed flow and minimize pressure drop across the electrochemical cell.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: August 1, 2023
    Assignee: Evoqua Water Technologies LLC
    Inventors: Joshua Griffis, Andrew Green, Li-Shiang Liang, Paul Beddoes
  • Patent number: 11709155
    Abstract: A device for separating analytes is disclosed. The device has a sample injector, sample injection needle, sample reservoir container in communication with the sample injector, chromatography column downstream of the sample injector, and fluid conduits connecting the sample injector and the column. The interior surfaces of the fluid conduits, sample injector, sample reservoir container, and column form a flow path having wetted surfaces. A portion of the wetted surfaces of the flow path are coated with an alkylsilyl coating that is inert to at least one of the analytes. The alkylsilyl coating has the Formula I: R1, R2, R3, R4, R5, and R6 are each independently selected from (C1-C6)alkoxy, —NH(C1-C6)alkyl, —N((C1-C6)alkyl)2, OH, ORA, and halo. RA represents a point of attachment to the interior surfaces of the fluidic system. At least one of R1, R2, R3, R4, R5, and R6 is ORA. X is (C1-C20)alkyl, —O[(CH2)2O]1-20—, —(C1-C10)[NH(CO)NH(C1-C10)]1-20—, or —(C1-C10)[alkylphenyl(C1-C10)alkyl]1-20-.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: July 25, 2023
    Assignee: Waters Technologies Corporation
    Inventors: Matthew A. Lauber, Mathew H. DeLano, Scott A. McCall, Jonathan L. Belanger, Theodore A. Dourdeville, Kerri M. Smith, Paul D. Rainville, Dimple D. Shah, Stephen J. Shiner, Catalin Doneanu, Michael Donegan
  • Patent number: 11691145
    Abstract: A platform and method for conducting multi-variable combinational interactions are provided. An array of multiplexing chambers in formed in a body. The body also includes a common well communicating with each multiplexing chamber of the array of multiplexing chambers and a plurality of variable wells. Each of variable wells communicates with at least one multiplexing chamber of the array of multiplexing chambers. The common well is loaded with a first variable and different variables are loaded in each of the plurality of variable wells. The interaction of the first variable with at least one of the different variables in each multiplexing chamber of the array of multiplexing chambers is observed.
    Type: Grant
    Filed: October 7, 2021
    Date of Patent: July 4, 2023
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: David J. Beebe, Duane S. Juang, Jiaquan Yu, Jo Handelsman
  • Patent number: 11686705
    Abstract: Systems and methods for identifying DNA strand size and purifying the DNA based on strand size using electrophoresis. The methods include moving, via voltage, a plurality of DNA strands through a separation gel from an inlet of a capillary or passage to either a first outlet or a second outlet dependent on the DNA strand length. In some implementations, the system is a capillary electrophoresis system. In other implementations, the system is a microfluidic lab-on-a-chip.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: June 27, 2023
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventors: Gemma Mendonsa, Tim Rausch, Riyan Alex Mendonsa
  • Patent number: 11660571
    Abstract: A microfluidic chip device for the purification of radiochemical compounds includes a chip having an injection channel and intersecting branch channels with a plurality of valves are located along the injection channel and branch channels and configured to retain a plug of solution containing the radiochemical compound. The chip further includes a serpentine channel segment (for separation) coupled to the output of the injection channel. A high voltage power source advances the plug of solution through the purification region and into the downstream fraction collection channel. The chip includes a downstream fraction collection channel coupled to the serpentine channel segment and having an optical and radiation detection regions. One or more branch fraction channels intersect with the fraction collection channel and include valves located therein so that the radiochemical compound that is detected using a radiation detector is directed into the desired branch fraction channel for subsequent use.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: May 30, 2023
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: R. Michael van Dam, Noel S. Ha, Jason Jones, Jimmy Ly, Stephen Liu, Shilin Cheung
  • Patent number: 11649178
    Abstract: A system for producing steam includes a source of superheated water with superheated water output; a membrane filtration system in fluid communication with the superheated water output and including a membrane filter with a permeate side and an opposing retentate side. The membrane filter includes a separation membrane constructed to reject organic molecules. The system may be used for removing organic compounds, such as anti-corrosion agents or contaminants, from superheated water to produce steam. A method for producing steam includes directing a cross-flow of heated pressurized water including a first concentration of an organic compound across a membrane filter. The membrane filter includes a separation membrane constructed to reject the organic compound; and one or more support layers adjacent the separation membrane. A steam permeate including a second concentration of the organic compound is collected, where the second concentration is lower than the first.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: May 16, 2023
    Assignee: Donaldson Company, Inc.
    Inventors: Matthew P. Goertz, Jonathan G. Parsons
  • Patent number: 11614809
    Abstract: A magneto-electrophoretic medium that can be globally and locally addressed and erased. The medium provides a writeable display with no perceivable lag and the ability to write and erase with only minimal power requirements. In particular, the magneto-electrophoretic medium can be erased by providing a subthreshold electric stimulus and supplementing a second non-electric stimulus that disturbs the written state and allows the magneto-electrophoretic particles to return to their original state.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: March 28, 2023
    Assignee: E Ink Corporation
    Inventors: Crystal Nguyen, Evan Griffith, Seth J. Bishop, Stephen J. Telfer, Kosta Ladavac, Andrew A. Drabek, Sunil Krishna Sainis, Richard J. Paolini, Jr., Samantha Morrill
  • Patent number: 11611293
    Abstract: An artificial muscle that includes a first end plate opposite a second end plate, a flexible enclosure extending from the first end plate to the second end plate and housing a dielectric fluid, and a reciprocating electrode stack housed within the flexible enclosure and coupled to and extending between the first end plate and the second end plate. The reciprocating electrode stack includes one or more electrode pairs, each electrode pair having a positive electrode and a negative electrode physically coupled to one another along a first edge portion of the positive electrode and the negative electrode. The artificial muscle also includes a plurality of electrode leads electrically coupled to the reciprocating electrode stack. Each individual electrode lead of the plurality of electrode leads extends from an individual electrode of the reciprocating electrode stack to the first end plate or the second end plate.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: March 21, 2023
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Michael P. Rowe, Shardul Panwar
  • Patent number: 11602722
    Abstract: Disclosed herein is a novel method of producing monodisperse aqueous droplets, as well as a novel microfluidic droplet generator. In some examples, the method comprises flowing an aqueous solution through a microchannel and into a sample reservoir of the microfluidic droplet generator, wherein monodisperse droplets of the aqueous solution form by step-emulsification at a step change in height at an intersection of a reservoir end of the microchannel and a sidewall of the sample reservoir. In some examples, the aqueous solution is a hydrogel precursor solution and monodisperse droplets of the hydrogel precursor solution form by step-emulsification at the step change in height at the intersection of the reservoir end of the microchannel and the sidewall of the sample reservoir. In some examples, the monodisperse droplets of the hydrogel precursor solution are incubated under conditions suitable for gelation to form hydrogel beads.
    Type: Grant
    Filed: February 3, 2020
    Date of Patent: March 14, 2023
    Assignee: ILLUMINA, INC.
    Inventors: Tarun Kumar Khurana, Foad Mashayekhi, Hei Ka Patrick Tam
  • Patent number: 11597898
    Abstract: A number analyzing method, a number analyzing device, and a storage medium for number analysis are disclosed, which enable, with high accuracy, analysis of the number or number distribution of particulate or molecular analytes according to the kinds of the analytes. A computer control program is executed on the basis of a data group of particle-passage detection signals which are detected by a nanopore device in accordance with passage of subject particles through a through-hole. Also, a particle type distribution estimating program is executed, to estimate probability density on the basis of a data group based on feature values indicating feature of the waveforms of pulse signals which correspond to the passage of particles and which are obtained as the particle-passage detection signals. Thus, the number of particles can be derived for each particle type.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: March 7, 2023
    Assignee: AIPORE INC.
    Inventors: Takashi Washio, Tomoji Kawai, Masateru Taniguchi, Makusu Tsutsui, Kazumichi Yokota, Akira Ishii, Takeshi Yoshida
  • Patent number: 11554375
    Abstract: A microfluidic device comprising: (a) a plate comprising a substrate, a plurality of electrodes, and a first layer of hydrophobic material applied over the plurality of electrodes; (b) a processing unit operably programmed to perform a method of pinning an aqueous droplet within the microfluidic device; and (c) a controller operably connected to a power source, the processing unit, and the plurality of electrodes. The method of pinning an aqueous droplet comprises: applying an electric field of a first polarity to an aqueous droplet located on the surface of the layer of hydrophobic material and having a first contact angle, to cause the droplet to maintain a second contact angle in the absence of the electric field, wherein the aqueous droplet contains a surfactant and the second contact angle is less than the first contact angle.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: January 17, 2023
    Assignee: Nuclera Nucleics Ltd.
    Inventor: Luke M. Slominski
  • Patent number: 11542157
    Abstract: Provided is a microchip that can achieve a favorable bonding state in the bonding portion between first and second substrates even if the microchip is large in size. A microchip includes a first substrate made of a resin and a second substrate made of a resin, the first substrate and the second substrates being bonded to each other, and a channel surrounded by a bonding portion between the first substrate and the second substrate is formed by a channel forming step formed at least in the first substrate. Further, a noncontact portion is formed to surround the bonding portion, and an angle ?1 formed between a side wall surface of the channel forming step and a bonding surface continuous therewith satisfies ?1>90°.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: January 3, 2023
    Assignee: Ushio Denki Kabushiki Kaisha
    Inventors: Kenichi Hirose, Makoto Yamanaka, Shinji Suzuki, Kenji Hatakeyama
  • Patent number: 11534757
    Abstract: An electrowetting-on-dielectric (EWOD) microfluidic device comprises at least one integrated electrochemical sensor, the electrochemical sensor comprising: a reference electrode; a sensing electrode; and an analyte-selective layer positioned over the sensing electrode. In some embodiments, the electrochemical sensor measures a concentration of an analyte in a fluid sample exposed to the electrochemical sensor based on a potential difference between the reference electrode and the sensing electrode. The first analyte and the second analyte can be selected from a group consisting of K+, Na+, Ca2+, Cl?, HCO3?, Mg2+, H+, Ba2+, Pb2+, Cu2+, I?, NH4+, (SO4)2?.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: December 27, 2022
    Assignee: Board of Regents, The University of Texas System
    Inventors: Hyejin Moon, Ali Farzbod
  • Patent number: 11524297
    Abstract: A microfluidic system and related methods of operating an electrowetting on dielectric (EWOD) device operate to concentrate particles within a liquid droplet dispensed onto an element array of the EWOD device. The method includes the steps of providing a non-polar liquid onto the element array of the EWOD device; providing a polar liquid droplet onto the element array of the EWOD device within the non-polar liquid, wherein the polar liquid droplet includes particles; and applying an actuation cycle comprising a plurality of actuation patterns, wherein at least one of the actuation patterns includes actuating one or more array element electrodes within a perimeter of the polar liquid droplet, and the particles migrate within the polar liquid droplet to become concentrated within a portion of the liquid droplet at one or more array element electrodes corresponding to one of the plurality of actuation patterns.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: December 13, 2022
    Assignee: Sharp Life Science (EU) Limited
    Inventors: Simon M. Bryant, Benjamin J. Hadwen, Christopher J. Brown, Sally Anderson
  • Patent number: 11517902
    Abstract: A microfluidic device comprises upper and lower spaced apart substrates defining a fluid chamber therebetween; an aperture for introducing fluid into the fluid chamber; a plurality of independently addressable array elements, each array element defining a respective region of the fluid chamber; and control means for addressing the array elements. The control means are configured to: determine that a working fluid has been introduced into a first region of the fluid chamber; and provide an output to a user to indicate that the working fluid is present in the first region. Once the working fluid is in the first region, the fluid applicator used to dispense the fluid can be removed without any risk of accidentally withdrawing dispensed working fluid from the microfluidic device.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: December 6, 2022
    Assignee: Sharp Life Science (EU) Limited
    Inventors: Emma Jayne Walton, Lesley Anne Parry-Jones
  • Patent number: 11511229
    Abstract: A nanocarbon separation method includes: a step of preparing a plurality of liquids with different specific gravities in which at least one of the plurality of liquids is a dispersion liquid in which a mixture of nanocarbons with different properties is dispersed; a step of sequentially injecting the plurality of liquids into an electrophoresis tank so that the specific gravities of the liquids decrease from a bottom to a top of the liquids in a direction of gravitational force; and a step of separating the mixture of the nanocarbons by moving a part of the mixture toward an electrode side disposed in an upper part of the electrophoresis tank and moving a remainder of the mixture toward an electrode side disposed in a lower part of the electrophoresis tank by applying a direct current voltage to the electrodes.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: November 29, 2022
    Assignee: NEC CORPORATION
    Inventors: Fumiyuki Nihey, Hideaki Numata, Yuki Kuwahara, Takeshi Saito, Fusako Sasaki
  • Patent number: 11479804
    Abstract: Methods of detecting the presence of toxins in a sample using electrophoretic separations and of performing electrophoretic separation of complex samples are provided. The method of detecting the presence of toxins includes reacting a sample and a substrate with a signaling enzyme which converts the substrate to the product in a reaction medium, introducing a run buffer into a separation channel having an inlet end, selectively introducing at least one of the substrate and the product of the reaction medium into the inlet end of the separation channel, electrophoretically separating the substrate and the product, and determining the rate of conversion of the substrate to the product, wherein a change in the rate of conversion is indicative of the presence of toxins.
    Type: Grant
    Filed: December 31, 2018
    Date of Patent: October 25, 2022
    Assignee: Applied Research Associates, Inc.
    Inventors: Alyssa Catharyn Henry, David Judson Ross
  • Patent number: 11465161
    Abstract: The present invention is directed to methods of improving accuracy of droplet metering using at least one on-actuator reservoir as the fluid input. In some embodiments, the on-actuator reservoir that is used for metering droplets includes a loading port, a liquid storage zone, a droplet metering zone, and a droplet dispensing zone. The on-actuator reservoirs are designed to prevent liquid flow-back into the loading port and to prevent liquid from flooding into the droplet operations gap in the dispensing zone.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: October 11, 2022
    Assignee: ADVANCED LIQUID LOGIC, INC.
    Inventors: Uichong B. Yi, Vijay Srinivasan
  • Patent number: 11460390
    Abstract: In order to permit a robust, energy-efficient and precise moisture sensor, the invention relates to a moisture sensor element (10) for a moisture sensor (12) for measuring a moisture content in a gas, comprising at least one vibrating element (14) and at least one material (16, 18) on the vibrating element (14), wherein the at least one material (16, 18) is designed in such a way that the mass thereof changes rapidly with moisture changing over a moisture value. The invention also relates to a moisture-measuring method for measuring a moisture in a gas, comprising: using a moisture sensor element (10), wherein the course of the measurement signal thereof has at least one non-linearity according to the moisture; and determining a reference value based on the at least one non-linearity.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: October 4, 2022
    Assignee: Trafag AG
    Inventor: Wendelin J. Stark
  • Patent number: 11440025
    Abstract: A nanocarbon separation device includes a separation tank that is configured to accommodate a dispersion liquid including nanocarbons, a first electrode that is provided at an upper part in the separation tank, a second electrode that is provided at a lower part in the separation tank, an evaluation unit that is configured to evaluate a physical state or a chemical state of the dispersion liquid, and a fractionation unit that is configured to fractionate the dispersion liquid based on the physical state or the chemical state.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: September 13, 2022
    Assignee: NEC CORPORATION
    Inventor: Kazuki Ihara
  • Patent number: 11407663
    Abstract: Disclosed here is a capacitive deionization device for removing ions from a target solution. The capacitive deionization device includes a first porous electrode, a second porous electrode, a first header plate, a second header plate, and a sealant. The second porous electrode is disposed below and spaced from the first porous electrode. The first header plate is disposed on the first porous electrode. The first header plate defines an input flow channel that is in fluidic communication with the first porous electrode. The second header plate is disposed below the second porous electrode. The second header plate defines an output flow channel that is in fluidic communication with the second porous electrode. The sealant is disposed between the first header plate and the second header plate and surrounds the first porous electrode and the second porous electrode.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: August 9, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Patrick G. Campbell, Jennifer M. Knipe, Michael Stadermann
  • Patent number: 11300533
    Abstract: An apparatus and a method for cleaning glass used in cars or cameras are disclosed. Said cleaning apparatus comprises glass, multiple electrodes placed in series on top of said glass, a dielectric layer stacked on top of said electrodes, and a hydrophobic layer stacked on top of said dielectric layer and on whose surface a droplet forms. Here, said droplet moves towards the outer edge of said glass by application of differing direct current voltages to several of said electrodes.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: April 12, 2022
    Assignee: MYONGJI UNIVERSITY INDUSTRY AND ACADEMIA COOPERATION FOUNDATION
    Inventors: Sang Kug Chung, Kang Yong Lee, Dae Young Lee
  • Patent number: 11278887
    Abstract: A microfluidic device is provided that includes a substrate and microfluidic sub-chips embedded in the substrate. An electric field is applied between an adjacent pair microfluidic sub-chips to move a fluid droplet from one of the adjacent pair of microfluidic sub-chips to another of the adjacent pair microfluidic sub-chips.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: March 22, 2022
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Viktor Shkolnikov, Michael W. Cumbie, Chien-Hua Chen