With Solid Catalyst Or Absorbent Patents (Class 208/213)
  • Patent number: 6547957
    Abstract: A catalyst assisted upgrading process for treating a hydrocarbon oil feed to reduce total acid number (TAN) and increase API gravity is provided herein which employs a hydroprocessing catalyst based on a catalyst support, e.g., alumina. The process includes blending the supported hydroprocessing catalyst with the hydrocarbon oil feed to form a slurry which is then treated with hydrogen at moderate temperature and pressure in, for example, a tubular reactor. Deposit formation is thus minimized or avoided.
    Type: Grant
    Filed: October 17, 2000
    Date of Patent: April 15, 2003
    Assignee: Texaco, Inc.
    Inventors: Chakka Sudhakar, Mark Timothy Caspary, Stephen Jude DeCanio
  • Patent number: 6544410
    Abstract: During the regeneration of a sulfurized sorbent comprising zinc aluminate, a promoter metal and zinc sulfide by contact with an oxygen-containing stream to convert at least a portion of said zinc sulfide to zinc oxide the average sulfur dioxide partial pressure in the regeneration zone is controlled within the range of from about 0.1 to about 10 psig to minimize sulfation of the sorbent.
    Type: Grant
    Filed: December 19, 2001
    Date of Patent: April 8, 2003
    Assignee: Phillips Petroleum Company
    Inventors: Jason J. Gislason, Ronald E. Brown, Robert W. Morton, Glenn W. Dodwell
  • Publication number: 20030062292
    Abstract: A four stage process for producing high quality white oils, particularly food or medicinal grade mineral oils from mineral oil distillates. The first reaction stage employs a sulfur resistant hydrotreating catalyst and produces a product suitable for use as a high quality lubricating oil base stock. The second reaction stage employs a hydrogenation/hydrodesulfurization catalyst. The third stage employs a reduced metal sulfur sorbent producing a product stream which is low in aromatics and which has substantially “nil” sulfur. The final reaction stage employs a selective hydrogenation catalyst that produces a product suitable as a food or medicinal grade white oil.
    Type: Application
    Filed: February 27, 2002
    Publication date: April 3, 2003
    Inventors: Sylvain S. Hantzer, Jean Willem Beeckman, Stephen J. McCarthy, Arthur Paul Werner
  • Patent number: 6540908
    Abstract: The invention pertains to a process for preparing a sulfided hydrotreating catalyst in which a hydrotreating catalyst is subjected to a sulfidation step, wherein the hydrotreating catalyst comprises a carrier comprising at least 50 wt % of alumina, the catalyst comprising at least one hydrogenation metal component and an organic compound comprising at least one covalently bonded nitrogen atom and at least one carbonyl moiety, the molar ratio between the organic compound and the total hydrogenation metal content being at least 0.01:1. The invention further pertains to the use of said hydrotreating catalyst in hydrotreating a hydrocarbon feed, in particular to achieve hydrodenitrogenation, (deep) hydrodesulfurization, or hydrodearomatization.
    Type: Grant
    Filed: March 31, 2000
    Date of Patent: April 1, 2003
    Assignee: Akzo Nobel N.V.
    Inventors: Sonja Eijsbouts, Marcel Adriaan Jansen
  • Publication number: 20030057136
    Abstract: In a conventional hydrodesulfurization process sulfur is removed from liquid hydrocarbons by reacting the sulfur in the liquid hydrocarbons with hydrogen to form H2S. A sour hydrogen gas stream consisting of unreacted hydrogen, H2S, and undesired light hydrocarbons is then separated from the liquid hydrocarbons, and the H2S is removed to sweeten the hydrogen stream for recycling. Some of the undesired light hydrocarbons resulting from the reaction may be separated by the purging method discussed. In the present invention efficient separation of the light hydrocarbons is enabled without substantial loss of recyclable hydrogen. Both the H2S and light hydrocarbons are separated from the sour hydrogen gas stream by passing the stream through an absorber where it is reacted with a nonaqueous liquor. The light hydrocarbons are absorbed in the liquor, from which they are subsequently separated.
    Type: Application
    Filed: August 20, 2002
    Publication date: March 27, 2003
    Inventors: Kenneth E. McIntush, Ken DeBerry, David W. DeBerry
  • Publication number: 20030047491
    Abstract: A process for hydroprocessing a hydrocarbon feedstock, includes the steps of providing a hydrocarbon feed having an initial characteristic; providing a first hydrogen-containing gas; feeding the hydrocarbon feed and the first hydrogen-containing gas cocurrently to a first hydroprocessing zone so as to provide a first hydrocarbon product; providing a plurality of additional hydroprocessing zones including a final zone and an upstream zone; feeding the first hydrocarbon product cocurrently with a recycled gas to the upstream zone so as to provide an intermediate hydrocarbon product; and feeding the intermediate hydrocarbon product cocurrently with a second hydrogen-containing gas to the final zone so as to provide a final hydrocarbon product having a final characteristic which is improved as compared to the initial characteristic.
    Type: Application
    Filed: May 23, 2002
    Publication date: March 13, 2003
    Applicant: INTEVEP, S.A.
    Inventors: Carlos Gustavo Dassori, Nancy Fernandez, Rosa Arteca, Carlos Castillo
  • Publication number: 20030050523
    Abstract: A catalyst and process is disclosed to selectively upgrade a paraffinic feedstock to obtain an isoparaffin-rich product for blending into gasoline. The catalyst comprises a support of a sulfated oxide or hydroxide of a Group IVB (IUPAC 4) metal, a first component of at least one lanthanide element or yttrium component, which is preferably ytterbium, and at least one platinum-group metal component which is preferably platinum.
    Type: Application
    Filed: August 29, 2001
    Publication date: March 13, 2003
    Inventors: Ralph D. Gillespie, Michelle J. Cohn
  • Patent number: 6531054
    Abstract: The invention pertains to a process for reducing the sulphur content of a hydrocarbon feedstock to a value of less than 500 ppm, which process comprises contacting a feedstock with a 95% boiling point of 450° C. or less and a sulphur content of 0.1 wt. % or more in the presence of hydrogen under conditions of elevated temperature and pressure with a first catalyst comprising a Group VI hydrogenation metal component and a Group VIII hydrogenation metal component on an oxidic carrier, after which at least part of the effluent from the first catalyst is led to a second catalyst comprising a Group VI hydrogenation metal component and a Group VIII hydrogenation metal component on an oxidic carrier which comprises 1 to 15 wt. % of silica, calculated on the weight of the catalyst.
    Type: Grant
    Filed: March 30, 1998
    Date of Patent: March 11, 2003
    Assignee: AKZO Nobel, N.V.
    Inventors: Leendert Arie Gerritsen, Seck Leong Lee
  • Publication number: 20030042172
    Abstract: A method of desulphurizing and cracking of hydrocarbons to produce fuel oil. The fuel oil is first admixed with a sensitizer and solid source of hydrogen and, preferably, with a catalyst and a desulphurizing agent. The admixture is then subjected to microwave energy. The method acts to reduce the sulphur content of the fuel oil and cracks the fuel oil into a useful source of clean, burnable energy.
    Type: Application
    Filed: April 3, 2002
    Publication date: March 6, 2003
    Inventors: Viktor Sharivker, Travis Honeycutt
  • Publication number: 20030038059
    Abstract: A process is described for the upgrading of hydrocarbon mixtures which boil within the naphtha range containing sulfur impurities, i.e. a hydrodesulfuration process with contemporaneous skeleton isomerization and reduced hydrogenation degree of the olefins contained in said hydrocarbon mixtures, the whole process being carried out in a single step. The process is carried out in the presence of a catalytic system comprising a metal of group VI B, a metal of group VIII and a carrier of acid nature consisting of a mesoporous silico-alumina.
    Type: Application
    Filed: May 21, 2002
    Publication date: February 27, 2003
    Applicant: AGIPPETROLI S.p.A.
    Inventors: Laura Maria Zanibelli, Virginio Arrigoni, Marco Ferrari, Donatella Berti
  • Publication number: 20030034275
    Abstract: The sulfur content of liquid cracking products, especially the cracked gasoline, of the catalytic cracking process is reduced by the use of a sulfur reduction additive comprising a non-molecular sieve support containing a high content of vanadium. Preferably, the support is alumina. The sulfur reduction catalyst is used in the form of a separate particle additive in combination with the active catalytic cracking catalyst (normally a faujasite such as zeolite Y) to process hydrocarbon feedstocks in the fluid catalytic cracking (FCC) unit to produce low-sulfur gasoline and other liquid products.
    Type: Application
    Filed: September 6, 2002
    Publication date: February 20, 2003
    Inventors: Terry G. Roberie, Ranjit Kumar, Michael S. Ziebarth, Wu-Cheng Cheng, Xinjin Zhao, Nazeer Bhore
  • Publication number: 20030036476
    Abstract: In a coated catalyst having a core and at least one shell surrounding the core, the core is made up of an inert support material, the shell or shells is/are made up of a porous support substance, with the shell being attached physically to the core, and a catalytically active metal selected from the group consisting of the metals of the 10th and 11th groups of the Periodic Table of the Elements is present in finely divided form or a precursor of the catalytically active metal is present in uniformly distributed form in the shell or shells.
    Type: Application
    Filed: September 10, 2002
    Publication date: February 20, 2003
    Inventors: Heiko Arnold, Cristina Freire Erdbrugger, Thomas Heidemann, Gerald Meyer, Signe Unverricht, Andrea Frenzel, Joachim Wulff-Doring, Andreas Ansmann
  • Publication number: 20030015457
    Abstract: Liquid hydrocarbons such as gas oil feedstocks are hydrotreated by passing feedstreams comprising a hydrogen-containing gas and the liquid hydrocarbons through a catalyst bed comprising honeycomb or similarly structured monolithic hydrotreating catalysts at controlled superficial liquid linear velocities and gas:liquid feedstream ratios; good hydrotreating selectivity and high one-pass conversion rates for sulfur and other heteroatoms are provided.
    Type: Application
    Filed: March 30, 2001
    Publication date: January 23, 2003
    Inventors: Wei Liu, Charles M. Sorensen,
  • Publication number: 20030010679
    Abstract: A process for producing a solid acid catalyst, which comprises: adding a pseudoboehmite as a binder to a sulfated zirconium hydroxide, followed by kneading with an aqueous solution containing at least one metal of the Group VIII, or loading at least one metal of the Group VIII on a sulfated zirconium hydroxide, and then adding a pseudoboehmite as a binder thereto, followed by kneading with water, further followed by molding and calcining at a temperature of from 550 to 800° C.; a solid acid catalyst produced by the production process; and a method for hydrodesulfurizing and isomerizing a light hydrocarbon oil using the catalyst.
    Type: Application
    Filed: January 30, 2002
    Publication date: January 16, 2003
    Applicant: PETROLEUM ENERGY CENTER
    Inventors: Katsuya Watanabe, Takahito Kawakami, Koji Baba, Takao Kimura
  • Patent number: 6495029
    Abstract: A process for the hydrodesulfurization (HDS) of the multiple condensed ring heterocyclic organosulfur compounds present in petroleum and chemical streams. The stream is passed through at least one reaction zone countercurrent to the flow of a hydrogen-containing treat gas, and through at least one sorbent zone. The reaction zone contains a bed of Group VIII metal-containing hydrodesulfurization catalyst and the sorbent zone contains a bed of hydrogen sulfide sorbent material.
    Type: Grant
    Filed: August 27, 1999
    Date of Patent: December 17, 2002
    Assignee: Exxon Research and Engineering Company
    Inventors: James J. Schorfheide, Edward S. Ellis, Michele S. Touvelle, Ramesh Gupta
  • Patent number: 6495030
    Abstract: A process for concurrently fractionating and hydrotreating of a full range naphtha stream. The full boiling range naphtha stream is first subjected to simultaneous thioetherification and fractionation to remove the mercaptans the light fraction and then to simultaneous hydrodesulfurization and splitting of the remainder into an intermediate boiling range naphtha and a heavy boiling range naphtha. The three boiling range naphthas are treated separately according to the amount of sulfur in each cut and the end use of each fraction.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: December 17, 2002
    Assignee: Catalytic Distillation Technologies
    Inventor: Gary G. Podrebarac
  • Patent number: 6485633
    Abstract: The demercaptanizaiton of petroleum distillates can be carried out by sorption of the mercaptan with activated carbon and oxidation of the sorbed mercaptan to disulfide at between approximately 20° C. to 55° C. The activated carbon used in the process is commercially readily available. Its surface area typically ranges from between approximately 500 to 1500 m2/g and has substantial percentage of the pores in the 10 to 100 Angstrom range.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: November 26, 2002
    Assignee: DS2 Tech, Inc.
    Inventors: William Wismann, Santosh K. Gangwal
  • Patent number: 6475376
    Abstract: A two step sulfur removal for treatment of hydrocarbonaceous fuel intended for use in a fuel cell comprising a mild hydrotreating step followed by an extraction step reduces the sulfur content in fuel to 5 ppm total sulfur or less and a fuel processor suitable for carrying out the process.
    Type: Grant
    Filed: April 3, 2001
    Date of Patent: November 5, 2002
    Assignee: Chevron U.S.A. Inc.
    Inventors: Lawrence W. Jossens, Curtis L. Munson, Gunther H. Dieckmann
  • Publication number: 20020157988
    Abstract: A two step sulfur removal for treatment of hydrocarbonaceous fuel intended for use in a fuel cell comprising a mild hydrotreating step followed by an extraction step reduces the sulfur content in fuel to 5 ppm total sulfur or less and a fuel processor suitable for carrying out the process.
    Type: Application
    Filed: April 19, 2002
    Publication date: October 31, 2002
    Inventors: Lawrence W. Jossens, Curtis L. Munson, Gunther H. Dieckmann
  • Publication number: 20020148757
    Abstract: Economical processes are disclosed for the production of components for refinery blending of transportation fuels by selective hydrogenation of sulfur-containing and/or nitrogen-containing organic compounds contained in mixtures of hydrocarbons which are liquid at ambient conditions. Integrated hydrotreating processes of this invention advantageously provide their own source of high-boiling hydrogenation feedstock derived, for example, by fractionation of hydrotreated petroleum distillates. The high-boiling hydrogenation feedstock consisting essentially of material boiling between about 200° C. and about 425° C.
    Type: Application
    Filed: February 8, 2001
    Publication date: October 17, 2002
    Inventors: George A. Huff, Larry W. Kruse, Ozie S. Owen, Monica Cristina Regalbuto, William H. Gong
  • Publication number: 20020139716
    Abstract: An improved catalyst activation process for olefinic naphtha hydrodesulfurization. This process maintains the sulfur removal activity of the catalyst while reducing the olefin saturation activity.
    Type: Application
    Filed: January 10, 2002
    Publication date: October 3, 2002
    Inventors: Garland B. Brignac, Joseph J. Kociscin, Craig A. McKnight
  • Patent number: 6454934
    Abstract: A petroleum processing method comprising the steps of: performing an atmospheric distillation of crude oil; collectively hydrodesulfurizing the resultant distillates consisting of gas oil and fractions whose boiling point is lower than that of gas oil in a reactor in the presence of a hydrogenation catalyst at 310 to 370° C. under 30 to 70 kg/cm2G (first hydrogenation step); and further performing hydrodesulfurization at lower temperatures (second hydrogenation step). When the second hydrogenation step is carried out only for the heavy naphtha obtained by separating the distillates after the first hydrogenation step, the second hydrogenation temperature can be in the range of 250 to 400° C.
    Type: Grant
    Filed: September 10, 1998
    Date of Patent: September 24, 2002
    Assignee: JGC Corporation
    Inventors: Makoto Inomata, Toshiya Okumura, Shigeki Nagamatsu
  • Patent number: 6455023
    Abstract: Carbon monolith-supported catalysts with high leach resistance used in catalytic applications involving strong acidic and basic conditions in a pH range of from 0 to 6.5 and from 7.5 to 14, are respectively described. The leach resistance of the catalyst system originates from strong interaction between the catalyst and the unsaturated valence of the carbon surface. In addition to surprisingly high resistance to leach out, the catalysts also have substantial differential advantages in catalyst performance: catalyst activity, selectivity, and stability.
    Type: Grant
    Filed: October 11, 2000
    Date of Patent: September 24, 2002
    Assignee: Corning Incorporated
    Inventors: Kishor P. Gadkaree, Tinghong Tao
  • Publication number: 20020130062
    Abstract: The demercaptanizaiton of petroleum distillates can be carried out by sorption of the mercaptan with activated carbon and oxidation of the sorbed mercaptan to disulfide at between approximately 20° C. to 55° C. The activated carbon used in the process is commercially readily available. Its surface area typically ranges from between approximately 500 to 1500 m2/g and has substantial percentage of the pores in the 10 to 100 Angstrom range.
    Type: Application
    Filed: December 13, 2000
    Publication date: September 19, 2002
    Applicant: DS2 Tech. Inc.
    Inventors: William Wismann, Santosh K. Gangwal
  • Publication number: 20020130063
    Abstract: A process is described that can limit pressure drops during a catalytic hydrotreatment process carried out in a fixed bed reactor. The liquid feed and gaseous reactant are injected into the reactor either side of the bed and flow as a counter-current. Pressure drops are limited by homogeneously mixing solid catalytic and/or inert particles of different diameters in the bed.
    Type: Application
    Filed: December 20, 2001
    Publication date: September 19, 2002
    Applicant: Institut Francais du Petrole
    Inventors: Daniel Vuillemot, Laurence Carpot, Thierry Chapus, Philippe Rocher, Frederic Morel
  • Patent number: 6451200
    Abstract: Porous composite particles are provided which comprise an aluminum oxide component, e.g., crystalline boehmite, and a swellable clay component, e.g., synthetic hectorite, intimately dispersed within the aluminum oxide component at an amount effective to increase the hydrothermal stability, pore volume, and/or the mesopore pore mode of the composite particles relative to the absence of the swellable clay. Also provided is a method for making the composite particles, agglomerate particles derived therefrom, and a process for hydroprocessing petroleum feedstock using the agglomerates to support a hydroprocessing catalyst.
    Type: Grant
    Filed: July 16, 2001
    Date of Patent: September 17, 2002
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Roger Jean Lussier, Stanislaw Plecha, Charles Cross Wear, Gordon Dean Weatherbee
  • Patent number: 6447673
    Abstract: A hydrofining process in which a sulfur- and hydrocarbon-containing processing stream is supplied to a multi-stage hydrotreating reactor incorporating separate stages of cobalt molybdenum catalysts. Hydrogen may be supplied concurrently or counter-currently with the hydrocarbon-containing processing stream. The processing stream is passed into contact with an initial catalyst stage comprising a cobalt molybdenum desulfurization catalyst present in a minor amount of the total composite amount of catalysts within the reactor. Thereafter the processing stream is passed through a subsequent catalyst stage comprising a major amount of cobalt molybdenum hydrocracking catalyst. The effluent stream having a reduced sulfur content is then withdrawn from the hydrotreating reactor. The initial and subsequent catalyst stages are separated by an intervening sector within the reactor containing an inert particulate refractory material, specifically silica particles generally spheroidal in shape.
    Type: Grant
    Filed: March 12, 2001
    Date of Patent: September 10, 2002
    Assignee: Fina Technology, Inc.
    Inventors: Merry Holli Garrett Cordera, Charles Allen Comeaux, Koenraad Jacques Herrebout, Joe David Hunter
  • Publication number: 20020121459
    Abstract: A product of reduced sulfur content is produced from an olefin-containing hydrocarbon feedstock which includes sulfur-containing impurities. The feedstock is contacted with an olefin-modification catalyst in a reaction zone under conditions which are effective to produce an intermediate product which has a reduced amount of olefinic unsaturation relative to that of the feedstock as measured by bromine number. The intermediate product is then separated into fractions of different volatility, and the lowest boiling fraction is contacted with a hydrodesulfurization catalyst in the presence of hydrogen under conditions which are effective to convert at least a portion of its sulfur-containing impurities to hydrogen sulfide.
    Type: Application
    Filed: January 21, 2000
    Publication date: September 5, 2002
    Inventors: Vivek R. Pradhan, Ptoshia A. Burnett, George A. Huff
  • Publication number: 20020121458
    Abstract: A product of reduced sulfur content is produced from an olefin-containing hydrocarbon feedstock which includes sulfur-containing impurities. The feedstock is contacted with an olefin-modification catalyst in a reaction zone under conditions which are effective to produce an intermediate product which has a reduced amount of olefinic unsaturation relative to that of the feedstock as measured by bromine number. The intermediate product is then contacted with a hydrodesulfurization catalyst in the presence of hydrogen under conditions which are effective to convert at least a portion of its sulfur-containing impurities to hydrogen sulfide.
    Type: Application
    Filed: January 21, 2000
    Publication date: September 5, 2002
    Inventors: Vivek R. Pradhan, Ptoshia A. Burnett, George A. Huff
  • Publication number: 20020121460
    Abstract: Compositions including carbide-containing nanorods and/or oxycarbide-containing nanorods and/or carbon nanotubes bearing carbides and oxycarbides and methods of making the same are provided. Rigid porous structures including oxycarbide-containing nanorods and/or carbide containing nanorods and/or carbon nanotubes bearing carbides and oxycarbides and methods of making the same are also provided. The compositions and rigid porous structures of the invention can be used either as catalyst and/or catalyst supports in fluid phase catalytic chemical reactions. Processes for making supported catalyst for selected fluid phase catalytic reactions are also provided.
    Type: Application
    Filed: December 18, 2001
    Publication date: September 5, 2002
    Inventors: David Moy, Chunming Niu, Jun Ma, Jason M. Willey
  • Patent number: 6444118
    Abstract: A process for concurrently fractionating and treating of a full range naphtha stream. The full boiling range naphtha stream is first subjected to simultaneous thioetherification or selective hydrogenation and splitting into a light boiling range naphtha, an intermediate boiling range naphtha and a heavy boiling range naphtha. The intermediate boiling range naphtha containing thiophene and thiophene boiling range mercaptans, dienes or mixtures may be subjected to a second thioetherification or selective hydrogenation, depending on its make-up, and then passed on to a polishing hydrodesulfurization reactor or the entire intermediate stream may be passed directly to the polishing reactor. The bottoms are subjected to concurrent hydrodesulfurization and fractional distillation and the combined overheads and bottoms are fed to the polishing reactor.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: September 3, 2002
    Assignee: Catalytic Distillation Technologies
    Inventors: Gary G. Podrebarac, Gary R. Gildert
  • Publication number: 20020117424
    Abstract: A process is provided for upgrading an oligomerization product through catalytic hydrotreating resulting in a synthetic lube base oil with improved pour point and viscosity index. The upgrading process includes contacting the oligomerization product with a catalyst system, under conversion conditions, which include the presence of hydrogen and a temperature sufficient to promote selective/minor cracking, hydrogenation and isomerization. The catalyst system contains a ZSM-5 zeolite and a group VIII metal.
    Type: Application
    Filed: December 21, 2000
    Publication date: August 29, 2002
    Inventors: Charles A. Drake, An-Hsiang Wu
  • Patent number: 6440299
    Abstract: A process for treating a light cracked naphtha to be used as an etherification feed stock is disclosed in which mercaptans, H2S and diolefins are removed simultaneously in a distillation column reactor using a reduced nickel catalyst. The mercaptans and H2S are reacted with the diolefins to form sulfides which are higher boiling than that portion of the naphtha which is used as feed to the etherification unit. The higher boiling sulfides are removed as bottoms along with any C6 and heavier materials. Any diolefins not converted to sulfides are selectively hydrogenated to mono-olefins for use in the etherification process.
    Type: Grant
    Filed: July 18, 2001
    Date of Patent: August 27, 2002
    Assignee: Catalytic Distillation Technologies
    Inventors: Dennis Hearn, Gary R. Gildert, Hugh M. Putman
  • Publication number: 20020112991
    Abstract: A high-activity hydrotreating catalyst containing a uniformly dispersed active component at a high concentration, and particularly useful for deep desulfurization of a hydrocarbon oil for its high hydrodesulfurization activity. The present invention also provides a hydrotreating process using the same catalyst.
    Type: Application
    Filed: October 19, 2001
    Publication date: August 22, 2002
    Inventors: Masahiko Iijima, Takao Hashimoto, Yoshinobu Okayasu, Takeshi Isoda
  • Publication number: 20020108888
    Abstract: The present invention relates to a catalytic composition which comprises an ERS-10 zeolite, a metal of group VIII, a metal of group VI and optionally one or more oxides as carrier. According to a preferred aspect, the catalytic composition also contains a metal of group II B and/or III A. The catalytic system of the present invention can be used in the upgrading of hydrocarbon mixtures having boiling ranges within the range of C4 to 250° C., preferably mixtures of hydrocarbons which boil within the naphtha range, containing impurities of sulfur, i.e. in hydrodesulfuration with the contemporaneous skeleton isomerization of olefins contained in these hydrocarbons, the whole process being carried out in a single step.
    Type: Application
    Filed: February 14, 2002
    Publication date: August 15, 2002
    Applicant: AGIP PETROLI S.p.A.
    Inventors: Laura Zanibelli, Marco Ferrari, Luciano Cosimo Carluccio
  • Patent number: 6428686
    Abstract: A process where the need to circulate hydrogen through the catalyst is eliminated. This is accomplished by mixing and/or flashing the hydrogen and the oil to be treated in the presence of a solvent or diluent in which the hydrogen solubility is “high” relative to the oil feed. The type and amount of diluent added, as well as the reactor conditions, can be set so that all of the hydrogen required in the hydroprocessing reactions is available in solution. The oil/diluent/hydrogen solution can then be fed to a plug flow reactor packed with catalyst where the oil and hydrogen react. No additional hydrogen is required, therefore, hydrogen recirculation is avoided and trickle bed operation of the reactors is avoided. Therefore, the large trickle bed reactors can be replaced by much smaller tubular reactor.
    Type: Grant
    Filed: June 22, 2000
    Date of Patent: August 6, 2002
    Assignee: Process Dynamics, Inc.
    Inventors: Michael D. Ackerson, Michael S. Byars
  • Patent number: 6425998
    Abstract: A process for using a hydrogen sensor in a liquid metal heat exchange loop in a hydrocarbon conversion process with high hydrogen permeation. The hydrogen sensor of the present invention consists essentially of a hollow nickel membrane probe in intimate contact with liquid metal. A vacuum chamber in fluid communication with the hollow nickel membrane probe through which hydrogen permeates, wherein the vacuum chamber is initially evacuated to a vacuum pressure and is in equilibrium with the vacuum chamber. The hydrogen sensor is useful for measuring the partial pressure of the hydrogen in the liquid metal to provide advisory control for the removal of hydrogen from the liquid metal exchange loop to avoid the problem of metal hydride formation and associated plugging problems.
    Type: Grant
    Filed: February 23, 2000
    Date of Patent: July 30, 2002
    Assignee: UOP LLC
    Inventor: Donald Cholewa
  • Patent number: 6416658
    Abstract: A process for concurrently fractionating and hydrotreating of a full range naphtha stream. The full boiling range naphtha stream is subjected to simultaneous hydrodesulfurization and splitting into a light boiling range naphtha and a heavy boiling range naphtha, which have been treated to covert mercaptans in the fractions to H2S, which is separated with and separated from the light naphtha wherein the improvement is a further hydrodesulfurization by contacting the light boiling range naphtha with hydrogen in countercurrent flow in a fixed bed of hydrodesulfurization catalyst to remove recombinant mercaptans which are formed by the reverse reaction of H2S with olefins in the naphtha during the initial hydrodesulfurization.
    Type: Grant
    Filed: October 19, 2000
    Date of Patent: July 9, 2002
    Assignee: Catalytic Distillation Technologies
    Inventors: Mario J. Maraschino, Montri Vichailak, Bertrand Klussman, Harjeet Virdi
  • Patent number: 6416659
    Abstract: A process for the hydrodesulfurization of a diesel boiling range petroleum fraction wherein the hydrodesulfurization is carried out concurrently with a fractional distillation in a distillation column reactor containing a catalyst bed. The diesel is fed above the catalyst bed and hydrogen is fed below the bed. The bottoms from the distillation column reactor is then separated by fractional distillation to remove a bottoms containing most of the unconverted sulfur.
    Type: Grant
    Filed: August 17, 2000
    Date of Patent: July 9, 2002
    Assignee: Catalytic Distillation Technologies
    Inventors: Willibrord A. Groten, Mitchell E. Loescher
  • Patent number: 6413413
    Abstract: A process for hydrodesulfurization in which gasoline boiling range petroleum feed and hydrogen are contacted in a reactor with a fixed bed hydrodesulfurization catalyst at an WHSV of greater than 6, pressure of less than 300 psig and temperature of 300 to 700° F. wherein the pressure and temperature of the reactor are adjusted to maintain the reaction effluent at its boiling point and below it dew point whereby at least a portion but less than all of the reaction mixture is vaporized.
    Type: Grant
    Filed: December 29, 1999
    Date of Patent: July 2, 2002
    Assignee: Catalytic Distillation Technologies
    Inventor: Lawrence A. Smith, Jr.
  • Patent number: 6409913
    Abstract: Naphtha desulfurization with reduced product mercaptans is achieved by reacting a naphtha feed containing sulfur compounds and olefins with hydrogen in the presence of a hydrosesulfurization catalyst at reaction conditions including a temperature of from 290-425° C., a pressure of from 60-150 psig, and a hydrogen gas ratio of from 2000-4000 scf/b. It has been found that desulfurizing within these narrow conditions permits deep desulfurization with reduced mercaptan reversion, to produce a naphtha product with low total sulfur and low mercaptan sulfur levels.
    Type: Grant
    Filed: December 3, 1999
    Date of Patent: June 25, 2002
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Janet R. Clark, Michele S. Touvelle, Thomas R. Halbert, Bruce R. Cook, Garland B. Brignac, William C. Baird, Jr.
  • Publication number: 20020074262
    Abstract: A diesel fraction is purified by a process having two reaction stages and a stripping stage in a single vessel. Heteroatoms are removed in the first stage, to permit the use of a sulfur sensitive aromatics saturation catalyst in the second stage, to produce a purified diesel stock. The first stage liquid effluent is stripped in a stripping stage and then passed into the second reaction stage, in which it reacts with fresh hydrogen for aromatics removal. The second reaction stage produces a hydrogen-rich vapor effluent, which may provide all or a portion of the first stage reaction hydrogen. A noble metal catalyst is employed in the second stage. The diesel feed for the process may be one that has been at least partially refined with respect to either or both heteroatom or aromatics removal.
    Type: Application
    Filed: September 21, 2001
    Publication date: June 20, 2002
    Inventor: Ramesh Gupta
  • Patent number: 6406615
    Abstract: The invention relates to a method of heavy oil hydrogenation, precisely to a method of heavy oil hydrogenation for which a part of the catalyst to be used is a regenerated catalyst, and concretely to a method of heavy oil denitrification and to a method of heavy of desulfurization. It is characterized in that heavy oil is passed through a layer of a regenerated catalyst or a layer containing a regenerated catalyst. With the specific catalyst disposition employed in the method, heavy oil can be well hydrogenated under the same conditions as those for ordinary heavy oil hydrogenation with fresh catalysts. The method is significantly effective for efficient utilization of used catalysts.
    Type: Grant
    Filed: March 1, 2000
    Date of Patent: June 18, 2002
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Ryuichiro Iwamoto, Takao Nozaki
  • Patent number: 6398949
    Abstract: A catalyst composition comprising a cobalt compound, a molybdenum compound, and a SAPO molecular sieve is used to hydrodesulfurize a hydrocarbon feed containing organic sulfur compounds.
    Type: Grant
    Filed: November 2, 2000
    Date of Patent: June 4, 2002
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake, Joseph E. Bares
  • Publication number: 20020056664
    Abstract: Solvent injection in amounts no greater than 2 wt % can favorably alter the way heavy metals, such as vanadium, are normally deposited in catalyst particles. Heavy metals may be stored on the catalyst in a more compact form, saving catalyst pore volume. Consequently catalyst cycle length is improved, since capacity for deposition is increased.
    Type: Application
    Filed: June 5, 2001
    Publication date: May 16, 2002
    Inventor: Julie Chabot
  • Publication number: 20020056665
    Abstract: Process for the catalytic hydrotreating of a hydrocarbon feed stock containing silicon compounds by contacting the feed stock in presence of hydrogen with a hydrotreating catalyst at conditions to be effective in the hydrotreating of the feed stock, the improvement of which comprises the step of moisturising the hydrotreating catalyst with an amount of water added to the feed stock between 0.01 and 10 vol %.
    Type: Application
    Filed: September 10, 2001
    Publication date: May 16, 2002
    Applicant: Haldor Topsoe A/S
    Inventors: Per Zeuthen, Lars Pleth Nielsen, Steffen Vissing Christensen, Joachim Jacobsen
  • Patent number: 6387249
    Abstract: The invention relates to naphtha hydrodesulfurization incorporating either high temperature depressurization or controlled heating for mercaptan removal. More particularly, the invention relates to a naphtha hydrodesulfurization process, wherein the hot naphtha exiting the desulfurization reactor contains mercaptans, most of which are removed without olefin loss, by depressurizing the hot naphtha, thermally treating the hot naphtha, or some combination thereof. The desulfurized naphtha may be cooled and condensed to a liquid, separated from the gaseous H2S, stripped and sent to a mogas pool.
    Type: Grant
    Filed: October 10, 2000
    Date of Patent: May 14, 2002
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Bruce R. Cook, Richard H. Ernst, Richard A. Demmin, John P. Greeley
  • Publication number: 20020051878
    Abstract: Porous composite particles are provided which comprise an aluminum oxide component. e.g., crystalline boehmite, and a swellable clay component, e.g., synthetic hectorite, intimately dispersed within the aluminum oxide component at an amount effective to increase the hydrothermal stability, pore volume, and/or the mesopore pore mode of the composite particles relative to the absence of the swellable clay. Also provided is a method for making the composite particles, agglomerate particles derived therefrom, and a process for hydroprocessing petroleum feedstock using the agglomerates to support a hydroprocessing catalyst.
    Type: Application
    Filed: July 16, 2001
    Publication date: May 2, 2002
    Inventors: Roger Jean Lussier, Stanislaw Plecha, Charles Cross Wear, Gordon Dean Weatherbee
  • Publication number: 20020043483
    Abstract: Catalyst particles are presulfided in a treatment zone separate from a hydroconversion reaction zone. The presulfided catalyst is then added to a substantially packed bed of catalyst in the hydroconversion reaction zone at reaction pressure, so that the reactor is not shut down to replace catalyst. The presulfiding process is particularly beneficial for use in moving bed reactors for heavy oil conversion.
    Type: Application
    Filed: April 20, 2001
    Publication date: April 18, 2002
    Inventors: Pak C. Leung, David E. Earls, Bruce E. Reynolds, David R. Johnson, Robert W. Bachtel, Harold J. Trimble
  • Patent number: 6372125
    Abstract: The invention concerns a catalyst containing at least one amorphous oxide matrix, at least one carbide and phosphorous deposited on said catalyst or contained in the matrix, in which the carbide contain at least one group VIB element and, optionally, at least one element from group VIII of the periodic table. The invention also concerns the use of the catalyst for hydrodesulphurisation and hydrogenation of aromatic compounds in gas oils with a low sulphur content.
    Type: Grant
    Filed: August 23, 2000
    Date of Patent: April 16, 2002
    Assignee: Institut Francais du Petrole
    Inventors: Patrick Da Costa, Jean-Marie Manoli, Claude Potvin, Gérald Dejega-Mariadassou, Pedro Da Silva, Slavik Kasztelan, Fabrice Diehl, Michéle Breysse