Responsive To Non-electrical External Signal (e.g., Imager) Patents (Class 257/222)
  • Patent number: 7655493
    Abstract: A light sensor having a light conversion element between first and second electrodes is disclosed. The light conversion element includes a body of semiconductor material having first and second surfaces. The body of semiconductor material is of a first conductivity type and has doping elements in a concentration gradient that creates a first electrostatic field having a magnitude that varies monotonically from the first surface to the second surface. A bias circuit applies a variable potential between the first and second electrodes to create a second electrostatic field having a direction opposite to that of the first electrostatic field and a magnitude determined by the potential. One of the electrodes is transparent to light in a predetermined band of wavelengths. The body of semiconductor material can include an epitaxial body having a monotonically increasing concentration of a doping element as a function of the distance from one the surfaces.
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: February 2, 2010
    Assignee: Fairchild Imaging, Inc
    Inventors: David D. Wen, Xinqiao Liu, Ahn N. Vu, Steven Kiyoshi Onishi
  • Patent number: 7652343
    Abstract: The reduction in size, noise and voltage is realized in a MOS solid-state imaging device. A gate electrode in a pixel part is formed in a two-level structure. An amplifier gate of an amplifier transistor is formed in the first level while a select gate of a select transistor is formed in the second level. The both are structurally partly overlapped. With the first-level amplifier gate as self-alignment, ions are implanted for a select gate in the second level. Although the gate electrode if formed in one level as in the conventional requires a space of nearly a design rule between the amplifier gate and the select gate, the structure of the invention can eliminate such a dead space. Meanwhile, because the diffusion layer does not exist between the amplifier gate and the select gate, the diffusion layer is eliminated of sheet resistance and voltage drop.
    Type: Grant
    Filed: October 13, 2004
    Date of Patent: January 26, 2010
    Assignee: Sony Corporation
    Inventor: Keiji Mabuchi
  • Patent number: 7622321
    Abstract: An imager having gates with spacers formed of a high dielectric material. The high dielectric spacer provides larger fringing fields for charge transfer and improves image lag and charge transfer efficiency.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: November 24, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Howard E. Rhodes
  • Patent number: 7622736
    Abstract: It is an object of the present invention to provide a volatile semiconductor device into which data can be additionally written and which is easy to manufacture, and a method for manufacturing the same. It is a feature of the present invention that a semiconductor device includes an element formation layer including a first transistor and a second transistor which are provided over a substrate; a memory element provided over the element formation layer; and a sensor portion provided above the memory element, wherein the memory element has a layered structure including a first conductive layer, and an organic compound layer, and a second conductive layer, the first conductive layer is electrically connected to the first transistor, and the sensor portion is electrically connected to the second transistor.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: November 24, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yoshitaka Moriya, Hiroko Abe, Mikio Yukawa, Ryoji Nomura
  • Publication number: 20090278174
    Abstract: A pixel structure of a solid-state image sensor in which residual electrons in a photodiode is reduced and which has a first-stage gate that is arranged adjacent to the photodiode and controls read-out of electrons generated in the photodiode, a second-stage gate that is adjacent to the first-stage gate on the rear stage of the gate at a predetermined gap and controls movement of electrons read out by the readout control of the first-stage gate to the plurality of the charge-storage sections, and a plurality of third-stage gates that are adjacent to the second-stage gate on the rear stage of the gate at a predetermined gap, severally arranged corresponding to the plurality of the charge-storage sections, and perform control of distributing the electrons moved by the movement control of the second-stage gate severally to the plurality of the charge-storage sections, and gradient on which electrons are moved in the first-stage gate direction is formed on the potential of the photodiode.
    Type: Application
    Filed: May 11, 2009
    Publication date: November 12, 2009
    Applicants: Brainvision Inc., STANLEY ELECTRIC CO., LTD.
    Inventors: Michinori Ichikawa, Takanori Tanite, Tadashi Kawata, Ryohei Ikeno
  • Patent number: 7612392
    Abstract: Example embodiments relate to an image sensor and a fabrication method thereof. An image sensor may include a semiconductor substrate. A charge transfer structure may be formed on the semiconductor substrate. The charge transfer structure may include a gate insulating film that may be formed on a channel region in the semiconductor substrate between a photoelectric conversion region and charge detection region, and a transfer gate electrode that may be formed on the gate insulating film that may have a region doped with a first conductivity type impurity-doped region and a second conductivity type impurity-doped region which may be adjacent to each other.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: November 3, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-Il Jung, Duk-Min Yi
  • Patent number: 7612425
    Abstract: An image sensor includes: a light source that irradiates a light on an object; a lens body that converges a reflection of the light from the object; a plurality of IC chips that receive the reflection passed through the lens body; and a transparent member provided between the IC chips and the lens body. The transparent member includes a refractive index changing region provided at a portion opposite to a gap between adjacent IC chips. A refractive index in the refractive index changing region increases continuously or stepwise toward an inner portion of the transparent member from a surface of the transparent member on an IC chips side so that the refractive index changing region refracts a part of the reflection to be incident into the gap to the IC chips.
    Type: Grant
    Filed: October 17, 2006
    Date of Patent: November 3, 2009
    Assignee: Mitsubishi Electric Corporation
    Inventors: Takafumi Endo, Yohei Nokami
  • Patent number: 7608870
    Abstract: A pixel cell including a substrate having a top surface. A photo-conversion device is at a surface of the substrate and a trench is in the substrate adjacent the photo-conversion device. The trench has sidewalls and a bottom. At least one sidewall is angled less than approximately 85 degrees from the plane of the top surface of the substrate.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: October 27, 2009
    Assignee: Aptina Imaging Corporation
    Inventors: Bryan G. Cole, Howard E. Rhodes
  • Patent number: 7608871
    Abstract: A solid image pick-up element comprises: a photoelectric converting portion; a charge transmitting portion comprising a charge transmitting electrode that transmits a charge generated by the photoelectric converting portion; and a peripheral circuit portion connected to the charge transmitting portion, wherein a surface level of a field oxide film provided at the peripheral circuit portion and the charge transmitting portion to surround an effective image pick-up region of the photoelectric converting portion is to a degree the same as a surface level of the photoelectric converting portion.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: October 27, 2009
    Assignee: Fujifilm Corporation
    Inventors: Tsutomu Aita, Hideki Kooriyama, Maki Saito
  • Patent number: 7592654
    Abstract: CMOS image sensor having high sensitivity and low crosstalk, particularly at far-red to infrared wavelengths, and a method for fabricating a CMOS image sensor. A CMOS image sensor has a substrate, an epitaxial layer above the substrate, and a plurality of pixels extending into the epitaxial layer for receiving light. The image sensor also includes at least one of a horizontal barrier layer between the substrate and the epitaxial layer for preventing carriers generated in the substrate from moving to the epitaxial layer, and a plurality of lateral barrier layers between adjacent ones of the plurality of pixels for preventing lateral diffusion of electrons in the epitaxial layer.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: September 22, 2009
    Assignee: Aptina Imaging Corporation
    Inventors: Sandeep R. Bahl, Fredrick P. LaMaster, David W. Bigelow
  • Patent number: 7592645
    Abstract: A photoelectric conversion device according to the present invention has a plurality of photoreceiving portions provided in a substrate, an interlayer film overlying the photoreceiving portion, a large refractive index region which is provided so as to correspond to the photoreceiving portion and has a higher refractive index than the interlayer film, and a layer which is provided in between the photoreceiving portion and the large refractive index region, and has a lower etching rate than the interlayer film, wherein the layer of the lower etching rate is formed so as to cover at least the whole surface of the photoreceiving portion. In addition, the layer of the lower etching rate has a refractive index in between the refractive indices of the large refractive index region and the substrate. Such a configuration can provide the photoelectric conversion device which inhibits the lowering of the sensitivity and the variation of the sensitivity among picture elements.
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: September 22, 2009
    Assignee: Canon Kabushiki Kaisha
    Inventor: Sakae Hashimoto
  • Patent number: 7585695
    Abstract: An interline transfer type image sensing device that can be operated at high speed and with low image smear is described. The device incorporates a refractory metal layer which is used for both a light shield over the vertical charge transfer region and as a wiring layer for low resistance strapping of poly crystalline silicon (polysilicon) gate electrodes for the vertical charge transfer region. Plugs provided by a separate metallization layer connect the refractory light shield to the polysilicon gate electrode. These plugs allow high temperature processing after refractory light shield patterning for improved sensor performance without degradation of the polysilicon gate electrode or the refractory lightshield layer.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: September 8, 2009
    Assignee: Eastman Kodak Company
    Inventors: David N. Nichols, David L. Losee, Christopher Parks
  • Publication number: 20090206372
    Abstract: A solid-state imaging device includes an N-type semiconductor substrate, an N-type impurity region provided in the surficial portion of the N-type semiconductor substrate, a photo-electric conversion unit formed in the N-type impurity region, a charge accumulation unit formed in the N-type impurity region so as to contact with the photo-electric conversion unit, and temporarily accumulating charge generated in the photo-electric conversion unit, a charge hold region (barrier unit) formed in the N-type impurity region so as to contact with the charge accumulation unit, and allowing the charge accumulation unit to accumulate the charge, and a charge accumulating electrode provided to the charge accumulation unit. The charge accumulation unit and the charge hold region are formed to be N?-type.
    Type: Application
    Filed: February 25, 2009
    Publication date: August 20, 2009
    Applicant: NEC ELECTRONICS CORPORATION
    Inventors: Hiroyoshi KUDOU, Satoshi UCHIYA, Junichi YAMAMOTO, Fumiaki FATAMURA
  • Patent number: 7572701
    Abstract: A novel CMOS image sensor cell structure and method of manufacture. The imaging sensor comprises a substrate having an upper surface, a gate comprising a dielectric layer formed on the substrate and a gate conductor formed on the gate dielectric layer, a collection well layer of a first conductivity type formed below a surface of the substrate adjacent a first side of the gate conductor, a pinning layer of a second conductivity type formed atop the collection well at the substrate surface, and a diffusion region of a first conductivity type formed adjacent a second side of the gate conductor, the gate conductor forming a channel region between the collection well layer and the diffusion region. A portion of the bottom of the gate conductor is recessed below the surface of the substrate.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: August 11, 2009
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, John Ellis-Monaghan, Mark D. Jaffe, Jerome B. Lasky
  • Publication number: 20090194795
    Abstract: A first oxide film (102) is formed on a semiconductor substrate (101). A first nitride film (103) is formed on first gate electrode formation regions of the first oxide film (102). A plurality of first gate electrodes (104) are provided on the first nitride film (103) so as to be spaced apart from one another with a predetermined distance therebetween. A second oxide film (105) covers upper part and side walls of each of the first gate electrodes (104). A sidewall spacer (106) of a third oxide film is buried in an overhang portion generated on each side wall of each of the first gate electrodes (104) covered by the second oxide film (105). A second nitride film (107) covers the second oxide film (105), the sidewall spacer (106) and part of the first oxide film (102) located between the first gate electrodes (104). A plurality of second gate electrodes (108) are formed on at least part of the second nitride film (107) located between adjacent two of the first gate electrodes (104).
    Type: Application
    Filed: December 6, 2006
    Publication date: August 6, 2009
    Inventors: Naoto Niisoe, Kazuhisa Hirata, Tohru Yamada
  • Patent number: 7560754
    Abstract: A CMOS solid-state imaging device configured to restrain the occurrence of white spots and dark current caused by pixel defects, and also to increase the saturation signal amount. Adjacent pixels are separated by an element isolation portion formed of a diffusion layer and an insulating layer thereon, and the insulating layer of the element isolation portion is formed in a position equal to or shallower than the position of a pn junction on the side of an accumulation layer of a photoelectric conversion portion 38 constituting a pixel.
    Type: Grant
    Filed: September 21, 2005
    Date of Patent: July 14, 2009
    Assignee: Sony Corporation
    Inventors: Hideshi Abe, Keiji Tatani, Kazuichiro Itonaga
  • Patent number: 7560790
    Abstract: The present invention provides a back illuminated photodetector having a sufficiently small package as well as being capable of suppressing the scattering of to-be-detected light and method for manufacturing the same. A back illuminated photodiode 1 comprises an N-type semiconductor substrate 10, a P+-type impurity semiconductor region 11, a recessed portion 12, and a window plate 13. In the surface layer on the upper surface S1 side of the N-type semiconductor substrate 10 is formed the P+-type impurity semiconductor region 11. In the rear surface S2 of the N-type semiconductor substrate 10 and in an area opposite the P+-type impurity semiconductor region 11 is formed the recessed portion 12 that functions as an incident part for to-be-detected light. Also, the window plate 13 is bonded to the outer edge portion 14 of the recessed portion 12. The window plate 13 covers the recessed portion 12 and seals the rear surface S2 of the N-type semiconductor substrate 10.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: July 14, 2009
    Assignee: Hamamatsu Photonics K.K.
    Inventor: Katsumi Shibayama
  • Patent number: 7547927
    Abstract: In an X-Y address type solid state image pickup device represented by a CMOS image sensor, a back side light reception type pixel structure is adopted in which a wiring layer is provided on one side of a silicon layer including photo-diodes formed therein, and visible light is taken in from the other side of the silicon layer, namely, from the side (back side) opposite to the wiring layer. Wiring can be made without taking a light-receiving surface into account, and the degree of freedom in wiring for the pixels is enhanced.
    Type: Grant
    Filed: September 14, 2004
    Date of Patent: June 16, 2009
    Assignee: Sony Corporation
    Inventors: Ryoji Suzuki, Keiji Mabuchi, Tomonori Mori
  • Patent number: 7544975
    Abstract: A forward light monitoring photodiode having a high reflection film with low dark current for detecting forward light emitted from a laser diode and power of the laser diode in spite of the change of temperatures or yearly degradation. The high reflection film is made by depositing an SiON layer upon an InP window layer or an InP substrate by a plasma CVD method. Al2O3/Si reciprocal layers or Al2O3/TiO2 reciprocal layers are produced upon the SiON layer. The high reflection film reflects 80%-90% of a 45 degree inclination incidence beam and allows 20%-10% of the incidence beam to pass the film and arrive at the InP window or substrate.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: June 9, 2009
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Hiroshi Inada
  • Patent number: 7538363
    Abstract: A solid-state imaging device includes: a plurality of light-receiving parts arranged in an array in a substrate and performing photoelectric conversion on incident light; and a plurality of color separators each provided for adjacent four of the light-receiving parts arranged in two rows and two columns. In each of the color separators, absorption color filters and transmission color filters are combined.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: May 26, 2009
    Assignee: Panasonic Corporation
    Inventors: Atsuo Nakagawa, Mamoru Honjo, Yoshiaki Nishi
  • Publication number: 20090114919
    Abstract: A semiconductor range-finding element and a solid-state imaging device, which can provide a smaller dark current and a removal of reset noise. With n-type buried charge-generation region, buried charge-transfer regions, buried charge read-out regions buried in a surface of p-type semiconductor layer, an insulating film covering these regions, transfer gate electrodes arranged on the insulating film for transferring the signal charges to the buried charge-transfer regions, read-out gate electrodes arranged on the insulating film for transferring the signal charges to the buried charge read-out regions, after receiving a light pulse by the buried charge-generation region, in the semiconductor layer just under the buried charge-generation region, an optical signal is converted into signal charges, and a distance from a target sample is determined by a distribution ratio of the signal charges accumulated in the buried charge-transfer regions.
    Type: Application
    Filed: March 30, 2007
    Publication date: May 7, 2009
    Applicants: National University Corporation Shizuoka Univ., Sharp Kabushiki Kaisha
    Inventors: Shoji Kawahito, Takashi Watanabe
  • Patent number: 7525134
    Abstract: A charge storage capacitor which is connected to various light sensitive and/or electrical elements of a CMOS imager, as well as methods of formation, are disclosed. The charge storage capacitor may be formed entirely over a field oxide region of the CMOS imager, entirely over an active area of a pixel sensor cell, or partially over a field oxide region and partially over an active pixel area of a pixel sensor cell.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: April 28, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Howard Rhodes, Jeff McKee
  • Patent number: 7498621
    Abstract: A two-dimensional, temporally modulated electromagnetic wavefield, preferably in the ultraviolet, visible or infrared spectral range, can be locally detected and demodulated with one or more sensing elements. Each sensing element consists of a resistive, transparent electrode (E) on top of an insulated layer (O) that is produced over a semiconducting substrate whose surface is electrically kept in depletion. The electrode (E) is connected with two or more contacts (C1; C2) to a number of clock voltages that are operated synchronously with the frequency of the modulated wavefield. In the electrode and in the semiconducting substrate lateral electric fields are created that separate and transport photogenerated charge pairs in the semiconductor to respective diffusions (D1; D2) close to the contacts (C1; C2).
    Type: Grant
    Filed: June 5, 2003
    Date of Patent: March 3, 2009
    Assignee: MESA Imaging AG
    Inventor: Peter Seitz
  • Patent number: 7485903
    Abstract: A solid-state imaging device having an arrangement in which well contact is achieved for each pixel is provided. In the solid-state imaging device, a well contact part is formed in an activation region of a photoelectric conversion portion. The well contact part fixes a well in which the photoelectric conversion portion and transistors of the pixel are provided at a predetermined potential.
    Type: Grant
    Filed: November 2, 2004
    Date of Patent: February 3, 2009
    Assignee: Sony Corporation
    Inventors: Takashi Abe, Ryoji Suzuki, Keiji Mabuchi, Testuya Iizuka, Takahisa Ueno, Tsutomu Haruta
  • Patent number: 7476897
    Abstract: A solid-state imaging device is provided and includes: a semiconductor substrate; a plurality of photoelectric conversion films stacked above the semiconductor layer and absorbing different wavelength regions of light; and a transmission-blocking film at least one between the plurality of photoelectric conversion films, the transmission-blocking film blocking a transmission of a particular region of light, the particular region of light having a wavelength in a region to be absorbed in a photoelectric conversion film located above and nearest to the transmission-blocking film.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: January 13, 2009
    Assignee: Fujifilm Corporation
    Inventor: Tomoki Inoue
  • Patent number: 7446349
    Abstract: A two-branch outputting solid-state imaging device is provided and includes: two output amplifiers including a first output amplifier and a second output amplifier, each outputting a voltage signal in accordance with the signal charge transferred toward the output end through the charge transfer path; and a branching part that distributes the signal charge transferred through the charge transfer path toward the first output amplifier in a case the signal charge corresponds to the first signal charge, toward the second output amplifier in a case the signal charge corresponds to the second signal charge, and toward the first output amplifier in a case the signal charge corresponds to the third signal charge.
    Type: Grant
    Filed: February 15, 2007
    Date of Patent: November 4, 2008
    Assignee: FUJIFILM Corporation
    Inventors: Makoto Kobayashi, Katsumi Ikeda
  • Patent number: 7436010
    Abstract: A solid state imaging apparatus includes: a plurality of photoelectric conversion cells each including a plurality of photoelectric sections arranged in an array of at least two rows and two columns; a plurality of floating diffusion sections each being connected to each of ones of the photoelectric sections which are included in the same row of each said photoelectric conversion via each of a plurality of transfer transistors, and being shared by said ones of the photoelectric sections; a plurality of read-out lines each being selectively connected to at least two of the transfer transistors; and a plurality of pixel amplifier transistors each detecting and outputting the potential of each said the floating diffusion section. Charges of the photoelectric conversion sections each being connected to one of the read-out lines and being read out by the transfer transistors are read out by different floating diffusion sections.
    Type: Grant
    Filed: November 14, 2003
    Date of Patent: October 14, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mitsuyoshi Mori, Takumi Yamaguchi, Takahiko Murata
  • Patent number: 7432530
    Abstract: A solid-state imaging device includes: a substrate; a photo-receiving portion formed in the substrate; a wiring layer formed on the substrate and having a trench being formed on a region directly above the photo-receiving portion; and a light guiding member provided in the trench and made of organic material. An empty space is formed between a side wall of the trench and a side surface of the light guiding member. The side surface of the light guiding member is curved so that a central part of the side surface along a vertical direction is closer to a center axis of the trench than both end parts of the side surface along the vertical direction.
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: October 7, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Atsuko Yamashita, Toshihiko Kitamura, Takashi Doi, Masaaki Ogawa, Takayuki Sakai
  • Patent number: 7429750
    Abstract: A solid-state element has: a semiconductor layer formed on a substrate, the semiconductor layer having a first layer that corresponds to an emission area of the solid-state element to and a second layer through which current is supplied to the first layer; a light discharge surface through which light emitted from the first layer is externally discharged, the light discharge surface being located on the side of the substrate; and an electrode having a plurality of regions that are of a conductive material and are in ohmic-contact with the second layer.
    Type: Grant
    Filed: March 22, 2005
    Date of Patent: September 30, 2008
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Yoshinobu Suehiro, Seiji Yamaguchi
  • Patent number: 7425734
    Abstract: An improved transistor array for a display or sensor device is described. The display or sensor device includes a plurality of pixels. Each pixel includes a width and a length. Each pixel is addressed by a transistor. The transistor addressing each pixel has a channel with a channel width. Each channel width is greater than the width or length of the pixel being addressed. By fabricating transistors with extremely long channel widths, lower mobility semiconductor materials can easily be used to fabricate the display device.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: September 16, 2008
    Assignee: Palo Alto Research Center Incorporated
    Inventors: William S. Wong, Jeng Ping Lu, Alberto Salleo, Michael L. Chabinyc, Raj B. Apte, Robert A. Street
  • Patent number: 7420261
    Abstract: The invention relates to a substrate for epitaxy, especially for preparation of nitride semiconductor layers. Invention covers a bulk nitride mono-crystal characterized in that it is a mono-crystal of gallium nitride and its cross-section in a plane perpendicular to c-axis of hexagonal lattice of gallium nitride has a surface area greater than 100 mm2, it is more than 1,0 ?m thick and its C-plane surface dislocation density is less than 106/cm2, while its volume is sufficient to produce at least one further-processable non-polar A-plane or M-plane plate having a surface area at least 100 mm2. More generally, the present invention covers a bulk nitride mono-crystal which is characterized in that it is a mono-crystal of gallium-containing nitride and its cross-section in a plane perpendicular to c-axis of hexagonal lattice of gallium-containing nitride has a surface area greater than 100 mm2, it is more 1,0-?m thick and its surface dislocation density is less than 106/cm2.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: September 2, 2008
    Assignees: AMMONO Sp. z o.o., Nichia Corporation
    Inventors: Robert Dwiliński, Roman Doradziński, Jerzy Garczynski, Leszek P. Sierzputowski, Yasuo Kanbara
  • Patent number: 7420235
    Abstract: In the solid-state imaging device of the present invention having a photoelectric conversion section and a charge transfer section equipped with a charge transfer electrode for transferring an electric charge generated in the photoelectric conversion section, the charge transfer electrode has an alternate arrangement of a first layer electrode including a first layer electrically conducting film and a second layer electrode including a second layer electrically conducting film, which are formed on a gate oxide film including a laminate film consisting of a silicon oxide film and a metal oxide thin film, and the first layer electrode and the second layer electrode are separated by insulation with an interelectrode insulating film including a sidewall insulating film formed by a CVD process to cover the lateral wall of the first layer electrode.
    Type: Grant
    Filed: August 7, 2006
    Date of Patent: September 2, 2008
    Assignee: Fujifilm Corporation
    Inventor: Maki Saito
  • Patent number: 7411229
    Abstract: A semiconductor device includes a transfer channel for transferring charge generated by photoelectric conversion, an insulating film formed on the transfer channel, and a transfer electrode for applying a transfer voltage to the transfer channel via the insulating film. The insulating film has a first thickness and a second thickness that is thinner than the first thickness. The insulating film has the first thickness below both ends of the transfer electrode in a width direction of the transfer channel that is orthogonal to a charge transfer direction through the transfer channel, and the insulating film has the second thickness on a part including a center of the transfer channel in the width direction.
    Type: Grant
    Filed: April 20, 2006
    Date of Patent: August 12, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Hiroshi Tanaka
  • Patent number: 7408214
    Abstract: DRAM trench capacitors formed by, inter alia, deposition of conductive material into a trench or doping the semiconductor region in which the trench is defined.
    Type: Grant
    Filed: September 23, 2004
    Date of Patent: August 5, 2008
    Assignee: AmberWave Systems Corporation
    Inventors: Mayank Bulsara, Matthew T. Currie, Anthony J. Lochtefeld
  • Patent number: 7400004
    Abstract: Regions of an integrated circuit are isolated by a structure that includes at least one isolating trench on the periphery of an active area. The trench is deep, extending at least about 0.5 ?m into the substrate. The isolating structure prevents photons and electrons originating in peripheral circuitry from reaching the active area. Where the substrate has a heavily-doped lower layer and an upper layer on it, the trench can extend through the upper layer to the lower layer. A thermal oxide can be grown on the trench walls. A liner can also be deposited on the sidewalls of each trench. A fill material having a high-extinction coefficient is then deposited over the liner. The liner can also be light absorbent so that both the liner and fill material block photons.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: July 15, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Bryan G. Cole, Troy Sorensen
  • Patent number: 7397066
    Abstract: Microelectronic imagers with curved image sensors and methods for manufacturing curved image sensors. In one embodiment, a microelectronic imager device includes an imager die having a substrate, a curved microelectronic image sensor having a face with a convex and/or concave portion at one side of the substrate, and integrated circuitry in the substrate operatively coupled to the image sensor. The imager die can further include external contacts electrically coupled to the integrated circuitry and a cover over the curved image sensor.
    Type: Grant
    Filed: August 19, 2004
    Date of Patent: July 8, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Steven D. Oliver
  • Patent number: 7388187
    Abstract: An image sensor device includes a semiconductor substrate having a first type of conductivity, a semiconductor layer having the first type of conductivity formed on the semiconductor substrate, and pixels formed in the semiconductor layer. The semiconductor layer includes a first deep well having the first type of conductivity and substantially underlying the plurality of pixels, and a second deep well having a second type of conductivity different from the first type of conductivity and substantially underlying the first deep well.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: June 17, 2008
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Han-Chi Liu, Chung-Wei Chang, Shou-Gwo Wuu, Tong-Chern Ong, Chun-Yao Ko
  • Patent number: 7382003
    Abstract: A solid-state image pick-up unit comprises: a semiconductor substrate comprising an area in which a photoelectric converting portion is formed; and an electric charge transfer portion that transfers an electric charge formed by the photoelectric converting portion, wherein the electric charge transfer portion comprises: an electric charge transfer electrode including a first layer electrode and a second layer electrode; and a gate oxide film, the gate oxide film comprises a second gate oxide film formed under the second layer electrode, the second gate oxide film comprising an ONO film which comprises a SiO film, a SiN film and a SiO film in this order, and the second gate oxide film is continuously formed to cover whole of a region between the first layer electrode and the second layer electrode and a region under the second layer electrode.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: June 3, 2008
    Assignee: Fujifilm Corporation
    Inventor: Ryoichi Homma
  • Patent number: 7358583
    Abstract: A CMOS image sensor (CIS) device includes an array of pixels, each pixel including a sensing element (e.g., a photodiode) and access circuitry. To facilitate the passage of light to the photodiode, each pixel includes a via wave guide (VWG) defined in the metallization layer formed over the pixel's photodiode. The VWG includes an upper light concentrator having a curved (e.g., parabolic) surface extending from a relatively wide upper opening to a relatively small lower opening. The VWG also includes a lower section extending between the lower opening of the light concentrator and the associated photodiode. A mirror coating is optionally formed on the surface of the VWG. An optional light-guiding material and/or color filter materials are disposed inside the VWG. An optional microlens is formed over the VWG.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: April 15, 2008
    Assignee: Tower Semiconductor Ltd.
    Inventors: Hai Reznik, Amos Fenigstein, Doron Amihood, David Cohen
  • Patent number: 7355222
    Abstract: The invention relates to an imaging device having a pixel cell with a transparent conductive material interconnect line for focusing incident light onto a photosensor and providing an electrical connection to pixel circuitry, and the method of making the same.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: April 8, 2008
    Assignee: Micron Technology, Inc.
    Inventor: David Wells
  • Publication number: 20080048212
    Abstract: An imaging device includes a first electrode for generating an electric field storing signal charges, a charge multiplication section for multiplying the stored signal charges, a second electrode for generating the electric field in the charge multiplication section, a voltage conversion portion for converting the signal charges into a voltage, a third electrode for transferring the signal charges to the voltage conversion portion, provided between the first electrode and the voltage conversion portion, wherein the second electrode is provided on a side opposite to the third electrode and the voltage conversion portion with respect to the first electrode.
    Type: Application
    Filed: July 31, 2007
    Publication date: February 28, 2008
    Applicant: Sanyo Electric Co., Ltd.
    Inventors: Hayato Nakashima, Ryu Shimizu
  • Patent number: 7307327
    Abstract: CMOS image sensor having high sensitivity and low crosstalk, particularly at far-red to infrared wavelengths, and a method for fabricating a CMOS image sensor. A CMOS image sensor has a substrate, an epitaxial layer above the substrate, and a plurality of pixels extending into the epitaxial layer for receiving light. The image sensor also includes at least one of a horizontal barrier layer between the substrate and the epitaxial layer for preventing carriers generated in the substrate from moving to the epitaxial layer, and a plurality of lateral barrier layers between adjacent ones of the plurality of pixels for preventing lateral diffusion of electrons in the epitaxial layer.
    Type: Grant
    Filed: August 4, 2005
    Date of Patent: December 11, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Sandeep R. Bahl, Frederick P. LaMaster, David W. Bigelow
  • Patent number: 7294872
    Abstract: PROBLEM To provide a high quality solid state image pickup device. SOLUTION Impurities are implanted into a semiconductor substrate to form vertical transfer channels for transferring electric charges in a first direction and to form a drain near each of the vertical transfer channels via a gate which forms a barrier. A first silicon oxide film, a silicon nitride film and a second silicon oxide film are deposited in this order from the bottom, on the surfaces of the vertical transfer channels, gates and drains. A first layer vertical transfer electrode is formed on the second silicon oxide film above the vertical transfer channel, and an insulating film if formed on the surface of the first layer vertical transfer electrode. The second silicon oxide film and silicon nitride film are etched in such a manner that the silicon nitride film covers the vertical transfer channel and extends above the gate excepting a portion near the drain.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: November 13, 2007
    Assignee: Fujifilm Corporation
    Inventor: Masanori Nagase
  • Patent number: 7291861
    Abstract: A solid-state imaging device includes a two-dimensional array of photosensor sections on a semiconductor substrate, and a vertical transfer section including two-layer vertical transfer electrodes. The photosensor sections store signal charges generated by photoelectric conversion. The vertical transfer section reads signal charges from the photosensor sections and vertically transfers the read signal charges. The two-layer vertical transfer electrodes have first transfer electrode layers and second transfer electrode layers, and the first transfer electrode layers serve as read electrodes for reading the signal charges from the photosensor sections. The first transfer electrode layers have a larger electrode width with respect to the photosensor sections than the second transfer electrode layers.
    Type: Grant
    Filed: July 26, 2005
    Date of Patent: November 6, 2007
    Assignee: Sony Corporation
    Inventor: Junichi Furukawa
  • Patent number: 7276749
    Abstract: A microcrystalline germanium image sensor array. The array includes a number of pixel circuits fabricated in or on a substrate. Each pixel circuit comprises a charge collecting electrode for collecting electrical charges and a readout means for reading out the charges collected by the charge collecting electrode. A photodiode layer of charge generating material located above the pixel circuits convert electromagnetic radiation into electrical charges. This photodiode layer includes microcrystalline germanium and defines at least an n-layer, and i-layer and a p-layer. The sensor array also includes and a surface electrode in the form of a grid or thin transparent layer located above the layer of charge generating material. The sensor is especially useful for imaging in visible and near infrared spectral regions of the electromagnetic spectrum and provides imaging with starlight illumination.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: October 2, 2007
    Assignee: e-Phocus, Inc.
    Inventors: Peter Martin, Michael G. Engelman, Calvin Chao, Teu Chiang Hsieh, Milan Pender
  • Patent number: 7274054
    Abstract: CMOS and CCD imaging devices comprising different in-pixel capacitors and peripheral capacitors and methods of formation are disclosed. The capacitors used in periphery circuits have different requirements from the capacitors used in the pixel itself. Dual stack capacitors comprising two dielectric layers may be provided to achieve low leakage and high capacitance. A single masking step may be provided such that one region has a dual dielectric capacitor and a second region has a single dielectric capacitor. A different dielectric may also be provided in one region compared to another region wherein the inter-electrode insulator comprises a single dielectric in both regions.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: September 25, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Howard E. Rhodes
  • Publication number: 20070200148
    Abstract: In an element for a MOS type solid-state imaging device, a leakage current caused by a stress generated in a vicinity of an element isolation region having an STI structure is reduced. The element for the MOS type solid-state imaging device comprises: a signal accumulation region 102, of a second conductivity type, provided in an interior of a semiconductor substrate or well 101 of a first conductivity type, for accumulating a signal charge generated by performing photoelectric convention; agate electrode 104 provided on the semiconductor substrate or well 101; a drain region 105, of a second conductivity type, provided on a surface portion, of the semiconductor substrate or well 101, on which the gate electrode is formed; and an element isolation region 201 provided on the surface portion, of the semiconductor substrate or well 101, on which the gate electrode is formed. The element isolation region 201 has the STI structure, and a cavity 202 is formed in an interior of the element isolation region 201.
    Type: Application
    Filed: January 17, 2007
    Publication date: August 30, 2007
    Inventors: Tatsuya Hirata, Shouzi Tanaka
  • Patent number: 7262445
    Abstract: In a charge transfer device which has many two-layered transfer electrodes, 8L disposed along a charge transfer direction X above a transfer channel is driven with two-phase driving pulses supplied to the transfer electrodes of the second layer, the transfer channel below the last-stage transfer electrode disposed at the last stage of the charge transfer direction X is constructed to have three-step potential, and the potential is set to be stepwise deeper from the upstream side to the downstream side in the charge transfer direction X.
    Type: Grant
    Filed: October 27, 2004
    Date of Patent: August 28, 2007
    Assignee: Sony Corporation
    Inventor: Naoki Nishi
  • Patent number: 7256426
    Abstract: Provided are an electroluminescence (EL) device and corresponding method for forming a rare earth element-doped silicon (Si)/Si dioxide (SiO2) lattice structure. The method comprises: providing a substrate; DC sputtering a layer of amorphous Si overlying the substrate; DC sputtering a rare earth element; in response, doping the Si layer with the rare earth element; DC sputtering a layer of SiO2 overlying the rare earth-doped Si; forming a lattice structure; annealing; and, in response to the annealing, forming nanocrystals in the rare-earth doped Si having a grain size in the range of 1 to 5 nanometers (nm). In one aspect, the rare earth element and Si are co-DC sputtered. Typically, the steps of DC sputtering Si, DC sputtering the rare earth element, and DC sputtering the SiO2 are repeated 5 to 60 cycles, so that the lattice structure includes the plurality (5-60) of alternating SiO2 and rare earth element-doped Si layers.
    Type: Grant
    Filed: January 19, 2005
    Date of Patent: August 14, 2007
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Tingkai Li, Wei Gao, Yoshi Ono, Sheng Teng Hsu
  • Patent number: 7244971
    Abstract: A solid state image pickup device comprising: a semiconductor substrate having a surface layer; charge storage regions disposed in the surface layer; vertical channels disposed in the surface layer adjacent to respective columns of the charge storage regions; vertical transfer electrodes formed above the semiconductor substrate, crossing the vertical channels; a horizontal channel disposed in the surface layer coupled to the vertical channels, having a first portion with transfer stages, each including a barrier region and a well region, and a second portion constituting a gate region with gradually decreasing width, and including an upstream region and a downstream region of different effective impurity concentration, establishing a built-in potential; horizontal transfer electrodes disposed above respective transfer stages of the horizontal channel; an output gate electrode disposed above the gate region; a floating diffusion region disposed in the surface layer coupled to the gate region of the horizontal
    Type: Grant
    Filed: May 19, 2004
    Date of Patent: July 17, 2007
    Assignee: Fujifilm Corporation
    Inventors: Tomohiro Sakamoto, Yuko Nomura