With Shield, Filter, Or Lens Patents (Class 257/294)
  • Patent number: 8525282
    Abstract: A solid-state imaging device capable of making reduction in reflection at the interface between a light guide and an incident unit consistent with improvement in condensing efficiency by the light guide is provided. The solid-state imaging device includes a substrate internally including a photoelectric conversion unit, and a condensing unit provided on an optical incident side of the substrate. A configuration satisfying relationships of |N1|<|??×??| and 0.63<N1/(??/??)<1.58 on an end face of the optical incident side of the condensing unit is adopted. Here, N1 is a refractive index of a medium forming a region of the optical incident side of the condensing unit, and ? is a specific permittivity of a medium forming the condensing unit, and ? is a specific permeability of the medium forming the condensing unit.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: September 3, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Aihiko Numata, Akinari Takagi
  • Patent number: 8525240
    Abstract: A solid-state imaging device includes photoelectric conversion elements on an imaging surface of a substrate, receiving light incident on a light receiving surface and performing photoelectric conversion to produce a signal charge. Electrodes are interposed between the photoelectric conversion elements and light blocking portions are provided above the electrodes and interposed between the photoelectric conversion elements. The light blocking portions include an electrode light blocking portion formed to cover the corresponding electrode, and a pixel isolation and light blocking portion protruding convexly from the upper surface of the electrode light blocking portion. The photoelectric conversion elements are arranged at first pitches on the imaging surface. The electrode light blocking portions and the pixel isolation and light blocking portions are arranged at second and third pitches on the imaging surface.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: September 3, 2013
    Assignee: Sony Corporation
    Inventor: Yoshiaki Masuda
  • Patent number: 8519460
    Abstract: In an X-Y address type solid state image pickup device represented by a CMOS image sensor, a back side light reception type pixel structure is adopted in which a wiring layer is provided on one side of a silicon layer including photo-diodes formed therein, and visible light is taken in from the other side of the silicon layer, namely, from the side (back side) opposite to the wiring layer. Wiring can be made without taking a light-receiving surface into account, and the degree of freedom in wiring for the pixels is enhanced.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: August 27, 2013
    Assignee: Sony Corporation
    Inventors: Ryoji Suzuki, Keiji Mabuchi, Tomonori Mori
  • Patent number: 8519459
    Abstract: A backside illumination type solid-state imaging device includes stacked semiconductor chips which are formed such that two or more semiconductor chip units are bonded to each other, at least a first semiconductor chip unit is formed with a pixel array and a first multi-layered wiring layer, and a second semiconductor chip unit is formed with a logic circuit and a second multi-layered wiring layer, a connection wire which connects the first semiconductor chip unit and the second semiconductor chip unit, and a first shield wire which shields adjacent connection wires in one direction therebetween.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: August 27, 2013
    Assignee: Sony Corporation
    Inventors: Machiko Horiike, Kazuchiro Itonaga
  • Publication number: 20130214337
    Abstract: Provided is a semiconductor device which allows an alignment mark used for the manufacturing of a solid-state image sensor (semiconductor device) having a back-side-illumination structure to be formed in a smaller number of steps. The semiconductor device includes a semiconductor layer having a first main surface and a second main surface opposing the first main surface, a plurality of photodiodes which are formed in the semiconductor layer and in each of which photoelectric conversion is performed, a light receiving lens disposed over the second main surface of the semiconductor layer to supply light to each of the photodiodes, and a mark for alignment formed inside the semiconductor layer. The mark for alignment is formed so as to extend from the first main surface toward the second main surface and have a protruding portion protruding from the second main surface in a direction toward where the light receiving lens is disposed.
    Type: Application
    Filed: February 7, 2013
    Publication date: August 22, 2013
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventor: RENESAS ELECTRONICS CORPORATION
  • Patent number: 8513761
    Abstract: A backside illumination semiconductor image sensor, wherein each photodetection cell includes a semiconductor body of a first conductivity type of a first doping level delimited by an insulation wall, electron-hole pairs being capable in said body after a backside illumination; on the front surface side of said body, a ring-shaped well of the second conductivity type, this well delimiting a substantially central region having its upper portion of the first conductivity type of a second doping level greater than the first doping level; and means for controlling the transfer of charge carriers from said body to said upper portion.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: August 20, 2013
    Assignees: STMicroelectronics (Grenoble) SAS, STMicroelectronics (Crolles 2) SAS
    Inventors: François Roy, Pierrick Descure
  • Patent number: 8507960
    Abstract: A solid-state imaging device that includes a pixel including a photoelectric conversion section, and a conversion section that converts an electric charge generated by photoelectric conversion into a pixel signal. In the solid-state imaging device, substantially only a gate insulation film is formed on a substrate corresponding to an area under a gate electrode of at least one transistor in the pixel.
    Type: Grant
    Filed: November 27, 2006
    Date of Patent: August 13, 2013
    Assignee: Sony Corporation
    Inventor: Kazuichiro Itonaga
  • Patent number: 8507964
    Abstract: An image sensor having an array of pixels disposed in a substrate. The array of pixels includes photosensitive elements, a color filters, and waveguide walls. The waveguide walls are disposed in the color filters and surround portions of the color filters to form waveguides through the color filters. In some embodiments, metal walls may be coupled to the waveguide walls.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: August 13, 2013
    Assignee: OmniVision Technologies, Inc.
    Inventors: Hidetoshi Nozaki, Fei Wu
  • Patent number: 8508009
    Abstract: A microlens, an image sensor including the microlens, a method of forming the microlens and a method of manufacturing the image sensor are provided. The microlens includes a polysilicon pattern, having a cylindrical shape, formed on a substrate, and a round-type shell portion enclosing the polysilicon pattern. The microlens may further include a filler material filling an interior of the shell portion, or a second shell portion covering the first shell portion. The method of forming a microlens includes forming a silicon pattern on a semiconductor substrate having a lower structure, forming a capping film on the semiconductor substrate over the silicon pattern, annealing the silicon pattern and the capping film altering the silicon pattern to a polysilicon pattern having a cylindrical shape and the capping film to a shell portion for a round-type microlens, and filling an interior of the shell portion with a lens material through an opening between the semiconductor substrate and an edge of the shell portion.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: August 13, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Huaxiang Yin, Hyuck Lim, Young-soo Park, Wenxu Xianyu, Hans S. Cho
  • Patent number: 8492807
    Abstract: A tiltable micro-electro-mechanical (MEMS) system lens comprises a microscopic lens located on a front surface of a semiconductor-on-insulator (SOI) substrate and a semiconductor rim surrounding the periphery of the microscopic lens. Two horizontal semiconductor beams located at different heights are provided within a top semiconductor layer. The microscopic lens may be tilted by applying an electrical bias between the lens rim and one of the two semiconductor beams, thereby altering the path of an optical beam through the microscopic lens. An array of tiltable microscopic lenses may be employed to form a composite lens having a variable focal length may be formed. A design structure for such a tiltable MEMS lens is also provided.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: John J. Ellis-Monaghan, Jeffrey P. Gambino, Kirk D. Peterson, Jed H. Rankin
  • Patent number: 8471317
    Abstract: In an X-Y address type solid state image pickup device represented by a CMOS image sensor, a back side light reception type pixel structure is adopted in which a wiring layer is provided on one side of a silicon layer including photo-diodes formed therein, and visible light is taken in from the other side of the silicon layer, namely, from the side (back side) opposite to the wiring layer, wiring can be made without taking a light-receiving surface into account, and the degree of freedom in wiring for the pixels is enhanced.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: June 25, 2013
    Assignee: Sony Corporation
    Inventors: Ryoji Suzuki, Keiji Mabuchi, Tomonori Mori
  • Patent number: 8461659
    Abstract: According to one embodiment, in the upper laminated structure, first layers and second layers are alternately laminated, the first layer and the second layer having different refractive indices. In the lower laminated structure, first layers and second layers are alternately laminated, the first layer and the second layer having different refractive indices. The upper laminated structure and the lower laminated structure are equal in number of layers laminated therein. Each of the lowermost layer of the upper laminated structure and the uppermost layer of the lower laminated structure are configured by the first layer. The upper laminated structure and the lower laminated structure are configured to be asymmetric to each other such that, within some layer sets out of a plurality of layer sets each including two layers disposed at corresponding positions in the upper and lower laminated layers, one layer of the two layers in each layer set of the some layer sets is thinner than the other layer.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: June 11, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Koichi Kokubun, Kazufumi Shiozawa
  • Patent number: 8455883
    Abstract: A semiconductor device and method of manufacturing a semiconductor device is disclosed. The exemplary semiconductor device and method for fabricating the semiconductor device enhance carrier mobility. The method includes providing a substrate and forming a dielectric layer over the substrate. The method further includes forming a first trench within the dielectric layer, wherein the first trench extends through the dielectric layer and epitaxially (epi) growing a first active layer within the first trench and selectively curing with a radiation energy the dielectric layer adjacent to the first active layer.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: June 4, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Miao-Cheng Liao, Min Hao Hong, Hsiang Hsiang Ko, Kei-Wei Chen, Ying-Lang Wang
  • Patent number: 8455933
    Abstract: An image sensor according to example embodiments may include a plurality of light-sensitive transparent oxide semiconductor layers as light-sensing layers. The light-sensing layers may be stacked in one unit pixel region.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: June 4, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-ho Park, I-hun Song, Ji-hyun Hur, Sang-hun Jeon
  • Patent number: 8455934
    Abstract: The invention relates to image sensors produced with CMOS technology, whose individual pixels, arranged in an array of rows and columns, each consist of a photodiode (PD1) associated with a charge storage region (N2) which receives the photogenerated charge before a charge readout phase. To eliminate the risk of introducing kTC-type noise into the signal, during the reset of the storage zone (N2) at the end of a readout cycle, the invention proposes that the storage zone be divided into two parts one of which (N2b), adjacent to the reset gate (G3), is covered by a diffused region (P2) of the same type of conductivity as the substrate in which the photodiode is formed, this region being brought to the fixed potential of the substrate, and the other (N2a) of which is not covered by such a region and is not adjacent to the reset gate.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: June 4, 2013
    Assignee: E2V Semiconductors
    Inventors: Pierre Fereyre, Simon Caruel
  • Patent number: 8445983
    Abstract: A semiconductor device for performing photoelectric conversion of incident light includes a substrate and a well region having different conductivity types. A depletion layer is generated in a vicinity of a junction interface between the substrate and the well region. A first trench has a depth equal to a height up to a top portion of the depletion layer generated on a bottom side of the well region and a width extending to a heavily doped region formed in the well region. A second trench has a depth larger than that of a portion of the depletion layer generated on the bottom side of the well region and a width larger than that of portions of the depletion layer generated on the sides of the well region. The second trench surrounds the first trench so as to confine the depletion layer under the first trench except for a region thereof under the heavily doped region. An insulator is buried into each the first trench and the second trench.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: May 21, 2013
    Assignee: Seiko Instruments Inc.
    Inventors: Atsushi Iwasaki, Hiroaki Takasu
  • Patent number: 8441564
    Abstract: In the solid-state imaging apparatus, the carrier holding portion is arranged at a position in a first direction from a photoelectric conversion portion, a floating diffusion region is arranged at a position in a second direction perpendicular to the first direction from the carrier holding portion with a transfer portion sandwiched between the floating diffusion region and the carrier holding portion, the carrier holding portion included in the first pixel is arranged between the photoelectric conversion portion included in the first pixel and the photoelectric conversion portion included in the second pixel, the carrier holding portion included in the first pixel is covered with a light shielding portion, and the light shielding portion extends over a part of each of the photoelectric conversion portions included in the first and second pixels.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: May 14, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventor: Yuichiro Yamashita
  • Patent number: 8441052
    Abstract: An image sensor pixel array includes a photoelectric conversion unit that has a second region in a substrate and vertically below a gate electrode of a transistor. A first region under a top surface of the substrate and above the second region supports a channel of the transistor. A color filter transmits a light via a light guide, the gate electrode and the first region to generate carriers collected by the second region. The gate electrode may be made thinner by a wet etch. An etchant for thinning the gate electrode may be introduced through an opening in an insulating film on the substrate. The light guide may be formed in the opening after the thinning. An anti-reflection stack may be formed at a bottom of the opening prior to forming the light guide.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: May 14, 2013
    Inventor: Hiok Nam Tay
  • Patent number: 8436388
    Abstract: Illumination assemblies, components, and related methods are described. An illumination assembly can include at least one solid state light-emitting device, an emission surface through which light is emitted, and a wavelength converting material that wavelength converts at least some light emitted by the solid state light-emitting device. The wavelength converting material can have a first density per unit area of the emission surface at a first location and a second density per unit area of the emission surface at a second location, wherein the second density is substantially different from the first density, and wherein the density per unit area is defined with a 1×1 cm2 averaging area. Another illumination assembly can include a light guide configured to receive light emitted by a solid state light-emitting device. The light guide can have a length along which received light propagates and an emission surface substantially parallel to the length of the light guide and through which light is emitted.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: May 7, 2013
    Assignee: Rambus International Ltd.
    Inventors: Michael Lim, David Doyle, Alexander L Pokrovskiy, Alexei A Erchak, Gianni Taraschi, Nikolay I Nemchuk
  • Patent number: 8436443
    Abstract: A backside illuminated image sensor is provided which includes a substrate having a front side and a backside, a sensor formed in the substrate at the front side, the sensor including at least a photodiode, and a depletion region formed in the substrate at the backside, a depth of the depletion region is less than 20% of a thickness of the substrate.
    Type: Grant
    Filed: April 22, 2008
    Date of Patent: May 7, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tzu-Hsuan Hsu, Han-Chi Liu, Ching-Chun Wang
  • Patent number: 8431977
    Abstract: A semiconductor chip includes a silicon substrate, a transistor in or on a bottom side surface of the substrate, a metallization structure under a bottom side surface of the substrate, a dielectric layer under the substrate and between a first and second metal layers of the metallization structure, a passivation layer under the metallization structure and the dielectric layer, where an opening in the passivation layer may be under a contact point of the metallization structure, a polymer layer under the passivation layer, a metal post under the passivation layer and in the polymer layer, where the polymer layer may not cover a bottom surface of the metal post, a metal bump connected with the bottom surface of the metal post, a micro-lense over the top side surface of the substrate, and a glass substrate over the micro-lense and over the top side surface of the substrate.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: April 30, 2013
    Assignee: Megica Corporation
    Inventor: Ping-Jung Yang
  • Patent number: 8426238
    Abstract: A method for manufacturing a solid-state image pickup device is provided. A first pixel isolation member is formed in a semiconductor substrate including pixels by implanting impurity ions in a first region of the substrate to separate pixels in the first region from each other when viewed from a surface of the substrate. A second pixel isolation member is also formed in the substrate by forming a trench in a second region of the substrate different from the first region to separate pixels in the second region from each other, and filling the trench with an electroconductive material harder to polish by CMP than the substrate. The thickness of the substrate is reduced by CMP on a rear surface of the substrate using the second pixel isolation member as a stopper.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: April 23, 2013
    Assignee: Sony Corporation
    Inventors: Kenichi Nishizawa, Hiroshi Takahashi
  • Patent number: 8421176
    Abstract: A solid-state image pickup device relating to the present invention has a specific gap in a part of a lattice-shaped light blocking film pattern or wiring pattern having an opening enclosing a light reception region. Peripheral circuits and wiring layers on a pixel may be used as the light blocking film. In such a case, when multiple wiring layers are used as the light blocking film, layouts of a second and subsequent wiring layers is determined according to the layout of the first wiring layer above the light reception region. The specific gap is created in a part of the wiring enclosing the light reception region.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: April 16, 2013
    Assignee: Panasonic Corporation
    Inventors: Ken Mimuro, Jun Jisaki
  • Patent number: 8421136
    Abstract: A semiconductor device that includes a circuit portion, a first light-shielding film and plural second light-shielding films. In the circuit portion, a plurality of wiring layers that include circuit elements are laminated. The first light-shielding film covers an uppermost layer of the wiring layers and light-shields light that is illuminated at the circuit portion. The second light-shielding films are covered by the first light shielding film and formed so as to respectively encircle the wiring layers in ring forms. Outer peripheries of the plural second light-shielding films are formed to be successively smaller from an upper to a lower layer, so as to be at the inner side relative to the outer periphery of the second light-shielding film of the upper layer.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: April 16, 2013
    Assignee: Oki Semiconductor Co., Ltd.
    Inventors: Kenichirou Sugio, Kenichirou Tanaka
  • Patent number: 8421133
    Abstract: A detector module, in particular for super-resolution satellites, contains a multi-chip carrier. At least one TDI-CCD detector and at least one CMOS chip are arranged on the multi-chip carrier, and are electrically connected to one another. The CMOS chip contains at least the digital output electronics for the TDI-CCD detector.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: April 16, 2013
    Assignee: Deutsches Zentrum fuer Luft- und Raumfahrt E.V.
    Inventor: Andreas Eckardt
  • Patent number: 8415725
    Abstract: A solid-state imaging device including: a substrate; a light-receiving part; a second-conductivity-type isolation layer; a detection transistor; and a reset transistor.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: April 9, 2013
    Assignee: Sony Corporation
    Inventor: Isao Hirota
  • Publication number: 20130083225
    Abstract: An image sensor includes a semiconductor substrate having first and second faces. The sensor includes a plurality of pixel groups each including pixels, each pixel having a photoelectric converter and a wiring pattern, the converter including a region whose major carriers are the same with charges to be accumulated in the photoelectric converter. The sensor also includes a microlenses which are located so that one microlens is arranged for each pixel group. The wiring patterns are located at a side of the first face, and the plurality of microlenses are located at a side of the second face. Light-incidence faces of the regions of the photoelectric converters of each pixel group are arranged along the second face such that the light-incidence faces are apart from each other in a direction along the second face.
    Type: Application
    Filed: September 26, 2012
    Publication date: April 4, 2013
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: CANON KABUSHIKI KAISHA
  • Patent number: 8395699
    Abstract: A method for manufacturing a solid-state imaging device, in which a photoelectric conversion portion to receive light with a light-receiving surface and generate a signal charge is disposed in a substrate, includes the steps of forming a metal light-shield layer above the substrate and in a region other than a region corresponding to the light-receiving surface, forming a light-reflection layer above the metal light-shield layer, and forming a photoresist pattern layer from a negative type photoresist film formed above the light-reflection layer, by conducting an exposing treatment and a developing treatment, wherein in the forming of the light-reflection layer, the light-reflection layer includes a shape corresponding to a pattern shape of the photoresist pattern layer, and the light-reflection layer is formed in such a way as to reflect exposure light to the photoresist film in conduction of the exposing treatment in the forming of the photoresist pattern layer.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: March 12, 2013
    Assignee: Sony Corporation
    Inventors: Kazushi Wada, Yoichi Otsuka
  • Patent number: 8389920
    Abstract: A method of making a color filter array of an imaging device comprises forming a main recess for a color filter array, forming a tension breaking feature at an edge of the main recess, and providing a color filter array material across the tension breaking feature and main recess as part of forming the color filter array. The tension breaking feature reduces the settling distance of the color filter array material. An imaging device having the thus formed color filter array is also described.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: March 5, 2013
    Assignee: Aptina Imaging Corporation
    Inventors: Salman Akram, James Chapman
  • Patent number: 8390713
    Abstract: In a photoelectric conversion device, groups of unit pixels are arranged in a well, where each of the unit pixels includes photoelectric conversion elements, an amplifier transistor, and transfer transistors. The photoelectric conversion device includes a line used to supply a voltage to the well, a well-contact part used to connect the well-voltage-supply line to the well, and transfer-control lines used to control the transfer transistors. The transfer-control lines are symmetrically arranged with respect to the well-voltage-supply line in respective regions of the unit-pixel groups.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: March 5, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Yukihiro Kuroda, Takanori Watanabe
  • Publication number: 20130049084
    Abstract: A solid-state imaging device includes an element forming region formed on the surface of a substrate, element isolating parts that isolate pixels formed on the substrate, each of which is formed with a trench and a buried film, an opto-electric conversion element, and a buried-channel MOS transistor. The buried-channel MOS transistor includes a source region and a drain region, formed in the element forming region, that have a conductivity type opposite to that of the element forming region, a channel region having first impurity diffusion regions and a second impurity diffusion region, which have a conductivity type opposite to that of the element forming region, and a gate electrode. Each first impurity diffusion region is formed between the source region and drain region on a side adjacent to one element isolating part. The second impurity diffusion region is formed across the region between the source region and drain region.
    Type: Application
    Filed: August 16, 2012
    Publication date: February 28, 2013
    Applicant: SONY CORPORATION
    Inventor: Naoki Saka
  • Patent number: 8383444
    Abstract: A method is provided for determining a color using a CMOS image sensor. The CMOS image sensor includes an n-type substrate and a p-type epitaxy layer overlying the n-type substrate. The method includes applying a first voltage on the n-type substrate and obtaining a first output, which is associated with the first voltage. The method further includes applying a second voltage on the n-type substrate and obtaining a second output, which is associated with the second voltage. The method additionally includes applying a third voltage on the n-type substrate and obtaining a third output, which is associated with the third voltage. The method also includes providing a plurality of weighting factors and determining the color based on the plurality of weighting factors, the first output, the second output, and the third output.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: February 26, 2013
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Hong Zhu, Jim Yang
  • Patent number: 8378400
    Abstract: An island-shaped semiconductor constituting a pixel includes a first semiconductor N+-region formed on a substrate, a second semiconductor P-region formed on the region, third semiconductor N-regions formed on upper lateral sides of the region, insulating layers formed on the outer periphery of the regions and lower lateral sides of the region, gate conductive layers formed on the outer periphery of the insulating layers and functioning as gate electrodes forming a channel in a lower area of the region, light-reflection conductive layers formed on the outer periphery of the N regions and a portion of the insulating layers where the gate conductive layers are not formed, a fifth semiconductor P+-region formed on the region and the regions, and a microlens formed on the region and whose focal point is located near the upper surface of the region.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: February 19, 2013
    Assignee: Unisantis Electronics Singapore Pte Ltd.
    Inventors: Fujio Masuoka, Nozomu Harada
  • Patent number: 8378399
    Abstract: According to one embodiment, a backside illumination solid-state imaging device includes a semiconductor layer, a first light-receiving unit and a second light-receiving unit, a circuit unit, an impurity isolation layer, and a light-shielding film. A first light-receiving unit and a second light-receiving unit are formed adjacent to each other in the semiconductor layer, convert light applied from a lower surface side of the semiconductor layer into a signal, and store electric charges. A circuit unit is formed on an upper surface of the semiconductor layer. An impurity isolation layer is formed to reach to the upper surface from the lower surface in the semiconductor layer and isolates the first light-receiving unit from the second light-receiving unit. A light-shielding film is formed on part of the lower surface side in the impurity isolation layer so as to extend from the lower surface to the upper surface.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: February 19, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Motohiro Maeda
  • Patent number: 8373786
    Abstract: A solid-state imaging device has: an imaging region in which a plurality of pixels each having a photoelectric conversion element are arranged, and a color filter. The color filter includes: filter components of a first color (2G), filter components of a second color (2R) formed by self-alignment and each being surrounded by the filter components of the first color (2G), and filter components of a third color (2B) formed by self-alignment and each being surrounded by the filter components of the first color (2G).
    Type: Grant
    Filed: May 1, 2009
    Date of Patent: February 12, 2013
    Assignee: Sony Corporation
    Inventors: Yoichi Otsuka, Yoshiyuki Enomoto, Kazunori Nagahata, Tadayuki Kimura, Toshihiko Hayashi, Kenichi Aoyagi, Kiyotaka Tabuchi, Iwao Sugiura, Kensaku Maeda
  • Publication number: 20130026548
    Abstract: An image sensor includes front-side and backside photodetectors of a first conductivity type disposed in a substrate layer of the first conductivity type. A front-side pinning layer of a second conductivity type is connected to a first contact. The first contact receives a predetermined potential. A backside pinning layer of the second conductivity type is connected to a second contact. The second contact receives an adjustable and programmable potential.
    Type: Application
    Filed: July 29, 2011
    Publication date: January 31, 2013
    Inventors: John P. McCarten, Robert Michael Guidash
  • Patent number: 8357961
    Abstract: An organic EL device includes an array substrate including an insulating substrate and an organic EL element which is disposed above the insulating substrate, a sealing substrate which is disposed on that side of the array substrate, which faces the organic EL element, and is attached to the array substrate, a light sensor which is provided in the array substrate and includes a light-sensing part which receives incident light via the sealing substrate, and a light-shield layer which is disposed between the light sensor and the sealing substrate, and includes an opening portion which is formed right above the light-sensing part of the light sensor.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: January 22, 2013
    Assignee: Japan Display Central Inc.
    Inventor: Jun Hanari
  • Patent number: 8355072
    Abstract: A solid-state image capture device includes: at least one photoelectric converter provided at an image capture surface of a substrate to receive incident light at a light-receiving surface of the photoelectric converter and photoelectrically convert the incident light to thereby generate signal charge; at least one on-chip lens provided at the image capture surface of the substrate and above the light-receiving surface of the photoelectric converter to focus the incident light onto the light-receiving surface; and an antireflection layer provided on an upper surface of the on-chip lens at the image capture surface of the substrate. The antireflection layer contains a binder resin having a lower refractive index than the on-chip lens and low-refractive-index particles having a lower refractive index than the binder resin.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: January 15, 2013
    Assignee: Sony Corporation
    Inventors: Akiko Ogino, Yukihiro Sayama, Takayuki Shoya, Masaya Shimoji, Yoshikazu Tanaka
  • Patent number: 8344432
    Abstract: A solid state imaging device includes: a light receiving section performing photoelectric conversion; a transfer register formed in a semiconductor base; a transfer electrode formed of a semiconductor layer on the transfer register; a charge transfer section which formed of the transfer register and the transfer electrode and transferring a signal charge accumulated in the light receiving section; a bus line electrically connected to a portion of the transfer electrode to supply a driving pulse to the transfer electrode and formed of a metal layer; and a barrier metal layer formed near an interface between the transfer electrode and the bus line in a contact section that connects the transfer electrode and the bus line with each other and having a work function of the size between a work function of the semiconductor layer of the transfer electrode and a work function of the metal layer of the bus line.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: January 1, 2013
    Assignee: Sony Corporation
    Inventor: Fuminobu Saiho
  • Patent number: 8338900
    Abstract: The invention involves the integration of curved micro-mirrors over a photodiode active area (collection area) in a CMOS image sensor (CIS) process. The curved micro-mirrors reflect light that has passed through the collection area back into the photo diode. The curved micro-mirrors are best implemented in a backside illuminated device (BSI).
    Type: Grant
    Filed: January 6, 2011
    Date of Patent: December 25, 2012
    Assignee: OmniVision Technologies, Inc.
    Inventors: Vincent Venezia, Hsin-Chih Tai
  • Patent number: 8334554
    Abstract: An image sensor includes a first region of a substrate having photoelectric conversion elements formed therein, and includes a second region of the substrate outside of the first region. The image sensor includes a plurality of lenses, a plurality of embossing structures, and a protective layer. The lenses are formed over the first region. The embossing structures are formed over the second region, and the embossing structures are separated from each-other. The protective layer is formed over the lenses and the embossing structures that prevent crack propagation.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: December 18, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Kwan Kim, June-Taeg Lee, Jeong-Wook Ko, Jung-Saeng Kim
  • Patent number: 8334555
    Abstract: A pixel area for generating an image signal corresponding to incident light is formed on a semiconductor substrate. A light-shielding layer is formed on the semiconductor substrate around the pixel area. The light-shielding layer has a slit near the pixel area and shields the incident light. A passivation film is formed in the pixel area, on the light-shielding layer, and in the slit. A coating layer is formed in the slit of the light-shielding layer and on the passivation film in the pixel area. Microlenses are formed on the coating layer in the pixel area.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: December 18, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hidetoshi Koike
  • Patent number: 8330195
    Abstract: An image sensor pixel includes a substrate, a first epitaxial layer, a collector layer, a second epitaxial layer and a light collection region. The substrate is doped to have a first conductivity type. The first epitaxial layer is disposed over the substrate and doped to have the first conductivity type as well. The collector layer is selectively disposed over at least a portion of the first epitaxial layer and doped to have a second conductivity type. The second epitaxial layer is disposed over the collector layer and doped to have the first conductivity type. The light collection region collects photo-generated charge carriers and is disposed within the second epitaxial layer. The light collection region is also doped to have the second conductivity type.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: December 11, 2012
    Assignee: OmniVision Technologies, Inc.
    Inventors: Vincent Venezia, Ashish Shah, Rongsheng Yang, Duli Mao, Yin Qian, Hsin-Chih Tai, Howard E. Rhodes
  • Patent number: 8319306
    Abstract: A method of fabricating an image sensor and an image sensor thereof are provided. The method comprises: providing a mask; utilizing the mask at a first position to form a first group of micro-lenses having a first height on a first group of color filters of a color filter array on a pixel array; shifting the mask from the first position to a second position, wherein a distance between the first position and the second position is substantially equal to a width of a pixel of the pixel array; and utilizing the mask at the second position to form a second group of micro-lenses having a second height, different from the first height, on a second group of color filters of the color filter array.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: November 27, 2012
    Assignees: Himax Technologies Limited, Himax Imaging, Inc.
    Inventors: Han-Kang Liu, Fang-Ming Huang, Shao-Min Hung, Bo-Nan Chen
  • Patent number: 8314450
    Abstract: A solid-state imaging device includes: a semiconductor substrate having a plurality of vertical transfer channel regions and a plurality of photoelectric conversion regions arranged in a matrix; a plurality of vertical transfer electrodes, each constructed of a gate electrode and a first metal light-shielding film, formed via a gate insulating film; a transparent insulating film formed in gaps existing between the vertical transfer electrodes above the vertical transfer channel regions; and a second metal light-shielding film formed via a first interlayer insulating film to cover at least the vertical transfer channel regions.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: November 20, 2012
    Assignee: Panasonic Corporation
    Inventor: Tohru Yamada
  • Patent number: 8314870
    Abstract: A solid-state imaging device includes a layout in which one sharing unit includes an array of photodiodes of 2 pixels by 4×n pixels (where, n is a positive integer), respectively, in horizontal and vertical directions.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: November 20, 2012
    Assignee: Sony Corporation
    Inventors: Kazuichiro Itonaga, Shizunori Matsumoto
  • Patent number: 8309996
    Abstract: Complementary metal-oxide semiconductor (CMOS) image sensors (CIS) and methods of manufacturing the same are provided, the sensors include an epitaxial layer on a substrate in which a first, second, third and fourth region are defined. A photodiode may be formed at an upper portion of the epitaxial layer in the first region. A plurality of gate structures may be formed on the epitaxial layer in the second, third and fourth regions. A first blocking layer may be formed on the gate structures and the epitaxial layer in the first and second regions. A first impurity layer may be formed at an upper portion of the epitaxial layer adjacent to the gate structures in the second region, and a second impurity layer at upper portions of the epitaxial layer adjacent to the gate structures in the third and fourth regions. A color filter layer may be formed over the photodiode. A microlens may be formed on the color filter layer.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: November 13, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ui-Sik Kim, Young-Hoon Park, Won-Je Park, Dae-Cheol Seong, Yeo-Ju Yoon, Bo-Bae Kang
  • Patent number: 8309994
    Abstract: Embodiments of the present invention are directed to light sensors that primarily respond to visible light while suppressing infrared light. Such sensors are especially useful as ambient light sensors because such sensors can be used to provide a spectral response similar to that of a human eye. Embodiments of the present invention are also directed to methods of providing such light sensors, and methods for using such light sensors.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: November 13, 2012
    Assignee: Intersil Americas Inc.
    Inventors: Alexander Kalnitsky, Dong Zheng, Joy Jones, Xijian Lin, Gregory Cestra
  • Patent number: 8309898
    Abstract: A photoelectric conversion apparatus having a pixel array region and a peripheral region includes a pixel array, a readout unit, an output unit, a plurality of output lines, and a color filter layer which is arranged in the pixel array region and the peripheral region and includes a color filter arranged above the plurality of pixels. The color filter layer extends to surround the output lines when viewed from a direction perpendicular to a surface of a semiconductor substrate, and has an opening arranged above the plurality of output lines. The opening of the color filter layer is filled with gas or an insulator lower in dielectric constant than the color filter.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: November 13, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventors: Satoshi Kato, Hirofumi Totsuka
  • Patent number: 8309997
    Abstract: An object of the present invention is to provide a photoelectric conversion device, wherein improvement of charge transfer properties when charge is output from a charge storage region and suppression of dark current generation during charge storage are compatible with each other. This object is achieved by forming a depletion voltage of a charge storage region in the range from zero to one half of a power source voltage (V), forming a gate voltage of a transfer MOS transistor during a charge transfer period in the range from one half of the power source voltage to the power source voltage (V) and forming a gate voltage of the transfer MOS transistor during a charge storage period in the range from minus one half of the power source voltage to zero (V).
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: November 13, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hiroshi Yuzurihara, Seiichi Tamura, Ryuichi Mishima