With Shield, Filter, Or Lens Patents (Class 257/294)
  • Patent number: 7795065
    Abstract: Provided is an image sensor. The image sensor can include a first substrate comprising a pixel portion in which a readout circuitry is provided and a peripheral portion in which a peripheral circuitry is provided. An interlayer dielectric including lines can be formed on the first substrate to connect with the readout circuitry and the peripheral circuitry. A crystalline semiconductor layer can be provided on a portion of the interlayer dielectric corresponding to the pixel portion through a bonding process. The crystalline semiconductor layer can include a first photodiode and second photodiode. The first and second photodiodes can be defined by device isolation trenches in the crystalline semiconductor layer. A device isolation layer can be formed on the crystalline semiconductor layer comprising the device isolation trenches. An upper electrode layer passes through the device isolation layer to connect with a portion of the first photodiode.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: September 14, 2010
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Joon Hwang
  • Patent number: 7795656
    Abstract: An image sensor device includes an optical black pixel region and an active pixel region. The image sensor device includes a light receiving unit including a plurality of light sensitive semiconductor devices that are configured to detect light incident thereon, a pixel metal wire layer including a transparent material on the light receiving unit and including a plurality of metal wires therein, and a filter unit on the pixel metal wire layer. The filter unit includes a plurality of filters that are configured to transmit light according to a wavelength thereof. The filters of the filter unit in the optical black pixel region of the image sensor device have a single color. The image sensor device further includes a light blocking layer in the optical black pixel region between the filter unit and the light receiving unit. The light blocking layer is configured to block light that passes through the filter unit.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: September 14, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Chang-rok Moon
  • Patent number: 7795654
    Abstract: In the solid-state imaging device of the present invention having a photoelectric conversion section and a charge transfer section equipped with a charge transfer electrode for transferring an electric charge generated in the photoelectric conversion section, the charge transfer electrode has an alternate arrangement of a first layer electrode comprising a first conductive film and a second layer electrode comprising a second conductive film, and the first layer electrode and the second layer electrode are separated by insulation with an interelectrode insulating film having a two-layer structure comprising a sidewall insulating film consisting of a first insulating layer formed by a CVD method to cover the lateral wall of the first layer electrode and a second insulating film.
    Type: Grant
    Filed: August 7, 2006
    Date of Patent: September 14, 2010
    Assignee: Fujifilm Corporation
    Inventor: Maki Saito
  • Patent number: 7795676
    Abstract: A back-illuminated type solid-state imaging device is provided in which an electric field to collect a signal charge (an electron, a hole and the like, for example) is reliably generated to reduce a crosstalk. The back-illuminated type solid-state imaging device includes a structure 34 having a semiconductor film 33 on a semiconductor substrate 31 through an insulation film 32, in which a photoelectric conversion element PD that constitutes a pixel is formed in the semiconductor substrate 31, at least part of transistors 15, 16, and 19 that constitute the pixel is formed in the semiconductor film 33, and a rear surface electrode 51 to which a voltage is applied is formed on the rear surface side of the semiconductor substrate 31.
    Type: Grant
    Filed: November 8, 2005
    Date of Patent: September 14, 2010
    Assignee: Sony Corporation
    Inventor: Keiji Mabuchi
  • Patent number: 7791158
    Abstract: Provided are a CMOS image sensor and a method of manufacturing the same. The CMOS image sensor includes a semiconductor substrate having photodiodes and transistors. An interlayer insulating layer is formed on the resultant structure having the photodiodes and transistors, and light blocking patterns are formed on the interlayer insulating layer to surround the peripheries of the photodiodes.
    Type: Grant
    Filed: March 21, 2006
    Date of Patent: September 7, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hee-Geun Jeong, Jae-Seob Roh, Seok-Ha Lee
  • Patent number: 7791823
    Abstract: A microlens substrate is provided having a plurality of first microlenses and a plurality of second microlenses which are located between the plurality of first microlenses. The second microlenses are smaller than the first microlenses.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: September 7, 2010
    Assignee: Seiko Epson Corporation
    Inventor: Nobuo Shimizu
  • Patent number: 7791016
    Abstract: A photodetector includes a plurality of photodetecting elements which output electrical signals corresponding to the intensities of light that entered these; a signal processing element which is opposed to the photodetecting elements and is connected to the photodetecting elements via conductive bumps, and into which electrical signals output from the photodetecting elements are input; a resin which has electrical insulation and is filled in at least at the gaps between the photodetecting elements and the signal processing element; and a light shielding member arranged so as to cover the surfaces exposed from the photodetecting elements and the signal processing element in the resin.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: September 7, 2010
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Masatoshi Ishihara, Nao Inoue, Hiroo Yamamoto
  • Patent number: 7791118
    Abstract: A solid-state imaging device with a structure such that an electrode for reading a signal charge is provided on one side of a light-receiving sensor portion constituting a pixel; a predetermined voltage signal V is applied to a light-shielding film formed to cover an image pickup area except the light-receiving sensor portion; a second-conductivity-type semiconductor area is formed in the center on the surface of a first-conductivity-type semiconductor area constituting a photo-electric conversion area of the light-receiving sensor portion; and areas containing a lower impurity concentration than that of the second-conductivity-type semiconductor area is formed on the surface of the first-conductivity-type semiconductor area at the end on the side of the electrode and at the opposite end on the side of a pixel-separation area.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: September 7, 2010
    Assignee: Sony Corporation
    Inventors: Yoshiaki Kitano, Hideshi Abe, Jun Kuroiwa, Kiyoshi Hirata, Hiroaki Ohki, Nobuhiro Karasawa, Ritsuo Takizawa, Mitsuru Yamashita, Mitsuru Sato, Katsunori Kokubun
  • Patent number: 7785918
    Abstract: An image device which includes reflowed color filters. Reflowed color filters may be formed by heat treating preliminary color filters. When preliminary color filters are reflowed, color filters of different colors may be formed continuous with each other. Contiguous color filters in an image device may reduce manufacturing costs, maximize optical efficiency, minimize noise, and/or minimize crosstalk.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: August 31, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Young-Je Yun
  • Patent number: 7785917
    Abstract: An image sensor including a first region where a pad is to be formed, and a second region where a light-receiving element is to be formed. A pad is formed over a substrate of the first region. A passivation layer is formed over the substrate of the first and second regions to expose a portion of the pad. A color filter is formed over the passivation layer of the second region. A microlens is formed over the color filter. A bump is formed over the pad. A protective layer is formed between the bump and the pad to expose the portion of the pad.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: August 31, 2010
    Inventor: Sang Hyuk Park
  • Patent number: 7786515
    Abstract: A solid-state imaging device including: a semiconductor substrate on which an imaging region having a light receiving section is formed; and a predetermined layer formed on the semiconductor substrate by planarization processing using liquid containing a metal element, wherein at least a first diffusion protection film is formed between the light receiving section and the predetermined layer.
    Type: Grant
    Filed: January 4, 2006
    Date of Patent: August 31, 2010
    Assignee: Sony Corporation
    Inventor: Shinya Watanabe
  • Patent number: 7781857
    Abstract: The invention provides an LCD panel with main slits corresponding to alignment protrusions. The gate lines are shielded by the electrode portion and do not overlap the main slits. Because the gate line and the major slits do not overlap, the liquid crystal molecule arrangement of the liquid crystal layer is not affected by the operating voltage of the gate line.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: August 24, 2010
    Assignee: AU Optronics Corp.
    Inventors: Shih-Chyuan Fan Jiang, Ching-Huan Lin, Chih-Ming Chang
  • Publication number: 20100200898
    Abstract: An image or light sensor chip package includes an image or light sensor chip having a non-photosensitive area and a photosensitive area surrounded by the non-photosensitive area. In the photosensitive area, there are light sensors, a layer of optical or color filter array over the light sensors and microlenses over the layer of optical or color filter array. In the non-photosensitive area, there are an adhesive polymer layer and multiple metal structures having a portion in the adhesive polymer layer. A transparent substrate is formed on a top surface of the adhesive polymer layer and over the microlenses. The image or light sensor chip package also includes wirebonded wires or a flexible substrate bonded with the metal structures of the image or light sensor chip.
    Type: Application
    Filed: February 9, 2010
    Publication date: August 12, 2010
    Applicant: MEGICA CORPORATION
    Inventors: Mou-Shiung Lin, Jin-Yuan Lee
  • Publication number: 20100193848
    Abstract: Provided is a stacked image sensor. Particularly, provided are a stacked image sensor including a photosensitive element portion having a photo-conductive thin film on an upper portion of a wafer where a peripheral circuit is formed and a method of manufacturing the stacked image sensor. In the stacked image sensor according to the present invention, since a wafer where a circuit is formed and a photosensitive element portion are formed in a stacked structure, a whole size of the image sensor can be reduced, and there is no optical crosstalk due to absorption of incident light to adjacent pixels. In addition, since a photo-conductive element having a high light absorbance is used, a high photo-electric conversion efficiency can be obtained. In addition, in the method of manufacturing a stacked image sensor according to the present invention, since the upper photosensitive element can be formed by using a simple low-temperature process, a production cost can be reduced.
    Type: Application
    Filed: June 9, 2008
    Publication date: August 5, 2010
    Applicant: SILICONFILE TECHNOLOGIES INC.
    Inventor: Byoung-Su Lee
  • Patent number: 7768040
    Abstract: An imager device is disclosed including a first substrate having an array of photo-sensitive elements formed thereon, a first conductive layer formed above the first substrate, a first conductive member extending through the first substrate, the first conductive member being conductively coupled to the first conductive layer, a standoff structure formed above the first substrate, a second conductive layer formed above the standoff structure, the second conductive layer being conductively coupled to the first conductive layer, and an electrically powered device positioned above the standoff structure, the electrically powered device being electrically coupled to the second conductive layer.
    Type: Grant
    Filed: October 23, 2006
    Date of Patent: August 3, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Warren Farnworth
  • Patent number: 7755123
    Abstract: Method, apparatus, and/or system providing a backside illuminated imaging device. A non-planar metallic or otherwise reflective layer is provided in an image pixel cell at the frontside of the device substrate to capture radiation passing through the device substrate. The non-planar surface is formed to be capable of reflecting substantially all such radiation back to a photosensor located in the same pixel cell.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: July 13, 2010
    Assignee: Aptina Imaging Corporation
    Inventors: Thomas E. Dungan, Chintamani Palsule
  • Patent number: 7755122
    Abstract: A CMOS image sensor including a light-receiving element, at least one transistor, a first dielectric layer, a reflective layer, a second dielectric layer, a protective layer, a material layer, a transparent material layer, an optical filter, and a converging element is described. The light-receiving element and the transistor are disposed respectively inside the light sensing region and the transistor region. The first dielectric layer is disposed on the substrate, covering the transistor and the light-receiving element. The reflective layer is disposed on the first dielectric layer inside the light sensing region. The second dielectric layer is disposed on the first dielectric layer outside of the reflective layer. The material layer is disposed on the first dielectric layer inside of the reflective layer. The optical filter is disposed on the transparent material layer and the converging element is disposed on the optical filter inside the light sensing region.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: July 13, 2010
    Assignee: United Microelectronics Corp.
    Inventor: Chiu-Te Lee
  • Patent number: 7755154
    Abstract: An image sensor which may maximize the optical integrity by maximizing the amount of incident light through a microlens layer and a method for manufacturing an image sensor. An image sensor may include a pixel region, a microlens layer, and at least one microlens. The microlens layer may include a plurality of microlenses on the pixel region. At least one microlens has a shape different from the rest of the microlenses.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: July 13, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Yong-Suk Lee
  • Patent number: 7755120
    Abstract: A semiconductor device is disclosed. The semiconductor device provides a substrate comprising an image sensor region and a circuit region, wherein the circuit region comprises a pad region and a connecting region. A multilayer interconnect structure is formed on the substrate, wherein the multilayer interconnect structure comprises a plurality of dielectric layers, a plurality of lower wirings at the pad region and the connecting region, and a top wiring on at least one of the lower wirings at the connecting region. A passivation layer is formed over the multilayer interconnect structure. A pad structure is formed through the passivation layer and at least one of the dielectric layers on and electrically connected to at least one of the lower wirings at the pad region.
    Type: Grant
    Filed: January 22, 2007
    Date of Patent: July 13, 2010
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Chin-Min Lin
  • Patent number: 7755117
    Abstract: Embodiments of the present invention are directed to light sensors, that primarily respond to visible light while suppressing infrared light. Such sensors are especially useful as ambient light sensors because such sensors can be used to provide a spectral response similar to that of a human eye. Embodiments of the present invention are also directed to methods of providing such light sensors, and methods for using such light sensors.
    Type: Grant
    Filed: January 9, 2007
    Date of Patent: July 13, 2010
    Assignee: Intersil Americas Inc.
    Inventors: Alexander Kalnitsky, Dong Zheng, Joy Jones, Xijian Lin, Gregory Cestra
  • Publication number: 20100164040
    Abstract: A microlens structure and a method of fabrication thereof are provided. The method comprises forming a layer of microlens material over a substrate, which has photo-sensitive elements formed therein. The microlens material, which comprises a photo-resist material, is exposed in accordance with a desired pattern a plurality of times. The energy used with each exposure process is less than the energy required if a single exposure is used. Furthermore, the masks used for each exposure may differ. In an embodiment, the masks are varied so as to create a notch in the upper corner of the microlens. The microlens structure may have a height less than about 0.5 um and/or a gap between microlenses less than about 0.2 um. In an embodiment, one or more dielectric layers having a combined thickness greater than about 3.5 um are interposed between the photo-sensitive elements and the microlenses.
    Type: Application
    Filed: March 11, 2010
    Publication date: July 1, 2010
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Chang Kao, Chih-Kung Chang, Fu-Tien Weng, Bii-Junq Chang
  • Patent number: 7745857
    Abstract: The object of the invention is to provide a semiconductor device that can form photodiodes that do not short circuit, without damage that causes leakage, despite formation of the opening part, and its manufacturing method. The second semiconductor layer (12, 16) of the second conductivity type is formed on the main surface of the first semiconductor layer (10, 11) of the first conductivity type. Element-separating regions (13, 14, 15, 17) formed at least on the second semiconductor layer separate the device into the regions of plural photodiodes (PD1-PD4). Conductive layer 18 is formed on the second semiconductor layer 16 in a pattern that is divided for each of the photodiodes and is connected to the second semiconductor layer 16 along the outer periphery with respect to all of the plural photodiodes. Insulation layer (19, 21) is formed on the entire surface to cover conductive layer 18.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: June 29, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Yohichi Okumura, Hiroyuki Tomomatsu
  • Patent number: 7741667
    Abstract: Provided are a CMOS image sensor and a fabricating method thereof. The CMOS image sensor includes a device isolation layer, a plurality of photodiode regions, an interlayer insulating layer, a refracting layer, a planarizing layer, a color filter layer, and a plurality of microlenses. The refracting layer, with a higher refractive index than that of the interlayer insulating layer, is formed through the interlayer insulating layer on portions of the device isolation layer, to divide the interlayer insulating layer and give the divided portions thereof the characteristics of a waveguide.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: June 22, 2010
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Sun Wook Jung
  • Publication number: 20100148231
    Abstract: A source/drain region of a transistor or amplifier is formed in a substrate layer and is connected to a voltage source. A glow blocking structure is formed at least partially around the source/drain region and is disposed between the source/drain region and an imaging array of an image sensor. A trench is formed in the substrate layer adjacent to and at least partially around the source/drain region. The glow blocking structure includes an opaque material formed in the trench and one or more layers of light absorbing material overlying the source/drain region and the opaque material.
    Type: Application
    Filed: December 12, 2008
    Publication date: June 17, 2010
    Inventors: Shen Wang, Robert P. Fabinski, Robert Kaser
  • Patent number: 7737479
    Abstract: An image sensor, in which, a planarized layer is formed on a semiconductor substrate including a pixel array region, an optical black region, and a logic region to cover a photo sensing unit array in the pixel array region, a patterned metal layer is formed on the planarized layer corresponding to the pixel array region and the logic region, but not the optical black region. An optical black layer is formed in the optical black region after a passivation layer is formed and before a color filter array is formed at a temperature less than about 400° C., and preferably contains metal material.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: June 15, 2010
    Assignees: United Microelectronics Corp., AltaSens Inc.
    Inventors: Tzeng-Fei Wen, Giuseppe Rossi, Ju-Hsin Yen, Chia-Huei Lin, Jhy-Jyi Sze, Chien-Yao Huang, Teng-Yuan Ko, Nien-Tsu Peng
  • Patent number: 7737477
    Abstract: A CMOS image sensor and a method for manufacturing the same improve light-receiving efficiency and maintain a margin in the design of a metal line. The CMOS image sensor includes a transparent substrate including an active area having a photodiode region and a transistor region and a field area for isolation of the active area, a p-type semiconductor layer on the transparent substrate, a photodiode in the p-type semiconductor layer corresponding to the photodiode region, and a plurality of transistors in the p-type semiconductor layer corresponding to the transistor region.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: June 15, 2010
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Hyeon Woo Ha
  • Patent number: 7728902
    Abstract: An imaging device includes a photoreceptor portion including a plurality of photoreceptors arranged in an array, a microlens array including a plurality of microlenses, and a light shielding layer placed between the photoreceptor portion and the microlens array. The light shielding layer has apertures located corresponding to the plurality of photoreceptors. An optical relationship of an actual length d1 of an aperture width of the apertures on a side of the photoreceptors, an actual length p of a distance between adjacent microlenses, an equivalent air length t0 of a distance between vein and a top of the microlenses, and an equivalent air length t1 of a thickness between the top of the microlenses and an aperture position of the apertures on the side of the photoreceptors satisfies: 1.36 × t ? ? 1 p ? d ? ? 1 ? 2.4 × t ? ? 1 p + p × t ? ? 1 t ? ? 0 .
    Type: Grant
    Filed: August 2, 2007
    Date of Patent: June 1, 2010
    Assignee: Hitachi Maxell, Ltd.
    Inventors: Masahiro Kishigami, Nobuhiro Umebayashi
  • Patent number: 7719040
    Abstract: Realized is a solid-state imaging device capable of achieving both a finer pixel size and high light receiving efficiency with an excellent image characteristic. A high concentration p-well layer (5) is partially formed in the interior of a semiconductor substrate (1) centering on a region under a STI (6), and a photoelectric conversion layer (9a, 9b) is formed so as to extend to a region under a gate electrode (10a, 10b). Furthermore, a salicide region (12a, 12b) covers only a portion of a surface of the gate electrode (10a, 10b) and is formed at a position closer to a side at which a drain region (13) is provided. Thus, an incident light is allowed to pass through a portion, included in the surface of the gate electrode (10a, 10b), on which the salicide region (12a, 12b) is not formed, and then to be further incident on the photoelectric conversion layer (9a, 9b) extending to the region under the gate electrode (10a, 10b).
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: May 18, 2010
    Assignee: Panasonic Corporation
    Inventors: Hiroki Nagasaki, Shouzi Tanaka
  • Patent number: 7714401
    Abstract: A solid state imaging device comprises: a photoelectric converting portion provided on a semiconductor substrate; a charge transfer path, formed in an adjacent position to the photoelectric converting portion, that receives a signal charge generated in the photoelectric converting portion and transfers the signal charge in a predetermined direction; and a gate electrode that transfers the signal charge from the photoelectric converting portion to the charge transfer path, wherein the gate electrode comprises polysilicon having a different conductive type from that of a semiconductor region forming a charge storing portion of the charge transfer path.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: May 11, 2010
    Assignee: Fujifilm Corporation
    Inventors: Masanori Nagase, Jiro Matsuda, Tsuneo Sasamoto, Toshiaki Hayakawa
  • Patent number: 7710477
    Abstract: Solid state CMOS active pixel sensor devices having unit pixels that are structured to provide improved uniformity of pixel-to-pixel sensitivity across a pixel array without the need for an additional light shielding layer. For example, unit pixels with symmetrical layout patterns are formed whereby one or more lower-level BEOL metallization layers are designed operate as light shielding layers which are symmetrically patterned and arranged to balance the amount of incident light reaching the photosensitive regions.
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: May 4, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung Hyun Nam, Yun Hee Lee
  • Patent number: 7709914
    Abstract: An image sensor is provided. The image sensor can include a semiconductor substrate including a circuit region, an interlayer dielectric including a metal interconnection on the semiconductor substrate, a lower electrode on the metal interconnection, and a light receiving portion on the lower electrode. The light receiving portion can be a PIN diode formed to have a convex shape.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: May 4, 2010
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Min Hyung Lee
  • Patent number: 7709872
    Abstract: Image sensor devices and methods for fabricating the same are provided. An exemplary embodiment of an image sensor device comprises a support substrate. A passivation structure is formed over the support substrate. An interconnect structure is formed over the passivation structure. A first semiconductor layer is formed over the interconnect structure, having a first and second surfaces, wherein the first and second surfaces are opposing surfaces. At least one light-sensing device is formed over/in the first semiconductor layer from a first surface thereof. A color filter layer is formed over the first semiconductor layer from a second surface thereof. At least one micro lens is formed over the color filter layer.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: May 4, 2010
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Gwo-Yuh Shiau, Ming-Chyi Liu, Yuan-Chih Hsieh, Shih-Chi Fu, Chia-Shiung Tsai
  • Patent number: 7709871
    Abstract: A CIS and a method for manufacturing the same are provided. The CIS includes an interlayer insulation layer formed on a substrate having a photodiode and a transistor formed thereon; a plurality of color filters formed on the interlayer insulation layer and spaced a predetermined interval apart from each other; a metal sidewall formed to fill the predetermined interval between the plurality of the color filters; and a microlens formed on each of the plurality of color filters.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: May 4, 2010
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Joon Hwang
  • Patent number: 7709918
    Abstract: A photoelectric conversion device is provided which is capable of improving the light condensation efficiency without substantially decreasing the sensitivity. The photoelectric conversion device has a first pattern provided above an element isolation region formed between adjacent two photoelectric conversion elements, a second pattern provided above the element isolation region and above the first pattern, and microlenses provided above the photoelectric conversion elements with the first and the second patterns provided therebetween. The photoelectric conversion device further has convex-shaped interlayer lenses in optical paths between the photoelectric conversion elements and the microlenses, the peak of each convex shape projecting in the direction from the electro-optical element to the microlens.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: May 4, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventor: Sakae Hashimoto
  • Publication number: 20100096677
    Abstract: Provided is a backside-illuminated solid-state image pickup device capable of allowing peripheral circuits to produce stable waveforms and thereby achieving image characteristics with less noise, the device including: a first-conductivity-type semiconductor layer having a first principal surface and a second principal surface opposed to the first principal surface and also having a pixel area and an analog circuit area; a first P type area formed to lie between the second principal surface and the first principal surface in the analog circuit area; a metal layer formed at least partially on the second principal surface of the first P type area; a VSS electrode electrically connected to the metal layer; a photo-conversion area formed in the pixel area and used to accumulate electric charges generated by photoelectric conversion; and a microlens provided on the second principal surface in the pixel area so as to correspond to the photo-conversion area.
    Type: Application
    Filed: October 16, 2009
    Publication date: April 22, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Ikuko Inoue
  • Patent number: 7696547
    Abstract: A solid-state image sensor having a well of a first conductivity type; a photoelectric conversion region having a second conductivity type formed in the well storing charges obtained from a photoelectric conversion; a drain region having the second conductivity type formed in the well apart from a surface of the well; and a gate electrode formed on the surface of the well via a gate insulator, the gate electrode transferring the charges from the photoelectric conversion region to the drain region.
    Type: Grant
    Filed: August 25, 2005
    Date of Patent: April 13, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hisanori Ihara, Nagataka Tanaka, Hiroshige Goto
  • Publication number: 20100084727
    Abstract: A printed wiring board on which a package to be arranged, including: a first layer that is relatively rigid; and a second layer that is relatively flexible and on which the package is to be soldered, wherein an area other than a package arrangement area of the second layer is joined to the first layer by an adhesion layer.
    Type: Application
    Filed: September 10, 2009
    Publication date: April 8, 2010
    Inventors: Toshihiko MAKINO, Atsushi KOYANAGI
  • Patent number: 7692260
    Abstract: A light shielding film, an insulating layer, a planarizing layer, and a color filter are formed consecutively on a semiconductor substrate having plural photodiodes in a matrix arrangement. A transparent conductive film is formed on the color filter, and micro-lenses are formed directly on the conductive film such that they reside above each photodiode. Static charges on a surface of each micro-lens are discharged to the conductive film, and static charge buildup on the micro-lenses is therefore prevented.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: April 6, 2010
    Assignee: Fujifilm Corporation
    Inventor: Hiroaki Takao
  • Patent number: 7692226
    Abstract: A CMOS image sensor includes a photodiode, and a plurality of transistors for transferring charges accumulated at the photodiode to one column line, wherein at least one transistor among the plurality of transistors has a source region wider than a drain region, for increasing a driving current.
    Type: Grant
    Filed: December 26, 2006
    Date of Patent: April 6, 2010
    Inventor: Won-Ho Lee
  • Patent number: 7687837
    Abstract: An image sensor includes a substrate having an active pixel sensor region defined therein, a plurality of first conductivity type photodiodes formed in the active pixel sensor region and a first conductivity-type first deep well formed in the active pixel sensor region in a location which does not include the plurality of the first conductivity-type photodiodes. Moreover, the first deep well is electrically connected to a positive voltage.
    Type: Grant
    Filed: October 3, 2006
    Date of Patent: March 30, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Hoon Park, Jae-Ho Song, Won-Je Park, Jin-Hyeong Park, Jeong-Hoon Bae, Jung-Ho Park
  • Patent number: 7683411
    Abstract: An image sensor and a method of manufacturing the same that includes providing a semiconductor substrate having a photodiode, forming a color filter over the photodiode, forming a micro lens over the color filter and then forming at least one metal layer vertically extending through the microlens at an outer edge thereof.
    Type: Grant
    Filed: November 2, 2008
    Date of Patent: March 23, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Sang-Tae Moon
  • Patent number: 7682862
    Abstract: A method for manufacturing an image sensor that can include forming a pad electrode over a semiconductor substrate; forming a protective layer over the pad electrode; forming a via hole through the protective layer to expose a portion of the uppermost surface of the pad electrode; and then forming a gold layer over the exposed portion of the uppermost surface of the pad electrode.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: March 23, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Jeong-Su Park
  • Patent number: 7683410
    Abstract: An image pickup device includes a plurality of photoelectric transducers; and a diffusion-reflection layer provided in front of the plurality of photoelectric transducers, wherein a part of light incident on the diffusion-reflection layer is reflected and dispersed therefrom, and the remainder of the incident light is transmitted through the diffusion-reflection layer so as to be incident on the plurality of photoelectric transducers.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: March 23, 2010
    Assignee: HOYA Corporation
    Inventor: Isamu Hirai
  • Publication number: 20100065897
    Abstract: A CMOS image sensor and a method for fabricating the same are disclosed. The method includes forming a plurality of color filters on a substrate, each color filter having a curvature, and forming microlenses on the color filters that each has a radius of curvature that varies with the wavelength of the color filter on which it is formed.
    Type: Application
    Filed: September 4, 2009
    Publication date: March 18, 2010
    Inventor: Sung Ho Jun
  • Patent number: 7679157
    Abstract: An image sensor has a substrate, a dielectric layer positioned on the substrate, a pixel array including a plurality of pixels defined on the substrate, a shield electrode positioned between any two adjacent pixel electrodes of the pixels, a photo conductive layer positioned on the shield electrode and the pixel electrodes, and a transparent conductive layer covering the photo conductive layer.
    Type: Grant
    Filed: August 21, 2006
    Date of Patent: March 16, 2010
    Assignee: Powerchip Semiconductor Corp.
    Inventor: Takashi Miida
  • Patent number: 7679117
    Abstract: A solid-state image sensing device having an effective pixel area and an optical black area disposed on one principal surface of a substrate, includes photoelectric converter elements, a wiring part containing a plurality of wiring layers disposed on the one principal surface of the substrate, in which in the optical black area more wiring layers are disposed than in the effective pixel area, an interlayer dielectric disposed between, among the plurality of wiring layers, a topmost first wiring layer and a second wiring layer disposed beneath the first wiring layer, a passivation film disposed on the interlayer dielectric in the effective pixel area and disposed on the first wiring layer in the optical black area, and inner lenses disposed at least at positions on the passivation film that corresponds to the effective pixel area, a thickness of the passivation film being equal to or less than a thickness of the first wiring layer.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: March 16, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tomoyuki Noda, Yuya Fujino
  • Patent number: 7675102
    Abstract: Embodiments relate to a method of manufacturing an image sensor. According to embodiments, the method may include preparing a semiconductor substrate formed with a plurality of photodiodes, forming an interlayer dielectric layer on the semiconductor substrate, forming a color filter layer on the interlayer dielectric layer, forming a planar layer on the color filter layer, and forming micro-lenses coated with fat-soluble polymer on the planar layer. Since the micro-lens is uniformly formed due to the fat-soluble polymer coated on the micro-lens, the photo-sensitivity and color reproduction of the image sensor are improved, resulting in the high-quality image sensor.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: March 9, 2010
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Sang Sik Kim
  • Patent number: 7675078
    Abstract: A pixel structure including a control unit, an organic electro-luminescent (OEL) unit, and a filter structure is provided. The control unit is disposed on a substrate and is driven by a scan line and a data line. The OEL unit is disposed on the substrate, and includes a transparent electrode, a light-emitting layer, and a metal electrode. The transparent electrode is electrically connected with the control unit, and the light-emitting layer and the metal electrode are sequentially placed on the transparent electrode. The filter structure is sandwiched between the substrate and the OEL unit, and the filter structure includes a plurality of the first and second dielectric layers. The first and second dielectric layers are alternately stacked, and the refractive index of the first dielectric layers is different from that of the second dielectric layers.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: March 9, 2010
    Assignee: Chunghwa Picture Tubes, Ltd.
    Inventors: Liang-Yuan Wang, Chih-Kwang Tzen, Pei-Lin Huang, Yi-Lung Kao, Ya-Ping Tsai, Shuenn-Jiun Tang
  • Patent number: 7671385
    Abstract: An image sensor contains a semiconductor substrate, a plurality of pixels defined on the semiconductor substrate, a photo conductive layer and a transparent conductive layer formed on the pixel electrodes of the pixels in order, and a shield device positioned between any two adjacent pixel electrodes. The shield device has a shield electrode and an isolation structure surrounding the shield electrode so that the shield electrode is isolated from the pixel electrodes and the photo conductive layer by the isolation structure.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: March 2, 2010
    Assignee: Powerchip Semiconductor Corp.
    Inventors: Hsin-Heng Wang, Chiu-Tsung Huang, Shih-Siang Lin
  • Patent number: 7667750
    Abstract: A color solid-state imaging device including: a semiconductor substrate; a photoelectric conversion layer provided over the semiconductor substrate, for absorbing light of a first color among three primary colors so as to generate photocharges; plural charge storage regions arranged in a surface layer of the semiconductor substrate, for storing the photocharges; plural first photodiodes arranged in the surface layer of the substrate, for detecting mixed light of second and third colors among the three primary colors that has passed through the photoelectric conversion layer and for storing generated photocharges; plural second photodiodes arranged in the surface layer of the semiconductor substrate, for detecting light of the second color of the mixed light that has passed through the photoelectric conversion layer and for storing generated photocharges; color filter layers provided over the second photodiodes, for interrupting light of the third color; and signal reading units as defined herein.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: February 23, 2010
    Assignee: FUJIFILM Corporation
    Inventors: Takashi Goto, Nobuo Suzuki