Gate Electrode Self-aligned With Groove Patents (Class 257/332)
  • Patent number: 7679133
    Abstract: In a semiconductor device, and a method of manufacturing thereof, the device includes a substrate of single-crystal semiconductor material extending in a horizontal direction and a plurality of interlayer dielectric layers on the substrate. A plurality of gate patterns are provided, each gate pattern being between a neighboring lower interlayer dielectric layer and a neighboring upper interlayer dielectric layer. A vertical channel of single-crystal semiconductor material extends in a vertical direction through the plurality of interlayer dielectric layers and the plurality of gate patterns, a gate insulating layer being between each gate pattern and the vertical channel that insulates the gate pattern from the vertical channel.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: March 16, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Hoon Son, Jong-Wook Lee
  • Patent number: 7675114
    Abstract: In order to obtain an increased avalanche strength, a trench transistor is proposed in which the breakdown location is defined in a trench bottom region below body contact zones. This is done by means of a modulation of the dopant concentration in a drift zone and an insulation layer thickness modulation in the bottom region of the trenches.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: March 9, 2010
    Assignee: Infineon Technologies AG
    Inventor: Markus Zundel
  • Patent number: 7675111
    Abstract: Aiming at providing a semiconductor device capable of reducing the ON-resistance when voltage smaller than a predetermined value is applied to the base region and the drift region, and capable of increasing the ON-resistance so as to prevent thermal fracture when the voltage is not smaller than the predetermined value, and at providing a method of fabricating such semiconductor device, a P-type diffusion layer 7 is formed in an N-type drift region 2 of a semiconductor device 100, as being apart from a base region 5, wherein the diffusion layer 7 is formed in a region partitioned by lines L each extending from each of the intersections of the boundary B, between the drift region 2 and a base area 5A of the base region 5, and the side faces of a trench 15 surrounding the base area 5A of the base region 5, towards the bottom plane of the drift region 2 right under the base area 5A, while keeping an angle ?2 of 50° between the lines L and the boundary B.
    Type: Grant
    Filed: June 19, 2006
    Date of Patent: March 9, 2010
    Assignee: NEC Electronics Corporation
    Inventor: Takao Arai
  • Patent number: 7671408
    Abstract: A vertical drain extended metal-oxide semiconductor field effect (MOSFET) transistor or a vertical double diffused metal-oxide semiconductor (VDMOS) transistor includes: a buried layer having a first conductivity type in a semiconductor backgate having a second conductivity type; an epitaxial (EPI) layer having the first conductivity type and formed above the buried layer; a deep well having the first conductivity type in the EPI layer extending down to the buried layer; at least one shallow well having the second conductivity type in the EPI layer; a shallow implant region having the first conductivity type and formed in the shallow well; a gate electrode having a lateral component extending over an edge of the shallow well and stopping at some spacing from an edge of the shallow implant and having a vertical trench field plate extending vertically into the EPI layer.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: March 2, 2010
    Assignee: Texas Instruments Incorporated
    Inventor: Marie Denison
  • Patent number: 7671440
    Abstract: A field-effect transistor having cells (18) each having a source region (22), source body region (26), drift region (20), drain body region (28) and drain region (24) arranged longitudinally, laterally alternating with structures to achieve a reduced surface field. In embodiments, the structures can include longitudinally spaced insulated gate trenches (35) defining a gate region (31) adjacent the source or drain region (22, 24) and a longitudinally extending potential plate region (33) adjacent the drift region (20). Alternatively, a separate potential plate region (33) or a longitudinally extending semi-insulating field plate (50) may be provided adjacent the drift region (20). The transistor is suitable for bi-directional switching.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: March 2, 2010
    Assignee: NXP B.V.
    Inventors: Raymond J. E. Hueting, Erwin A. Hijzen
  • Patent number: 7667269
    Abstract: A semiconductor device includes: a first semiconductor layer; a second semiconductor layer on the first semiconductor layer; a third semiconductor layer on the second semiconductor layer; a fourth semiconductor layer in a part of the third semiconductor layer; a trench penetrating the fourth semiconductor layer and the third semiconductor layer and reaching the second semiconductor layer; a gate insulation film on an inner wall of the trench; a gate electrode on the gate insulation film in the trench; a first electrode; and a second electrode. The trench includes a bottom with a curved surface having a curvature radius equal to or smaller than 0.5 ?m.
    Type: Grant
    Filed: April 6, 2006
    Date of Patent: February 23, 2010
    Assignee: DENSO CORPORATION
    Inventors: Yukio Tsuzuki, Norihito Tokura, Yoshihiko Ozeki, Kensaku Yamamoto
  • Patent number: 7667266
    Abstract: A semiconductor device including an active pattern having a channel recess portion, and a method of fabricating the same, are disclosed. In one embodiment, the semiconductor device includes an active pattern including first active regions and a second active region interposed between the first active regions. The active pattern protrudes above a surface of a semiconductor substrate and includes a channel recess portion above the second active region and between the first active regions. A device isolation layer surrounds the active pattern and has a groove exposing side walls of the recessed second active region. A distance between opposing side walls of the first active regions exposed by the channel recess portion is greater than a distance between side walls of the groove. A gate pattern is located in the channel recess portion and extends along the groove.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: February 23, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyoung-Ho Jung, Makoto Yoshida, Jae-Rok Kahng, Chul Lee, Keun-Nam Kim
  • Patent number: 7663181
    Abstract: A semiconductor device includes a vertical field-effect transistor having a substrate of first conduction type in a substrate base, a drain electrode formed on a first surface of the substrate, an epitaxial layer of first conduction type formed on a second surface of the substrate, a source region of first conduction type formed on the semiconductor base, a source ohmic contact metal film in ohmic contact with the source region, trenches formed from the second surface of the semiconductor base, and a gate region of second conduction type formed along the trenches. The semiconductor device further includes a gate rise metal film in ohmic contact with the draw-out layer of the gate region on the bottom of the trenches and rising to the second surface of the semiconductor base, and a gate draw-out metal film connected to the gate rise metal film from the second surface of the semiconductor base.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: February 16, 2010
    Assignees: Hitachi, Ltd., Denso Corporation
    Inventors: Takasumi Ohyanagi, Atsuo Watanabe, Toshio Sakakibara, Tsuyoshi Yamamoto, Hiroki Nakamura
  • Patent number: 7663184
    Abstract: A memory and a method of fabricating the same are provided. The memory is disposed on a substrate in which a plurality of trenches is arranged in parallel. The memory includes a gate structure and a doped region. The gate structure is disposed between the trenches. The doped region is disposed at one side of the gate structure, in the substrate between the trenches and in the sidewalls and bottoms of the trenches. The top surface of the doped region in the substrate between the trenches is lower than the surface of the substrate under the gate structure by a distance, and the distance is greater than 300 ?.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: February 16, 2010
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Yao-Fu Chan, Ta-Kang Chu, Jung-Chuan Ting, Cheng-Ming Yih
  • Patent number: 7663178
    Abstract: A nonvolatile semiconductor memory of an aspect of the present invention comprises a memory cell transistor and a resistance element arranged on a semiconductor substrate. The memory cell transistor includes a floating gate electrode constituted of a first conductive material arranged on a gate insulating film on a surface of the semiconductor substrate, an inter-gate insulating film arranged on the floating gate electrode, a control gate electrode arranged on the inter-gate insulating film, and a source/drain diffusion layer provided in the semiconductor substrate. The resistance element includes an element isolation insulating layer arranged in the semiconductor substrate and including a depression, and a resistor constituted of a second conductive material filling up the depression. An impurity concentration of the second conductive material is lower than that of the first conductive material.
    Type: Grant
    Filed: September 6, 2007
    Date of Patent: February 16, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Fumitaka Arai, Atsuhiro Sato
  • Patent number: 7659576
    Abstract: A punch-through type IGBT generally has a thick p++-type collector layer. Therefore, the FWD need be externally attached to the IGBT when the IGBT is used as a switching element in an inverter circuit for driving a motor load, and thus the number of processes and components increases. In the invention, trenches are formed penetrating through a collector layer and reaching a buffer layer. A collector electrode is formed in the trenches, too. With this structure, a current path is formed between an emitter electrode and the collector electrode without through the collector layer and functions as the FWD.
    Type: Grant
    Filed: November 1, 2007
    Date of Patent: February 9, 2010
    Assignees: Sanyo Electric Co., Ltd., Sanyo Semiconductor Co., Ltd.
    Inventors: Kikuo Okada, Kojiro Kameyama
  • Patent number: 7655976
    Abstract: Provided are a field effect transistor, a method of manufacturing the same, and an electronic device including the field effect transistor. The field effect transistor may have a structure in which a double gate field effect transistor and a recess channel array transistor are formed in a single transistor in order to improve a short channel effect which occurs as field effect transistors become more highly integrated, a method of manufacturing the same, and an electronic device including the field effect transistor. The field effect transistor can exhibit stable device characteristics even when more highly integrated in such a manner that both the length and width of a channel increase and particularly the channel can be significantly long, and can be manufactured simply.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: February 2, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ji-Young Lee, Jun Seo
  • Patent number: 7652326
    Abstract: Various embodiments for improved power devices as well as their methods of manufacture, packaging and circuitry incorporating the same for use in a wide variety of power electronic applications are disclosed. One aspect of the invention combines a number of charge balancing techniques and other techniques for reducing parasitic capacitance to arrive at different embodiments for power devices with improved voltage performance, higher switching speed, and lower on-resistance. Another aspect of the invention provides improved termination structures for low, medium and high voltage devices. Improved methods of fabrication for power devices are provided according to other aspects of the invention. Improvements to specific processing steps, such as formation of trenches, formation of dielectric layers inside trenches, formation of mesa structures and processes for reducing substrate thickness, among others, are presented.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: January 26, 2010
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Christopher B. Kocon
  • Patent number: 7649223
    Abstract: An n-type drift region includes an active element region and a peripheral region. A p-type base region is formed at least in the active element region. A trench-type gate electrode is formed in each of the active element region and the peripheral region. An n-type source region formed in the base region. A plurality of p-type column regions is selectively formed separately from one another in each of the active element region and the peripheral region. In a peripheral region, a p-type guard region is formed below the gate electrode. In the active element region, the p-type guard region is not formed below the gate electrode. As a result, it is possible to hold the breakdown voltage in the peripheral region at a higher level than in the active element region while maintaining the low ON resistance due to a superjunction structure and to raise the breakdown voltage performance of the semiconductor device.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: January 19, 2010
    Assignee: NEC Electronics Corporation
    Inventor: Yoshiya Kawashima
  • Publication number: 20100006930
    Abstract: A semiconductor device manufacturing method includes steps of: etching a semiconductor substrate 2 by using hard masks 71, 72 and 73; forming a sidewall insulating film 38 on side surfaces of these hard masks 71, 72 and 73; selectively removing the sidewall insulating film 38 formed on the side surfaces of the hard masks 71, 72; further etching the semiconductor substrate 2 by using the hard masks 71, 72 and 73 and the sidewall insulating film 38; simultaneously forming gate trenches 12, 22 and 32 at a part of the semiconductor substrate 2 covered by the hard masks 71, 72 and 73; and forming gate electrodes 13, 23 and 33 inside the gate trenches 12, 22 and 32. Accordingly, plural recess channel transistors having different heights of fin-shaped regions 21f, 31f can be formed simultaneously.
    Type: Application
    Filed: July 1, 2009
    Publication date: January 14, 2010
    Applicant: Elpida Memory, Inc.
    Inventor: Noriaki MIKASA
  • Patent number: 7646057
    Abstract: Disclosed is a semiconductor device. The semiconductor device includes a first gate formed in a trench of a semiconductor substrate, a first gate oxide layer on the semiconductor substrate including the first gate, a first epitaxial layer on the first gate oxide layer, first source and drain regions in the first epitaxial layer at sides of the first gate, an insulating layer on the first epitaxial layer, a second epitaxial layer on the insulating layer, a second gate oxide layer on the second epitaxial layer, a second gate on the second gate oxide layer, and second source and drain regions in the second epitaxial layer below sides of the second gate.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: January 12, 2010
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Ji Houn Jung
  • Patent number: 7638398
    Abstract: A semiconductor device includes an active region defining at least four surfaces, the four surfaces including first, second, third, and fourth surfaces, a gate insulation layer formed around the four surfaces of the active region, and a gate electrode formed around the gate insulation layer and the four surfaces of the active region.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: December 29, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jun-Hee Cho
  • Patent number: 7638838
    Abstract: The semiconductor device includes an active region, a stepped recess channel region including vertical channel structures, a gate insulating film, and a gate structure. The active region is defined by a device isolation structure formed in a semiconductor substrate. The stepped recess channel region is formed in the active region. The vertical silicon-on-insulator (SOI) channel structures are disposed at sidewalls of both device isolation structures in a longitudinal direction of a gate region. The gate insulating film is disposed over the active region including the stepped recess channel region. The gate structure is disposed over the stepped recess channel region of the gate region.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: December 29, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventors: Sung Woong Chung, Sang Don Lee
  • Patent number: 7635893
    Abstract: A transistor, memory cell array and method of manufacturing a transistor are disclosed.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: December 22, 2009
    Assignee: Infineon Technologies AG
    Inventors: Rolf Weis, Till Schloesser, Ulrike Gruening von Schwerin
  • Publication number: 20090309156
    Abstract: A manufacturing process and design structure for a super self-aligned trench power MOSFET. A plurality of super self-aligned trenches of different depths are formed into the body layer and epitaxial layers, preferably by using a multilayer stack of dielectric material etched to form spacers. Respective trenches contain gate conductors, body-contact conductors, and preferably a third trench containing a recessed field plate. This results in a MOSFET structure having high cell density and low gate charges and gate-drain charges.
    Type: Application
    Filed: February 25, 2009
    Publication date: December 17, 2009
    Applicant: MAXPOWER SEMICONDUCTOR INC.
    Inventors: Mohamed N. Darwish, Jun Zeng
  • Patent number: 7633120
    Abstract: This invention discloses an improved trenched metal oxide semiconductor field effect transistor (MOSFET) device that includes a trenched gate surrounded by a source region encompassed in a body region above a drain region disposed on a bottom surface of a substrate. The MOSFET cell further includes a shielded gate trench (SGT) structure below and insulated from the trenched gate. The SGT structure is formed substantially as a round hole having a lateral expansion extended beyond the trench gate and covered by a dielectric linen layer filled with a trenched gate material. The round hole is formed by an isotropic etch at the bottom of the trenched gate and is insulated from the trenched gate by an oxide insulation layer. The round hole has a lateral expansion beyond the trench walls and the lateral expansion serves as a vertical alignment landmark for controlling the depth of the trenched gate.
    Type: Grant
    Filed: August 8, 2006
    Date of Patent: December 15, 2009
    Assignee: Alph & Omega Semiconductor, Ltd.
    Inventor: François Hébert
  • Patent number: 7633119
    Abstract: This invention discloses a semiconductor power device that includes a plurality of power transistor cells surrounded by a trench opened in a semiconductor substrate. At least one of the cells constituting an active cell has a source region disposed next to a trenched gate electrically connecting to a gate pad and surrounding the cell. The trenched gate further has a bottom-shielding electrode filled with a gate material disposed below and insulated from the trenched gate. At least one of the cells constituting a source-contacting cell surrounded by the trench with a portion functioning as a source connecting trench is filled with the gate material for electrically connecting between the bottom-shielding electrode and a source metal disposed directly on top of the source connecting trench.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: December 15, 2009
    Assignee: Alpha & Omega Semiconductor, Ltd
    Inventors: Anup Bhalla, Sik K Lui
  • Publication number: 20090302381
    Abstract: A field effect transistor (FET) includes body regions of a first conductivity type over a semiconductor region of a second conductivity type. The body regions form p-n junctions with the semiconductor region. Source regions of the second conductivity type extend over the body regions. The source regions form p-n junctions with the body regions. Gate electrodes extend adjacent to but are insulated from the body regions by a gate dielectric. A carbon-containing region extends in the semiconductor region below the body regions.
    Type: Application
    Filed: December 12, 2008
    Publication date: December 10, 2009
    Inventor: James Pan
  • Patent number: 7626231
    Abstract: A trench MOSFET in parallel with trench junction barrier Schottky rectifier with trench contact structures is formed in single chip. The present invention solves the drawback brought by some prior arts, for example, the large area occupied by planar contact structure and high gate-source capacitance. As the electronic devices become more miniaturized, the trench contact structures of this invention are able to be shrunk to achieve low specific on-resistance of Trench MOSFET, and low Vf and reverse leakage current of the Schottky Rectifier.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: December 1, 2009
    Assignee: Force Mos Technology Co., Ltd.
    Inventor: Fu-Yuan Hsieh
  • Patent number: 7625799
    Abstract: A semiconductor region with an epitaxial layer extending over the semiconductor region is provided. A first silicon etch is performed to form an upper trench portion extending into and terminating within the epitaxial layer. A protective material is formed extending along sidewalls of the upper trench portion and over mesa regions adjacent the upper trench portion but not along a bottom surface of the upper trench portion. A second silicon etch is performed to form a lower trench portion extending from the bottom surface of the upper trench portion through the epitaxial layer and terminating within the semiconductor region, such that the lower trench portion is narrower than the upper trench portion.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: December 1, 2009
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Hamza Yilmaz, Daniel Calafut, Steven Sapp, Nathan Kraft, Ashok Challa
  • Publication number: 20090283823
    Abstract: A semiconductor device includes: a semiconductor layer; a first conductivity type region of a first conductivity type formed in a base layer portion of the semiconductor layer; a body region of a second conductivity type formed in the semiconductor layer to be in contact with the first conductivity type region; a trench formed by digging the semiconductor layer from the surface thereof to pass through the body region so that the deepest portion thereof reaches the first conductivity type region; a gate insulating film formed on the bottom surface and the side surface of the trench; a gate electrode buried in the trench through the gate insulating film; a source region of the first conductivity type formed in a surface layer portion of the semiconductor layer on a side in a direction orthogonal to the gate width with respect to the trench to be in contact with the body region; and a high-concentration region of the second conductivity type, formed in the body region on a position opposed to the trench in the d
    Type: Application
    Filed: August 8, 2008
    Publication date: November 19, 2009
    Applicant: ROHM CO., LTD.
    Inventor: Naoki Izumi
  • Patent number: 7618890
    Abstract: A method for forming a metal/metal oxide structure that includes forming metal oxide regions, e.g. ruthenium oxide regions, at grain boundaries of a metal layer, e.g., platinum. Preferably, the metal oxide regions are formed by diffusion of oxygen through grain boundaries of the metal layer, e.g., platinum, to oxidize a metal layer thereon, e.g, ruthenium layer. The structure is particularly advantageous for use in capacitor structures and memory devices, such as dynamic random access memory (DRAM) devices.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: November 17, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Cem Basceri, Gurtej Sandhu
  • Patent number: 7619270
    Abstract: An electronic device can include discontinuous storage elements that lie within a trench. The electronic device can include a substrate including a trench that includes a wall and a bottom and extends from a primary surface of the substrate. The electronic device can also include discontinuous storage elements, wherein a portion of the discontinuous storage elements lies at least within the trench. The electronic device can further include a first gate electrode, wherein at least a part of the portion of the discontinuous storage elements lies between the first gate electrode and the wall of the trench. The electronic device can still further include a second gate electrode overlying the first gate electrode and the primary surface of the substrate.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: November 17, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Gowrishankar L. Chindalore, Paul A. Ingersoll, Craig T. Swift
  • Patent number: 7619281
    Abstract: A semiconductor device having a buried gate line with a shaped gate trench and a method of fabricating the same are disclosed. The semiconductor device includes a trench isolation layer provided in a semiconductor substrate to define a multi-surfaced active region/channel. A gate line extending to the trench isolation layer fills a portion of the gate trench. The gate trench is formed with a series of depressions to accommodate peaks in the channel. The combination of depressions/peaks operate to increase the effective area of the channel, thereby enabling smaller channel semiconductor devices to be formed without increasing the width thereof.
    Type: Grant
    Filed: May 1, 2007
    Date of Patent: November 17, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyeoung-Won Seo, Young-Woong Son, Kang-Yoon Lee, Bong-Soo Kim
  • Patent number: 7602010
    Abstract: In a non-volatile memory device allowing multi-bit and/or multi-level operations, and methods of operating and fabricating the same, the non-volatile memory device comprises, in one embodiment: a semiconductor substrate, doped with impurities of a first conductivity type, which has one or more fins defined by at least two separate trenches formed in the substrate, the fins extending along the substrate in a first direction; pairs of gate electrodes formed as spacers at sidewalls of the fins, wherein the gate electrodes are insulated from the semiconductor substrate including the fins and extend parallel to the fins; storage nodes between the gate electrodes and the fins, and insulated from the gate electrodes and the semiconductor substrate; source regions and drain regions, which are doped with impurities of a second conductivity type, and are separately formed at least at surface portions of the fins and extend across the first direction of the fins; and channel regions corresponding to the respective gate
    Type: Grant
    Filed: April 19, 2006
    Date of Patent: October 13, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byung-yong Choi, Tae-yong Kim, Eun-suk Cho, Suk-kang Sung, Hye-jin Cho, Dong-gun Park, Choong-ho Lee
  • Patent number: 7598536
    Abstract: A semiconductor device includes a semiconductor substrate having a resistor region, an isolation layer disposed in the resistor region, the isolation layer defining active regions, first conductive layer patterns disposed on the active regions, a second conductive layer pattern covering the first conductive layer patterns and disposed on the isolation layer, the second conductive layer pattern and the first conductive layer patterns constituting a load resistor pattern, an upper insulating layer disposed over the load resistor pattern, and resistor contact plugs disposed over the active regions, the resistor contact plugs penetrating the upper insulating layer to contact the load resistor pattern.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: October 6, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun-Young Choi, Eun-Jin Baek
  • Patent number: 7595524
    Abstract: A field effect transistor includes a plurality of trenches extending into a silicon layer. Each trench has upper sidewalls that fan out. Contact openings extend into the silicon layer between adjacent trenches such that each trench and an adjacent contact opening form a common upper sidewall portion. Body regions extend between adjacent trenches, and source regions extend in the body regions adjacent opposing sidewalls of each trench. The source regions have a conductivity type opposite that of the body regions.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: September 29, 2009
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Robert Herrick, Becky Losee, Dean Probst
  • Publication number: 20090224316
    Abstract: A semiconductor device includes a drain, a body disposed over the drain, a source embedded in the body, a gate trench extending through the source and the body into the drain, a gate disposed in the gate trench, a source body contact trench extending through the source into the body, a conductive contact layer disposed along at least a portion of a source body contact trench sidewall and in contact with at least a portion of the source, and a trench filling material disposed in the source body contact trench and overlaying at least a portion of the conductive contact layer.
    Type: Application
    Filed: March 31, 2009
    Publication date: September 10, 2009
    Inventors: Anup Bhalla, Sik Lui, Tiesheng Li
  • Patent number: 7586150
    Abstract: A method of manufacturing a local recess channel transistor in a semiconductor device. A hard mask layer is formed on a semiconductor substrate that exposes a portion of the substrate. The exposed portion of the substrate is etched using the hard mask layer as an etch mask to form a recess trench. A trench spacer is formed on the substrate along a portion of sidewalls of the recess trench. The substrate along a lower portion of the recess trench is exposed after the trench spacer is formed. The exposed portion of the substrate along the lower portion of the recess trench is doped with a channel impurity to form a local channel impurity doped region surrounding the lower portion of the recess trench. A portion of the local channel impurity doped region surrounding the lower portion of the recess trench is doped with a Vth adjusting impurity to form a Vth adjusting impurity doped region inside the local channel impurity doped region. The width of the lower portion of the recess trench is expanded.
    Type: Grant
    Filed: August 25, 2005
    Date of Patent: September 8, 2009
    Assignee: Samsung Electronic Co., Ltd.
    Inventors: Se-myeong Jang, Yong-chul Oh, Makoto Yoshida
  • Patent number: 7586151
    Abstract: The present invention provides an insulated gate semiconductor device which has floating regions around the bottoms of trenches and which is capable of reliably achieving a high withstand voltage. An insulated gate semiconductor device 100 includes a cell area through which current flows and an terminal area which surrounds the cell area. The semiconductor device 100 also has a plurality of gate trenches 21 in the cell area and a plurality of terminal trenches 62 in the terminal area. The gate trenches 21 are formed in a striped shape, and the terminal trenches 62 are formed concentrically. In the semiconductor device 100, the gate trenches 21 and the terminal trenches 62 are positioned in a manner that spacings between the ends of the gate trenches 21 and the side of the terminal trench 62 are uniform. That is, the length of the gate trenches 21 is adjusted according to the curvature of the corners of the terminal trench 62.
    Type: Grant
    Filed: May 11, 2005
    Date of Patent: September 8, 2009
    Assignees: Toyota Jidosha Kabushiki Kaisha, DENSO CORPORATION
    Inventors: Hidefumi Takaya, Yasushi Okura, Akira Kuroyanagi, Norihito Tokura
  • Publication number: 20090218619
    Abstract: This invention discloses a semiconductor power device disposed in a semiconductor substrate. The semiconductor power device includes trenched gates each having a stick-up gate segment extended above a top surface of the semiconductor substrate surrounded by sidewall spacers. The semiconductor power device further includes slots opened aligned with the sidewall spacers substantially parallel to the trenched gates. The stick-up gate segment further includes a cap composed of an insulation material surrounded by the sidewall spacers. A layer of barrier metal covers a top surface of the cap and over the sidewall spacers and extends above a top surface of the slots. The slots are filled with a gate material same as the gate segment for functioning as additional gate electrodes for providing a depletion layer extends toward the trenched gates whereby a drift region between the slots and the trenched gate is fully depleted at a gate-to-drain voltage Vgs=0 volt.
    Type: Application
    Filed: March 2, 2008
    Publication date: September 3, 2009
    Inventors: Francois Hebert, Madhur Bobde, Anup Bhalla
  • Patent number: 7582931
    Abstract: A gate electrode of a transistor can include an interface between a polysilicon conformal layer and a tungsten layer thereon in a trench in a substrate and a capping layer extending across the trench and covering the interface. Related methods are also disclosed.
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: September 1, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byung-Hak Lee, Chang-Won Lee, Hee-Sook Park, Woong-Hee Sohn, Sun-Pil Youn, Jong-ryeol Yoo
  • Patent number: 7582932
    Abstract: A silicon carbide semiconductor device includes: a semiconductor substrate having a silicon carbide substrate, a first semiconductor layer, a second semiconductor layer, and a third semiconductor layer; a trench penetrating the second and the third semiconductor layers to reach the first semiconductor layer; a channel layer on a sidewall and a bottom of the trench; an oxide film on the channel layer; a gate electrode on the oxide film; a first electrode connecting to the third semiconductor layer; and a second electrode connecting to the silicon carbide substrate. A position of a boundary between the first semiconductor layer and the second semiconductor layer is disposed lower than an utmost lowest position of the oxide film.
    Type: Grant
    Filed: November 8, 2005
    Date of Patent: September 1, 2009
    Assignee: DENSO CORPORATION
    Inventors: Malhan Rajesh Kumar, Yuichi Takeuchi
  • Publication number: 20090200607
    Abstract: A power MOSFET of the invention includes a cell region in which a plurality of cells constituted of a transistor having a gate electrode formed in a trench is aligned, the plurality of cells being arranged to form a square grid and a gate interconnect lead formed so as to extend out of the cell region, with an end portion overlapping an outermost peripheral gate electrode in the cell region for connection.
    Type: Application
    Filed: January 28, 2009
    Publication date: August 13, 2009
    Applicant: NEC ELECTRONICS CORPORATION
    Inventor: Naoki MATSUURA
  • Patent number: 7573096
    Abstract: MOS FETs are formed by a drain layer 101, a drift layer 102, P-type body areas 103, N+-type source areas 105, gate electrodes 108, a source electrode film 110, and a drain electrode film 111. In parallel to the MOS FETs, the drain layer 101, the drift layer 102, the P?-type diffusion area 109, and the source electrode film 110 form a diode. The source electrode film 110 and the P?-type diffusion area 109 form an Ohmic contact. The total amount of impurities, which function as P-type impurities in each P-type body area 103, is larger than the total amount of impurities, which function as P-type impurities in the P?-type diffusion area 109.
    Type: Grant
    Filed: February 16, 2005
    Date of Patent: August 11, 2009
    Assignee: Shindengen Electric Manufacturing Co, Ltd.
    Inventors: Toshiyuki Takemori, Yuji Watanabe, Fuminori Sasaoka, Kazushige Matsuyama, Kunihito Ohshima, Masato Itoi
  • Patent number: 7569879
    Abstract: A nonvolatile semiconductor memory device includes a semiconductor substrate, plural semiconductor columns arranged in a matrix form on the substrate, plural first conductive areas zonally formed in a column direction on the substrate between the semiconductor columns and functioning as word lines, plural second conductive areas formed at tops of the semiconductor columns, respectively, plural bit lines connecting the second conductive areas in a row direction, plural channel areas respectively formed in the semiconductor columns between the first and second conductive areas and contacting the first and second conductive areas, plural third conductive areas continuously formed via first insulating films above the substrate and opposite to the channel areas in the column direction between the semiconductor columns and functioning as control gates, and plural charge accumulation areas respectively formed via second insulating films at upper portions of the channel areas at a position higher than the third condu
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: August 4, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Atsuhiro Kinoshita, Riichiro Shirota, Hiroshi Watanabe, Kenichi Murooka, Junji Koga
  • Patent number: 7566645
    Abstract: A method for fabricating a semiconductor device is provided. In the method, a bulb type recess is formed on a semiconductor substrate in an active region. A gate insulating film is formed over the semiconductor substrate and on a surface of the recess. A first polysilicon layer is formed over the gate insulating film. A silicon-on-dielectric (“SOD”) barrier film is formed on the first polysilicon layer at a lower part of the recess. A second polysilicon layer is formed over the semiconductor substrate and filling the recess. Impurity ions are injected into the second polysilicon layer. An annealing process is performed on the semiconductor substrate. A metal layer and a gate hard mask layer is formed and patterned over the second polysilicon layer to form a gate including the SOD barrier film.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: July 28, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventor: Yu Jin Lee
  • Patent number: 7564098
    Abstract: In a semiconductor device, a gate silicon dioxide layer is formed within a trench of a semiconductor wafer. A first gate electrode is formed on a sidewall of the trench of the semiconductor wafer via the gate silicon dioxide layer. An insulating layer is formed on a bottom of the trench of the semiconductor wafer via the gate silicon dioxide layer and surrounded by the first gate electrode. The insulating layer excludes silicon dioxide and has different etching characteristics from those of silicon dioxide. A second gate electrode is buried in the trench of the semiconductor wafer, and is in contact with the first gate electrode and the insulating layer.
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: July 21, 2009
    Assignee: NEC Electronics Corporation
    Inventor: Wataru Sumida
  • Patent number: 7564096
    Abstract: A field effect transistor (FET) includes a semiconductor region of a first conductivity type and a well region of a second conductivity type extending over the semiconductor region. A gate electrode is adjacent to but insulated from the well region, and a source region of the first conductivity type is in the well region. A heavy body region is in electrical contact with the well region, and includes a material having a lower energy gap than the well region.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: July 21, 2009
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Qi Wang, Ming-Huang Huang, Joelle Sharp
  • Patent number: 7564095
    Abstract: A semiconductor device includes: a semiconductor substrate; an element region having a semiconductor element including an impurity layer and a trench, wherein the impurity layer is disposed in the trench, and wherein the trench is disposed on a main surface of the substrate; and a field region disposed around the element region. The trench is an aggregation of a plurality of stripe line trenches so that the element region has a polygonal shape. The field region includes a dummy trench disposed along with one side of the polygonal shape on a periphery of the element region. The dummy trench has a width and a longitudinal direction, which are equal to those of the trench. The field region further includes an impurity layer disposed in the dummy trench.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: July 21, 2009
    Assignee: DENSO CORPORATION
    Inventors: Yasushi Urakami, Jun Sakakibara, Hitoshi Yamaguchi
  • Patent number: 7560785
    Abstract: A semiconductor device having multiple fin heights is provided. Multiple fin heights are provided by using multiple masks to recess a dielectric layer within a trench formed in a substrate. In another embodiment, an implant mold or e-beam lithography are utilized to form a pattern of trenches in a photoresist material. Subsequent etching steps form corresponding trenches in the underlying substrate. In yet another embodiment, multiple masking layers are used to etch trenches of different heights separately. A dielectric region may be formed along the bottom of the trenches to isolate the fins by performing an ion implant and a subsequent anneal.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: July 14, 2009
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Chen-Nan Yeh, Yu-Rung Hsu
  • Patent number: 7557410
    Abstract: A semiconductor device comprises a plurality of gate structures formed on a substrate, a gate spacer formed on a sidewall of the gate structures, a semiconductor pattern formed on the substrate between the gate structures, a first impurity region and a second impurity region formed in the semiconductor pattern and at surface portions of the substrate, respectively, wherein the first and second impurity regions include a first conductive type impurity, and a channel doping region surrounding the first impurity region, wherein the channel doping region includes a second conductive type impurity.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: July 7, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Woo Lee, Cheol-Ju Yun, Hyeoung-Won Seo
  • Patent number: 7541629
    Abstract: A method and structure for reducing leakage currents in integrated circuits based on a direct silicon bonding (DSB) fabrication process. After recessing a top semiconductor layer and an underlying semiconductor substrate, a dielectric layer may be deposited and etched back to form embedded spacers. Conventional source/drain regions may then be formed.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: June 2, 2009
    Assignee: International Business Machines Corporation
    Inventors: Huilong Zhu, Haizhou Yin, Zhijiong Luo
  • Patent number: 7541642
    Abstract: A semiconductor device comprises a semiconductor substrate having a gate trench formed therein. A gate electrode is formed on a gate insulator in the gate trench. The gate electrode has ends close to the bottom of the gate trench, which are separated in a direction perpendicular to both sides of the gate trench, and portions except the separated ends, at least part of which is made higher in conductivity than other parts.
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: June 2, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Keiko Kawamura, Masanobu Tsuchitani
  • Patent number: 7541641
    Abstract: Disclosed are a gate structure in a trench region of a semiconductor device and method for manufacturing the same. The semiconductor device includes a pair of drift regions formed in a semiconductor substrate; a trench region formed between the pair of drift regions; an oxide layer spacer on sidewalls of the trench region; a gate formed in the trench region; and a source and a drain formed in the pair of the drift regions, respectively.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: June 2, 2009
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Kwang Young Ko