Gate Electrode Self-aligned With Groove Patents (Class 257/332)
  • Patent number: 8115251
    Abstract: A recessed gate FET device includes a substrate having an upper and lower portions, the lower portion having a reduced concentration of dopant material than the upper portion; a trench-type gate electrode defining a surrounding channel region and having a gate dielectric material layer lining and including a conductive material having a top surface recessed to reduce overlap capacitance with respect to the source and drain diffusion regions formed at an upper substrate surface at either side of the gate electrode. There is optionally formed halo implants at either side of and abutting the gate electrode, each halo implants extending below the source and drain diffusions into the channel region. Additionally, highly doped source and drain extension regions are formed that provide a low resistance path from the source and drain diffusion regions to the channel region.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: February 14, 2012
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Andres Bryant, Edward J. Nowak
  • Patent number: 8106449
    Abstract: To achieve a stable reading operation in a memory cell having a gain-cell structure, a write transistor is configured, which has a source and a drain that are formed on the insulating layer, a channel formed on the insulating layer and between the source and the drain and made of a semiconductor, and a gate formed on an upper portion of the insulating layer and between the source and the drain and electrically insulated from the channel by a gate insulating film and controlling the potential of the channel. The channel electrically connects the source and the drain on the side surfaces of the source and the drain.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: January 31, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Toshiaki Sano, Tomoyuki Ishii, Norifumi Kameshiro, Toshiyuki Mine
  • Patent number: 8101994
    Abstract: A semiconductor device having multiple fin heights is provided. Multiple fin heights are provided by using multiple masks to recess a dielectric layer within a trench formed in a substrate. In another embodiment, an implant mold or e-beam lithography are utilized to form a pattern of trenches in a photoresist material. Subsequent etching steps form corresponding trenches in the underlying substrate. In yet another embodiment, multiple masking layers are used to etch trenches of different heights separately. A dielectric region may be formed along the bottom of the trenches to isolate the fins by performing an ion implant and a subsequent anneal.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: January 24, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Chen-Nan Yeh, Yu-Rung Hsu
  • Patent number: 8097918
    Abstract: A semiconductor arrangement including a load transistor and a sense transistor that are integrated in a semiconductor body. One embodiment provides a number of transistor cells integrated in the semiconductor body, each transistor cell including a first active transistor region. A number of first contact electrodes, each of the contact electrodes contacting the first active transistor regions through contact plugs. A second contact electrode contacts a first group of the first contact electrodes, but not contacting a second group of the first contact electrodes. The transistor cells being contacted by first contact electrodes of the first group form a load transistor, with the second electrode forming a load terminal of the load transistor. The transistor cells being contacted by first contact electrodes of the second group form a sense transistor.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: January 17, 2012
    Assignee: Infineon Technologies AG
    Inventors: Christoph Kadow, Markus Leicht, Stefan Woehlert
  • Patent number: 8097917
    Abstract: A silicon carbide semiconductor device includes: a semiconductor substrate having a silicon carbide substrate, a first semiconductor layer, a second semiconductor layer, and a third semiconductor layer; a trench penetrating the second and the third semiconductor layers to reach the first semiconductor layer; a channel layer on a sidewall and a bottom of the trench; an oxide film on the channel layer; a gate electrode on the oxide film; a first electrode connecting to the third semiconductor layer; and a second electrode connecting to the silicon carbide substrate. A position of a boundary between the first semiconductor layer and the second semiconductor layer is disposed lower than an utmost lowest position of the oxide film.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: January 17, 2012
    Assignee: DENSO CORPORATION
    Inventors: Malhan Rajesh Kumar, Yuichi Takeuchi
  • Patent number: 8097915
    Abstract: A semiconductor memory device comprises a plurality of memory cells, each memory cell having a respective transistor. The transistor comprises a transistor body of a first conductivity type, a drain area and a source area each having a second conductivity type, wherein said drain area and source area are embedded in the transistor body on a first surface of said transistor body, a gate structure having a gate dielectric layer and a gate electrode. Said gate structure is arranged between said drain area and said source area. An emitter area of said first conductivity type is provided wherein said emitter area is arranged on top of said drain area.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: January 17, 2012
    Assignee: Qimonda AG
    Inventors: Wolfgang Rösner, Franz Hofmann, Michael Specht, Martin Städele, Johannes Luyken
  • Patent number: 8093654
    Abstract: A method for producing a vertical transistor component includes providing a semiconductor substrate, applying an auxiliary layer to the semiconductor substrate, and patterning the auxiliary layer for the purpose of producing at least one trench which extends as far as the semiconductor substrate and which has opposite sidewalls. The method further includes producing a monocrystalline semiconductor layer on at least one of the sidewalls of the trench, producing an electrode insulated from the monocrystalline semiconductor layer on the at least one sidewall of the trench and the semiconductor substrate.
    Type: Grant
    Filed: July 11, 2010
    Date of Patent: January 10, 2012
    Assignee: Infineon Technologies Austria AG
    Inventors: Martin Poelzl, Walter Rieger
  • Patent number: 8093655
    Abstract: An integrated circuit including a field effect controllable trench transistor having two-control electrodes is disclosed. One embodiment provides a trench having a first control electrode and a second control electrode. A first electrical line is provided in an edge structure for electrically contact-connecting second control electrode.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: January 10, 2012
    Assignee: Infineon Technologies Austria AG
    Inventors: Franz Hirler, Maximilian Roesch, Ralf Siemieniec
  • Publication number: 20110316076
    Abstract: A power MOSFET device and manufacturing method thereof, includes the steps of selectively depositing a first conductive material in the middle region at the bottom of a contact trench and contacting with light-doped N-type epitaxial layer to form a Schottky junction and depositing a second conductive material at the side wall and bottom corner of the contact trench and contacting with P-type heavy-doped body region to form an ohmic junction. The first and second conductive materials can respectively optimize the performance of the ohmic contact and the Schottky contact without compromise. Meanwhile, the corner of the contact trench is surrounded by P-type heavy-doped region thereby effectively reducing the leakage currents accumulated at the corner of the contact trench.
    Type: Application
    Filed: June 29, 2010
    Publication date: December 29, 2011
    Inventors: Yeeheng Lee, Yongping Ding, John Chen
  • Patent number: 8084813
    Abstract: A short gate high power metal oxide semiconductor field effect transistor formed in a trench includes a short gate having gate length defined by spacers within the trench. The transistor further includes a buried region that extends beneath the trench and beyond a corner of the trench, that effectively shields the gate from high drain voltage, to prevent short channel effects and resultantly improve device performance and reliability.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: December 27, 2011
    Assignee: Cree, Inc.
    Inventors: Andrei Konstantinov, Christopher Harris, Jan-Olov Svederg
  • Patent number: 8080858
    Abstract: A Semiconductor component having a space saving edge structure is disclosed. One embodiment provides a first side, a second side, an inner region, an edge region adjoining the inner region in a lateral direction of the semiconductor body, and a first semiconductor layer extending across the inner region and the edge region and having a basic doping of a first conductivity type. At least one active component zone of a second conductivity type, which is complementary to the first conductivity type, is disposed in the inner region in the first semiconductor layer. An edge structure is disposed in the edge region and includes at least one trench extending from the first side into the semiconductor body. An edge electrode is disposed in the trench, a dielectric layer is disposed in the trench between the edge electrode and the semiconductor body, a first edge zone of the second conductivity type adjoin the trench and are at least partially disposed below the trench.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: December 20, 2011
    Assignee: Infineon Technologies Austria AG
    Inventors: Franz Hirler, Ralf Siemieniec, Christian Geissler
  • Patent number: 8080459
    Abstract: A method of fabricating a self-aligned contact in a semiconductor device, in accordance with one embodiment of the present invention, includes etching a trench in a core area and partially extending into a termination area of a substrate. A first oxide is grown on the substrate proximate the trench. A polysilicon layer is deposited in the core area and the termination area. The polysilicon layer is selectively etched to form a gate region in the core area portion of the trench. The etching of the polysilicon layer also forms a first portion of a gate interconnect region in the termination area portion of the trench and a second portion in the termination area outside of the trench.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: December 20, 2011
    Assignee: Vishay-Siliconix
    Inventor: Robert Q. Xu
  • Patent number: 8076721
    Abstract: There is provided fin structures and methods for fabricating fin structures. More specifically, fin structures are formed in a substrate. The fin structures may include two fins separated by a channel, wherein the fins may be employed as fins of a field effect transistor. The fin structures are formed below the upper surface of the substrate, and may be formed without utilizing a photolithographic mask to etch the fins.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: December 13, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Sahn D. Tang, Gordon Haller
  • Patent number: 8076718
    Abstract: The invention has an object to provide an insulation gate type semiconductor device and a method for producing the same in which high breakdown voltage and compactness are achieved. The semiconductor device has a gate trench and a P floating region formed in the cell area and has a terminal trench and a P floating region formed in the terminal area. In addition, a terminal trench of three terminal trenches has a structure similar to that of the gate trench, and the other terminal trenches have a structure in which an insulation substance such as oxide silicon is filled. Also, the P floating region 51 is an area formed by implanting impurities from the bottom surface of the gate trench, and the P floating region is an area formed by implanting impurities from the bottom surface of the terminal trench.
    Type: Grant
    Filed: September 28, 2005
    Date of Patent: December 13, 2011
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation
    Inventors: Hidefumi Takaya, Kimimori Hamada, Kyosuke Miyagi, Yasushi Okura, Akira Kuroyanagi, Norihito Tokura
  • Patent number: 8076724
    Abstract: A semiconductor device is formed having lower gate-to-drain capacitance. The semiconductor device having an active region (1300) and a dielectric platform region (1310). A trench (80) is formed adjacent to a drain (20) of the semiconductor device to a first depth. The etch process for forming trench (80) etches the dielectric platform region (1310) to a first depth. A second trench (210) is etched in trench (80) to further isolate areas in the active region (1300). The etch process for forming the second trench (210) etches the dielectric platform region (1310) to form a support structure for the dielectric platform in the substrate. The dielectric platform, the trench (80), and the second trench (210) is capped and sealed. The dielectric platform is made approximately planar to the major surface of the substrate by forming the support structure from the first depth to the second depth.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: December 13, 2011
    Assignee: HVVi Semiconductors, Inc.
    Inventor: Robert Bruce Davies
  • Patent number: 8072027
    Abstract: Semiconductor devices and methods for making such devices that contain a 3D channel architecture are described. The 3D channel architecture is formed using a dual trench structure containing with a plurality of lower trenches extending in an x and y directional channels and separated by a mesa and an upper trench extending in a y direction and located in an upper portion of the substrate proximate a source region. Thus, smaller pillar trenches are formed within the main line-shaped trench. Such an architecture generates additional channel regions which are aligned substantially perpendicular to the conventional line-shaped channels. The channel regions, both conventional and perpendicular, are electrically connected by their corner and top regions to produce higher current flow in all three dimensions. With such a configuration, higher channel density, a stronger inversion layer, and a more uniform threshold distribution can be obtained for the semiconductor device. Other embodiments are described.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: December 6, 2011
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Suku Kim, Dan Calafut, Ihsiu Ho, Dan Kinzer, Steven Sapp, Ashok Challa, Seokjin Jo, Mark Larsen
  • Patent number: 8067285
    Abstract: In a method of forming a conductive layer structure and a method of manufacturing a recess channel transistor, a first insulating layer and a first conductive layer are sequentially formed on a substrate having a first region a second region and the substrate is exposed in a recess-forming area in the first region. A recess is formed in the recess-forming-area by etching the exposed region of the substrate. A second insulating layer is conformally formed on a sidewall and a bottom of the recess. A second conductive layer pattern is formed on the second insulating layer to fill up a portion of the recess. A spacer is formed on the second conductive layer pattern and on the second insulating layer on the sidewall of the recess. A third conductive layer pattern is formed on the second conductive layer pattern and the spacer to fill up the recess.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: November 29, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Chul Park, Chan-Mi Lee, Sang-Sup Jeong
  • Patent number: 8063419
    Abstract: An integrated circuit and component is disclosed. In one embodiment, the component is a compensation component, configuring the compensation regions in the drift zone in V-shaped fashion in order to achieve a convergence of the space charge zones from the upper to the lower end of the compensation regions is disclosed.
    Type: Grant
    Filed: January 16, 2007
    Date of Patent: November 22, 2011
    Assignee: Infineon Technologies Austria AG
    Inventors: Armin Willmeroth, Holger Kapels
  • Patent number: 8063441
    Abstract: A vertical pillar semiconductor device may include a substrate, a group of channel patterns, a gate insulation layer pattern and a gate electrode. The substrate may be divided into an active region and an isolation layer. A first impurity region may be formed in the substrate corresponding to the active region. The group of channel patterns may protrude from a surface of the active region and may be arranged parallel to each other. A second impurity region may be formed on an upper portion of the group of channel patterns. The gate insulation layer pattern may be formed on the substrate and a sidewall of the group of channel patterns. The gate insulation layer pattern may be spaced apart from an upper face of the group of channel patterns. The gate electrode may contact the gate insulation layer and may enclose a sidewall of the group of channel patterns.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: November 22, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Hoon Son, Jong-Wook Lee, Jong-Hyuk Kang
  • Patent number: 8058687
    Abstract: This invention discloses a trenched metal oxide semiconductor field effect transistor (MOSFET) cell. The trenched MOSFET cell includes a trenched gate opened from a top surface of the semiconductor substrate surrounded by a source region encompassed in a body region above a drain region disposed on a bottom surface of a substrate. The trenched gate further includes at least two mutually insulated trench-filling segments each filled with materials of different work functions. In an exemplary embodiment, the trenched gate includes a polysilicon segment at a bottom portion of the trenched gate and a metal segment at a top portion of the trenched gate.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: November 15, 2011
    Assignee: Alpha & Omega Semiconductor, Ltd.
    Inventors: Sung-Shan Tai, YongZhong Hu
  • Patent number: 8058685
    Abstract: A trench MOSFET structure having improved avalanche capability is disclosed, wherein the source region is formed by performing source Ion Implantation through contact open region of a contact interlayer, and further diffused to optimize a trade-off between Rds and the avalanche capability. Thus, only three masks are needed in fabrication process, which are trench mask, contact mask and metal mask. Furthermore, said source region has a doping concentration along channel region lower than along contact trench region, and source junction depth along channel region shallower than along contact trench, and source doping profile along surface of epitaxial layer has Guassian-distribution from trenched source-body contact to channel region.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: November 15, 2011
    Assignee: Force Mos Technology Co., Ltd.
    Inventor: Fu-Yuan Hsieh
  • Patent number: 8058686
    Abstract: A semiconductor device includes field effect transistors, each having a semiconductor layer formed on a major surface of a semiconductor substrate, a base region formed in a surface layer portion of a semiconductor layer, a source region formed in a surface layer portion of the base region, a source electrode formed on the base region and the source region, a gate electrode formed on the semiconductor layer and the base region via a gate insulating film interposed therebetween, and a drain electrode formed on a back surface of the semiconductor substrate, and which are placed side by side. A columnar intermediate region is formed in its corresponding predetermined region of the surface layer portion of the semiconductor layer placed below each gate electrode. Connection regions are formed in the surface layer portion of the semiconductor layer to contact the intermediate region and the base regions.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: November 15, 2011
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Tomomi Yamanobe
  • Patent number: 8053307
    Abstract: A semiconductor device may include a substrate having a cell active region. A cell gate electrode may be formed in the cell active region. A cell gate capping layer may be formed on the cell gate electrode. At least two cell epitaxial layers may be formed on the cell active region. One of the at least two cell epitaxial layers may extend to one end of the cell gate capping layer and another one of the at least two cell epitaxial layers may extend to an opposite end of the cell gate capping layer. Cell impurity regions may be disposed in the cell active region. The cell impurity regions may correspond to a respective one of the at least two cell epitaxial layers.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: November 8, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyeoung-Won Seo, Jae-Man Yoon, Kang-Yoon Lee, Bong-Soo Kim
  • Patent number: 8053834
    Abstract: This invention discloses an inverted field-effect-transistor (iT-FET) semiconductor device that includes a source disposed on a bottom and a drain disposed on a top of a semiconductor substrate. The semiconductor power device further comprises a trench-sidewall gate placed on sidewalls at a lower portion of a vertical trench surrounded by a body region encompassing a source region with a low resistivity body-source structure connected to a bottom source electrode and a drain link region disposed on top of said body regions thus constituting a drift region. The drift region is operated with a floating potential said iT-FET device achieving a self-termination.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: November 8, 2011
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventor: François Hébert
  • Patent number: 8053831
    Abstract: A memory cell of memory device, comprises an active region of a memory cell defined in a semiconductor substrate, and a conductive gate electrode in a trench of the active region. The gate electrode is isolated from the semiconductor substrate. An insulation layer is on the active region and on the conductive gate electrode. A conductive contact is in the insulation layer on the active region at a side of the gate electrode and isolated from the gate electrode. The contact has a first width at a top portion thereof and a second width at a bottom portion thereof, the first width being greater than the second width. The contact is formed of a single-crystal material.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: November 8, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Man-Jong Yu
  • Patent number: 8049272
    Abstract: A MESFET includes a silicon carbide layer, spaced apart source and drain regions in the silicon carbide layer, a channel region positioned within the silicon carbide layer between the source and drain regions and doped with implanted dopants, and a gate contact on the silicon carbide layer. Methods of forming a MESFET include providing a layer of silicon carbide, forming spaced apart source and drain regions in the silicon carbide layer, implanting impurity atoms to form a channel region between the source and drain regions, annealing the implanted impurity atoms, and forming a gate contact on the silicon carbide layer.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: November 1, 2011
    Assignee: Cree, Inc.
    Inventors: Jason P. Henning, Allan Ward, Alexander Suvorov
  • Patent number: 8048765
    Abstract: According to an exemplary embodiment, a method for fabricating a MOS transistor, such as an LDMOS transistor, includes forming a gate stack over a well. The method further includes forming a recess in the well adjacent to a first sidewall of the gate stack. The method further includes forming a source region in the recess such that a heterojunction is formed between the source region and the well. The method further includes forming a drain region spaced apart from a second sidewall of the gate stack. In one embodiment, the source region can comprise silicon germanium and the well can comprise silicon. In another embodiment, the source region can comprise silicon carbide and the well can comprise silicon.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: November 1, 2011
    Assignee: Broadcom Corporation
    Inventors: Xiangdong Chen, Bruce Chih-Chieh Shen, Henry Kuo-Shun Chen
  • Publication number: 20110260243
    Abstract: According to one embodiment, a power semiconductor device includes a first semiconductor layer of a first conductivity type, a second semiconductor layer of the first conductivity type and a third semiconductor layer of a second conductivity type, a fourth semiconductor layer, a fifth semiconductor layer, a first and second main electrode, a first and second insulating film and a control electrode. The second and third layers are provided periodically on the first layer. The fourth layer is provided on the third layer. The fifth layer is selectively provided on the fourth layer. The first film is provided on sidewalls of a trench that reaches from a surface of the fifth layer to the second layer. The second film is provided closer to a bottom side of the trench than the first film and has a higher permittivity than the first film. The control electrode is embedded in the trench.
    Type: Application
    Filed: March 21, 2011
    Publication date: October 27, 2011
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Wataru Saito, Syotaro Ono, Munehisa Yabuzaki, Shunji Taniuchi, Miho Watanabe
  • Patent number: 8044460
    Abstract: A connecting structure for an electronic device includes an edge region of the device, a first trench and a second trench running toward the edge region, a first electrode within the first trench, and a second electrode within the second trench, the first and second electrodes being arranged in a same electrode plane with regard to a main surface of a substrate of the electronic device within the trenches, and the first electrode extending, at an edge region side end of the first trench, farther toward the edge region than the second electrode extends, at an edge region side end of the second trench, toward the edge region.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: October 25, 2011
    Assignee: Infineon Technologies Austria AG
    Inventors: Franz Hirler, Markus Zundel
  • Patent number: 8044519
    Abstract: A method of fabricating a semiconductor device includes forming an insulating film above a semiconductor substrate, forming a concave portion in the insulating film, forming a precursor film including a predetermined metallic element on a surface of the insulating film, carrying out a heat treatment on the precursor film and the insulating film to react with each other, thereby forming an insulative barrier film mainly comprising a compound of the predetermined metallic element and a constituent element of the insulating film in a self-aligned manner at a boundary surface between the precursor film and the insulating film, removing an unreacted part of the precursor film after forming the barrier film, forming a conductive film comprising at least one of Ru and Co on the barrier film, depositing a wiring material film on the conductive film, and forming a wiring from the wiring material film to provide a wiring structure.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: October 25, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tadayoshi Watanabe, Takamasa Usui
  • Patent number: 8035159
    Abstract: This invention discloses a semiconductor power device. The trenched semiconductor power device includes a trenched gate, opened from a top surface of a semiconductor substrate, surrounded by a source region encompassed in a body region near the top surface above a drain region disposed on a bottom surface of a substrate. The semiconductor power device further includes an implanting-ion block disposed above the top surface on a mesa area next to the body region having a thickness substantially larger than 0.3 micron for blocking body implanting ions and source ions from entering into the substrate under the mesa area whereby masks for manufacturing the semiconductor power device can be reduced.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: October 11, 2011
    Assignee: Alpha & Omega Semiconductor, Ltd.
    Inventors: Anup Bhalla, François Hébert, Sung-Shan Tai, Sik K Lui
  • Patent number: 8030704
    Abstract: A trench gate type power transistor of high performance is provided. A trench gate as a gate electrode is formed in a super junction structure comprising a drain layer and an epitaxial layer. In this case, the gate electrode is formed in such a manner that an upper surface of the epitaxial layer becomes higher than that of a channel layer formed over the drain layer. Then, an insulating film is formed over each of the channel layer and the epitaxial layer and thereafter a part of the insulating film is removed to form side wall spacers over side walls of the epitaxial layer. Subsequently, with the side wall spacers as masks, a part of the channel layer and that of the drain layer are removed to form a trench for a trench gate.
    Type: Grant
    Filed: May 3, 2009
    Date of Patent: October 4, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Yoshito Nakazawa, Hitoshi Matsuura
  • Publication number: 20110233665
    Abstract: A gate trench 13 is formed in a semiconductor substrate 10. The gate trench 13 is provided with a gate electrode 16 formed over a gate insulating film 14. A portion of the gate electrode 16 protrudes from the semiconductor substrate 10, and a sidewall 24 is formed over a side wall portion of the protruding portion. A body trench 25 is formed in alignment with an adjacent gate electrode 16. A cobalt silicide film 28 is formed over a surface of the gate electrode 16 and over a surface of the body trench 25. A plug 34 is formed using an SAC technique.
    Type: Application
    Filed: June 3, 2011
    Publication date: September 29, 2011
    Inventors: HITOSHI MATSUURA, Yoshito Nakazawa, Tsuyoshi Kachi, Yuji Yatsuda
  • Patent number: 8026558
    Abstract: A semiconductor power device includes a plurality of groups of stripe-shaped trenches extending in a silicon region over a substrate, and a contiguous sinker trench completely surrounding each group of the plurality of stripe-shaped trenches so as to isolate the plurality of groups of stripe-shaped trenches from one another. The contiguous sinker trench extends from a top surface of the silicon region through the silicon region and terminates within the substrate. The contiguous sinker trench is lined with an insulator only along the sinker trench sidewalls so that a conductive material filling the contiguous sinker trench makes electrical contact with the substrate along the bottom of the contiguous sinker trench and makes electrical contact with an interconnect layer along the top of the contiguous sinker trench.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: September 27, 2011
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Thomas E. Grebs, Gary M. Dolny
  • Patent number: 8026547
    Abstract: A semiconductor memory device has side surfaces of neighboring bit lines that do not face each other to reduce a capacitance of a parasitic capacitor formed between adjacent bit lines. The semiconductor memory device includes contact plugs formed on a semiconductor substrate. Each contact plug is disposed between gate patterns. First and second conductive pads extend in different directions and are connected to the contact plugs. First and second pad contact plugs are formed on extended peripheries of the first and second conductive pads, respectively. Each of the first pad contact plugs has a height which differs from a height of each of the second pad contact plugs. First bit lines are connected to the first pad contact plugs, and second bit lines are connected to the second pad contact plugs.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: September 27, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Sang Min Kim
  • Patent number: 8022472
    Abstract: The semiconductor device according to the present invention includes a semiconductor layer, a trench formed by digging the semiconductor layer from the surface thereof, a gate insulating film formed on the inner surface of the trench, and a gate electrode made of silicon embedded in the trench through the gate insulating film. The gate electrode has a high-conductivity portion formed to cover the gate insulating film with a relatively high conductivity and a low-conductivity portion formed on a region inside the high-conductivity portion with a relatively low conductivity.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: September 20, 2011
    Assignee: Rohm Co., Ltd.
    Inventors: Ryotaro Yagi, Isamu Nishimura, Takahisa Yamaha
  • Patent number: 8022475
    Abstract: An ON resistance of a trench gate type transistor and a withstand voltage of a planar type transistor are optimized at the same time. Each of first and second regions of a semiconductor layer is formed by epitaxial growth on each of first and second regions of a semiconductor substrate, respectively. A first buried layer is formed between the first region of the semiconductor substrate and the first region of the semiconductor layer, while a second buried layer is formed between the second region of the semiconductor substrate and the second region of the semiconductor layer. The first buried layer is formed of an N+ type first impurity-doped layer and an N type second impurity-doped layer that extends beyond the fist impurity-doped layer. The second buried layer is formed of an N+ type impurity-doped layer only. In the first region of the semiconductor layer, an impurity is diffused from a surface of the semiconductor layer deep into the semiconductor layer to form an N type third impurity-doped layer.
    Type: Grant
    Filed: May 1, 2009
    Date of Patent: September 20, 2011
    Assignees: SANYO Semiconductor Co., Ltd., Semiconductor Components Industries, LLC
    Inventors: Yasuhiro Takeda, Seiji Otake, Kazunori Fujita
  • Patent number: 8013388
    Abstract: Disclosed herein is a method of manufacturing a semiconductor device that is adapted to improve the production yield. The method generally includes etching a semiconductor substrate to form a trench, filling the trench with a conductive material, separating the filled conductive material to form a plurality of gate patterns and a bit line contact region, and etching the substrate to define an isolation region.
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: September 6, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Yong Won Seo
  • Patent number: 8013386
    Abstract: A semiconductor device includes, on a semiconductor substrate, an active region surrounded by an STI region, a gate trench formed in one direction transverse to the active region, a gate insulating film formed on a side surface of the gate trench, an insulating film formed on a bottom of the gate trench and thicker than the gate insulating film, and a gate electrode having at least a part of the gate electrode formed in the gate trench. Portions of the semiconductor substrate present in the active region and located on both sides of the gate trench in an extension direction of the gate trench function as a source region and a drain region, respectively. A portion of the semiconductor substrate located between the side surface of the active region (the side of the STI region) and the side surface of the gate trench functions as a channel region.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: September 6, 2011
    Assignee: Elpida Memory, Inc
    Inventor: Hiroshi Kujirai
  • Patent number: 8008716
    Abstract: This invention discloses bottom-source lateral diffusion MOS (BS-LDMOS) device. The device has a source region disposed laterally opposite a drain region near a top surface of a semiconductor substrate supporting a gate thereon between the source region and a drain region. The BS-LDMOS device further has a combined sinker-channel region disposed at a depth in the semiconductor substrate entirely below a body region disposed adjacent to the source region near the top surface wherein the combined sinker-channel region functioning as a buried source-body contact for electrically connecting the body region and the source region to a bottom of the substrate functioning as a source electrode. A drift region is disposed near the top surface under the gate and at a distance away from the source region and extending to and encompassing the drain region.
    Type: Grant
    Filed: September 17, 2006
    Date of Patent: August 30, 2011
    Assignee: Alpha & Omega Semiconductor, Ltd
    Inventors: Sik K Lui, François Hébert, Anup Bhalla
  • Patent number: 8008714
    Abstract: A semiconductor device, including a MOSFET, has a plurality of transistor cell regions disposed in a semiconductor substrate. A source electrode of the MOSFET is disposed over a main surface of the semiconductor substrate and is in contact with a top surface of a source region in each of the plurality of transistor cell regions. A drain electrode of the MOSFET is a disposed over a back surface of the semiconductor substrate and is electrically connected to the semiconductor substrate. A Schottky cell region is disposed between the plurality of transistor cell regions in the semiconductor substrate. The source electrode is in contact with a part of the main surface of the semiconductor so as to form a Schottky junction in the Schottky cell region.
    Type: Grant
    Filed: October 11, 2010
    Date of Patent: August 30, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Nobuyuki Shirai, Nobuyoshi Matsuura, Yoshito Nakazawa
  • Publication number: 20110204438
    Abstract: A semiconductor device may include, but is not limited to: a semiconductor substrate; a first insulating film; a second insulating film; a first gate electrode; a second gate electrode; and a first semiconductor region. The semiconductor substrate has first and second grooves crossing each other in plan view. The first insulating film covers an inner surface of the first groove. The second insulating film covers an inner surface of the second groove. The first gate electrode fills at least a bottom portion of the first groove. The second gate electrode fills at least a bottom portion of the second groove. The first semiconductor region is positioned in the semiconductor substrate. The first semiconductor region contains a first impurity. The first semiconductor region is adjacent to a first portion of the second insulating film. The first portion of the second insulating film covers at least a bottom region of the second groove.
    Type: Application
    Filed: February 18, 2011
    Publication date: August 25, 2011
    Applicant: ELPIDA MEMORY, INC.
    Inventor: Koji TANIGUCHI
  • Patent number: 7999312
    Abstract: A semiconductor 100 has a P? body region and an N? drift region in the order from an upper surface side thereof. A gate trench and a terminal trench passing through the P? body region are formed. The respective trenches are surrounded with P diffusion regions at the bottom thereof. The gate trench builds a gate electrode therein. A P?? diffusion region, which is in contact with the end portion in a lengthwise direction of the gate trench and is lower in concentration than the P? body region and the P diffusion region, is formed. The P?? diffusion region is depleted prior to the P diffusion region when the gate voltage is off. The P?? diffusion region serves as a hole supply path to the P diffusion region when the gate voltage is on.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: August 16, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hidefumi Takaya, Kimimori Hamada, Kyosuke Miyagi
  • Patent number: 7999313
    Abstract: A semiconductor device includes vertical pillar transistors formed in respective silicon pillars of a silicon substrate. The gates of the vertical pillar transistor are selectively formed on a single surface of lower portions of the silicon pillars, and drain areas of the vertical pillar transistors are connected with one another.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: August 16, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Kyung Do Kim
  • Patent number: 7994573
    Abstract: A field effect transistor (FET) includes body regions of a first conductivity type over a semiconductor region of a second conductivity type. The body regions form p-n junctions with the semiconductor region. Source regions of the second conductivity type extend over the body regions. The source regions form p-n junctions with the body regions. Gate electrodes extend adjacent to but are insulated from the body regions by a gate dielectric. A carbon-containing region extends in the semiconductor region below the body regions.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: August 9, 2011
    Assignee: Fairchild Semiconductor Corporation
    Inventor: James Pan
  • Patent number: 7994572
    Abstract: A MOSFET having a recessed channel and a method of fabricating the same. The critical dimension (CD) of a recessed trench defining the recessed channel in a semiconductor substrate is greater than the CD of the gate electrode disposed on the semiconductor substrate. As a result, the misalignment margin for a photolithographic process used to form the gate electrodes can be increased, and both overlap capacitance and gate induced drain leakage (GIDL) can be reduced.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: August 9, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Ji-young Kim
  • Patent number: 7989886
    Abstract: Manufacturing a power transistor by forming a gate structure on a first layer, forming a trench in the first layer, self aligned with the gate structure, and forming part of the transistor in the trench. By forming a spacer next to the gate, the spacer and gate can be used as a mask when forming the trench, to allow space for a source region next to the gate. The self-aligning rather than forming the gate after the trench means the alignment is more accurate, allowing size reduction. Another aspect involves forming a trench in a first layer, filling the trench, forming a second layer on either side of the trench with lateral overgrowth over the trench, and forming a source region in the second layer to overlap the trench. This overlap can enable the chip area to be reduced.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: August 2, 2011
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Peter Moens, Marnix Tack
  • Patent number: 7989887
    Abstract: A trench MOSFET comprising a plurality of transistor cells with a plurality of wide trenched floating gates as termination region is disclosed. The trenched floating gates have trench depth equal to or deeper than body junction depth of body regions in termination area. Each body region between two adjacent said trenched floating gates has floating voltage.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: August 2, 2011
    Assignee: Force Mos Technology Co., Ltd.
    Inventor: Fu-Yuan Hsieh
  • Patent number: 7982253
    Abstract: A semiconductor device with a dynamic gate drain capacitance. One embodiment provides a semiconductor device. The device includes a semiconductor substrate, a field effect transistor structure including a source region, a first body region, a drain region, a gate electrode structure and a gate insulating layer. The gate insulating layer is arranged between the gate electrode structure and the body region. The gate electrode structure and the drain region partially form a capacitor structure including a gate-drain capacitance configured to dynamically change with varying reverse voltages applied between the source and drain regions. The gate-drain capacitance includes at least one local maximum at a given threshold or a plateau-like course at given reverse voltage.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: July 19, 2011
    Assignee: Infineon Technologies Austria AG
    Inventors: Anton Mauder, Hans-Joachim Schulze, Carolin Tolksdorf, Winfried Kaindl, Armin Willmeroth
  • Patent number: 7982284
    Abstract: A semiconductor component includes a semiconductor body, in which are formed: a substrate of a first conduction type, a buried semiconductor layer of a second conduction type arranged on the substrate, and a functional unit semiconductor layer of a third conduction type arranged on the buried semiconductor layer, in which at least two semiconductor functional units arranged laterally alongside one another are provided. The buried semiconductor layer is part of at least one semiconductor functional unit, the semiconductor functional units being electrically insulated from one another by an isolation structure which permeates the functional unit semiconductor layer, the buried semiconductor layer, and the substrate. The isolation structure includes at least one trench and an electrically conductive contact to the substrate, the contact to the substrate being electrically insulated from the functional unit semiconductor layer and the buried layer by the at least one trench.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: July 19, 2011
    Assignee: Infineon Technologies AG
    Inventors: Andreas Meiser, Walter Hartner, Hermann Gruber, Dietrich Bonart, Thomas Gross