Gate Electrode Self-aligned With Groove Patents (Class 257/332)
  • Publication number: 20110169076
    Abstract: A power MOSFET is described. A trench is in a body layer and an epitaxial layer. An isolation structure is on the substrate at one side of the trench. An oxide layer is on the surface of the trench. A first conductive layer fills the trench and extends to the isolation structure. A dielectric layer is on the first conductive layer and isolation structure and has an opening exposing the first conductive layer. At least one source region is in the body layer at the other side of the trench. A second conductive layer is on the dielectric layer and electrically connected to the source region while electrically isolated from the first conductive layer by the dielectric layer. A third conductive layer is on the dielectric layer and electrically connected to the first conductive layer through the opening of the dielectric layer. The second and third conductive layers are separated.
    Type: Application
    Filed: January 11, 2010
    Publication date: July 14, 2011
    Applicant: EXCELLIANCE MOS CORPORATION
    Inventors: Yi-Chi Chang, Chia-Lien Wu
  • Patent number: 7977742
    Abstract: A trench-gate metal oxide semiconductor field-effect transistor (MOSFET) includes a field plate that extends into a drift region of the MOSFET. The field plate, which is electrically coupled to a source region, is configured to deplete the drift region when the MOSFET is in the OFF-state. The field plate extends from a top surface of a device substrate, which comprises an epitaxial layer formed on a silicon substrate. The field plate has a depth greater than 50% of a thickness of the epitaxial layer. For example, the field plate may extend to a full depth of the drift region. The field plate allows for relatively easy interconnection from the top surface of the device substrate, simplifying the fabrication process.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: July 12, 2011
    Assignee: Monolithic Power Systems, Inc.
    Inventor: Donald R. Disney
  • Patent number: 7977196
    Abstract: A semiconductor device includes an active region defining at least four surfaces, the four surfaces including first, second, third, and fourth surfaces, a gate insulation layer formed around the four surfaces of the active region, and a gate electrode formed around the gate insulation layer and the four surfaces of the active region.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: July 12, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jun-Hee Cho
  • Patent number: 7977749
    Abstract: A semiconductor device includes an active region defining at least four surfaces, the four surfaces including first, second, third, and fourth surfaces, a gate insulation layer formed around the four surfaces of the active region, and a gate electrode formed around the gate insulation layer and the four surfaces of the active region.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: July 12, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jun-Hee Cho
  • Publication number: 20110156682
    Abstract: A semiconductor device such as a voltage converter includes a circuit stage such as an output stage having a high side device and a low side device which can be formed on a single die (i.e., a “PowerDie”) and connected to each other through a semiconductor substrate, and further includes a Schottky diode integrated with at least one of the low side device and the high side device. Both the high side device and the low side device can include lateral diffused metal oxide semiconductor (LDMOS) transistors. Because both output transistors include the same type of transistors, the two devices can be formed simultaneously, thereby reducing the number of photomasks over other voltage converter designs. The voltage converter can further include a controller circuit on a different die which can be electrically coupled to, and co-packaged with, the PowerDie. Various embodiments of the Schottky diode can provide Schottky protection and, additionally JFET protection for the Schottky device.
    Type: Application
    Filed: October 5, 2010
    Publication date: June 30, 2011
    Inventors: Dev Alok Girdhar, Francois Hebert
  • Patent number: 7968939
    Abstract: A gate trench 13 is formed in a semiconductor substrate 10. The gate trench 13 is provided with a gate electrode 16 formed over a gate insulating film 14. A portion of the gate electrode 16 protrudes from the semiconductor substrate 10, and a sidewall 24 is formed over a side wall portion of the protruding portion. A body trench 25 is formed in alignment with an adjacent gate electrode 16. A cobalt silicide film 28 is formed over a surface of the gate electrode 16 and over a surface of the body trench 25. A plug 34 is formed using an SAC technique.
    Type: Grant
    Filed: November 28, 2010
    Date of Patent: June 28, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Hitoshi Matsuura, Yoshito Nakazawa, Tsuyoshi Kachi, Yuji Yatsuda
  • Patent number: 7968940
    Abstract: Double gate IGBT having both gates referred to a cathode in which a second gate is for controlling flow of hole current. In on-state, hole current can be largely suppressed. While during switching, hole current is allowed to flow through a second channel. Incorporating a depletion-mode p-channel MOSFET having a pre-formed hole channel that is turned ON when 0V or positive voltages below a specified threshold voltage are applied between second gate and cathode, negative voltages to the gate of p-channel are not used. Providing active control of holes amount that is collected in on-state by lowering base transport factor through increasing doping and width of n well or by reducing injection efficiency through decreasing doping of deep p well. Device includes at least anode, cathode, semiconductor substrate, n? drift region, first & second gates, n+ cathode region; p+ cathode short, deep p well, n well, and pre-formed hole channel.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: June 28, 2011
    Assignee: Anpec Electronics Corporation
    Inventor: Florin Udrea
  • Patent number: 7960781
    Abstract: In one embodiment, a semiconductor device is formed having vertical localized charge-compensated trenches, trench control regions, and sub-surface doped layers. The vertical localized charge-compensated trenches include at least a pair of opposite conductivity type semiconductor layers. The trench control regions are configured to provide a generally vertical channel region electrically coupling source regions to the sub-surface doped layers. The sub-surface doped layers are further configured to electrically connect the drain-end of the channel to the vertical localized charge compensation trenches. Body regions are configured to isolate the sub-surface doped layers from the surface of the device.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: June 14, 2011
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Gary H. Loechelt, Peter J. Zdebel
  • Patent number: 7956410
    Abstract: A trench DMOS transistor employing trench contacts has overvoltage protection for prevention of shortage between gate and source, comprising a plurality of first-type function trenched gates, at least one second-type function trenched gate and at least two third-type function trenched gates extending through body regions and into an epitaxial layer. The first-type function trenched gates are located in active area surrounded by a source region encompassed in the body region in the epitaxial layer for current conduction. The second-type function trenched gates are disposed underneath a gate metal with a gate trenched contacts filled with metal plug for gate metal connection. The third type function trenched gates are disposed directly and symmetrically underneath ESD trenched contact areas of anode and cathode in an ESD protection diode, serving as a buffer layer for prevention of gate-body shortage.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: June 7, 2011
    Assignee: Force Mos Technology Co. Ltd.
    Inventor: Fu-Yuan Hsieh
  • Publication number: 20110127545
    Abstract: A compound semiconductor device includes a compound semiconductor substrate; epitaxially grown layers formed over the compound semiconductor substrate and including a channel layer and a resistance lowering cap layer above the channel layer; source and drain electrodes in ohmic contact with the channel layer; recess formed by removing the cap layer between the source and drain electrodes; a first insulating film formed on an upper surface of the cap layer and having side edges at positions retracted from edges, or at same positions as the edges of the cap layer in a direction of departing from the recess; a second insulating film having gate electrode opening and formed covering a semiconductor surface in the recess and the first insulating film; and a gate electrode formed on the recess via the gate electrode opening.
    Type: Application
    Filed: February 8, 2011
    Publication date: June 2, 2011
    Applicant: FUJITSU LIMITED
    Inventors: Kozo Makiyama, Tsuyoshi Takahashi
  • Publication number: 20110127604
    Abstract: A semiconductor device having a field plate structure shows a high electric field relaxation effect.
    Type: Application
    Filed: November 16, 2010
    Publication date: June 2, 2011
    Inventor: Ken SATO
  • Patent number: 7948028
    Abstract: A transistor device employed in a support circuit of a DRAM includes a semiconductor substrate having thereon a gate trench, a recessed gate embedded in the gate trench, a source doping region disposed at one side of the recessed gate, a drain doping region disposed at the other side of the recessed gate, and a gate dielectric layer between the recessed gate and the semiconductor substrate. The gate dielectric layer has at least two thicknesses that render the high-voltage transistor device asymmetric. The thicker gate dielectric layer is between the recessed gate and the drain doping region, while the thinner gate dielectric layer is between the recessed gate and the source doping region.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: May 24, 2011
    Assignee: Nanya Technology Corp.
    Inventor: Shing-Hwa Renn
  • Patent number: 7948029
    Abstract: A semiconductor device includes a drain, an epitaxial layer overlaying the drain, a body disposed in the epitaxial layer, a source embedded in the body, a gate trench extending into the epitaxial layer, a gate disposed in the gate trench, an active region contact trench extending through the source, the active region contact trench having a varying contact trench depth, and an active region contact electrode disposed within the active region contact trench.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: May 24, 2011
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Anup Bhalla, Xiaobin Wang
  • Patent number: 7948030
    Abstract: Some embodiments include methods of recessing multiple materials to a common depth utilizing etchant comprising C4F6 and C4F3. The recessed materials may be within isolation regions, and the recessing may be utilized to form trenches for receiving gatelines. Some embodiments include structures having an island of semiconductor material laterally surrounded by electrically insulative material. Two gatelines extend across the insulative material and across the island of semiconductor material. One of the gatelines is recessed deeper into the electrically insulative material than the other.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: May 24, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Larson Lindholm, Aaron R. Wilson, David K. Hwang
  • Patent number: 7943993
    Abstract: A trench-gate field effect transistor includes trenches extending into a silicon region of a first conductivity type, and a gate electrodes in each trench. Body regions of second conductivity type extend over the silicon region between adjacent trenches. Each body region forms a PN junction with the silicon region. A gate dielectric layer lines at least upper sidewalls of each trench, and insulates the gate electrode from the body region. Source regions of the first conductivity flank the trenches. A silicon-germanium region vertically extends through each source region and through a corresponding body region, and terminates within the corresponding body region before reaching the PN junction.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: May 17, 2011
    Assignee: Fairchild Semiconductor Corporation
    Inventors: James Pan, Qi Wang
  • Patent number: 7943992
    Abstract: Methods and associated structures of forming a microelectronic device are described. Those structures may comprise a transistor comprising a metal gate disposed on a gate dielectric that is disposed on a substrate, and a source/drain region disposed adjacent a channel region of the transistor. The source/drain region comprises a source/drain extension comprising a vertex point, wherein a top surface of the channel region is substantially planar with the vertex point.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: May 17, 2011
    Assignee: Intel Corporation
    Inventors: Bernhard Sell, Rishabh Mehandru
  • Patent number: 7936009
    Abstract: A shielded gate trench field effect transistor (FET) comprises trenches extending into a semiconductor region. A shield electrode is disposed in a bottom portion of each trench. The shield electrode is insulated from the semiconductor region by a shield dielectric. A gate electrode is disposed in each trench over the shield electrode, and an inter-electrode dielectric (IED) comprising a low-k dielectric extends between the shield electrode and the gate electrode.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: May 3, 2011
    Assignee: Fairchild Semiconductor Corporation
    Inventors: James Pan, James J. Murphy
  • Patent number: 7936008
    Abstract: An accumulation-mode field effect transistor includes a drift region of a first conductivity type, channel regions of the first conductivity type over and in contact with the drift region, and gate trenches having sidewalls abutting the channel regions. The gate trenches extend into and terminate within the drift region. The transistor further includes a first plurality of silicon regions of a second conductivity type forming P-N junctions with the channel regions along vertical walls of the first plurality of silicon regions. The first plurality of silicon regions extend into the drift region and form P-N junctions with the drift region along bottoms of the first plurality of silicon regions.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: May 3, 2011
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Praveen Muraleedharan Shenoy
  • Patent number: 7936010
    Abstract: A power semiconductor element having a lightly doped drift and buffer layer is disclosed. One embodiment has, underneath and between deep well regions of a first conductivity type, a lightly doped drift and buffer layer of a second conductivity type. The drift and buffer layer has a minimum vertical extension between a drain contact layer on the adjacent surface of a semiconductor substrate and the bottom of the deepest well region which is at least equal to a minimum lateral distance between the deep well regions. The vertical extension can also be determined such that a total amount of dopant per unit area in the drift and buffer layer is larger than a breakdown charge amount at breakdown voltage.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: May 3, 2011
    Assignee: Infineon Technologies Austria AG
    Inventors: Markus Zundel, Franz Hirler, Armin Willmeroth
  • Patent number: 7936011
    Abstract: This invention discloses a semiconductor power device that includes a plurality of power transistor cells surrounded by a trench opened in a semiconductor substrate. At least one of the cells constituting an active cell has a source region disposed next to a trenched gate electrically connecting to a gate pad and surrounding the cell. The trenched gate further has a bottom-shielding electrode filled with a gate material disposed below and insulated from the trenched gate. At least one of the cells constituting a source-contacting cell surrounded by the trench with a portion functioning as a source connecting trench is filled with the gate material for electrically connecting between the bottom-shielding electrode and a source metal disposed directly on top of the source connecting trench.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: May 3, 2011
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Anup Bhalla, Sik K Lui
  • Patent number: 7932555
    Abstract: A transistor structure includes a gate trench. The gate trench includes a bottle-shape bottom. The bottle-shape bottom includes a first conductive material wider than its top. The top includes a second material in a substrate, a gate structure on the gate trench and electrically connected to the first conductive material, a source/drain doping region adjacent to the gate trench and a gate channel between the source/drain doping region.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: April 26, 2011
    Assignee: Nanya Technology Corp.
    Inventors: Pei-Ing Lee, Shian-Jyh Lin
  • Patent number: 7932557
    Abstract: The invention provides an advanced metallization technique for fabricating a memory cell array on a substrate. The array is fabricated by forming discrete and self-aligned vias in a first layer disposed over the array to form contacts to each of the source and drain junction in the array. Further, self-aligned local area slotted vias are formed in a second layer that is disposed over the first layer to form local area interconnects that electrically shunt all of the source contacts/junctions. Further, discrete self-aligned drain extensions are formed over each of the formed drain contacts to electrically connect the junctions, and source contacts to the extensions. The formed vias, extensions, and slotted local area vias are simultaneously plugged and filled with a conductive material to form the memory cell array.
    Type: Grant
    Filed: June 15, 2006
    Date of Patent: April 26, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Paul J. Rudeck
  • Patent number: 7928505
    Abstract: The vertical trench MOSFET comprises: an N type epitaxial region formed on an upper surface of an N+ type substrate having a drain electrode on a lower surface thereof; a gate trench extending from a front surface into the N type epitaxial region; a gate electrode positioned in the gate trench so as to interpose an insulator; a channel region formed on the N type epitaxial region; a source region formed on the channel region; a source electrode formed on the source region; a source trench extending from the front surface into the N type epitaxial region; and a trench-buried source electrode positioned in the source trench so as to interpose an insulator, wherein the source electrode contacts with the trench-buried source electrode.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: April 19, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Takashi Hirao, Takayuki Hashimoto, Noboru Akiyama
  • Patent number: 7923774
    Abstract: A semiconductor device includes a drain, a body disposed over the drain, a source embedded in the body, a gate trench extending through the source and the body into the drain, a gate disposed in the gate trench, a source body contact trench extending through the source into the body, a conductive contact layer disposed along at least a portion of a source body contact trench sidewall and in contact with at least a portion of the source, and a trench filling material disposed in the source body contact trench and overlaying at least a portion of the conductive contact layer.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: April 12, 2011
    Assignee: Alpha & Omega Semiconductor Limited
    Inventors: Anup Bhalla, Sik Lui, Tiesheng Li
  • Patent number: 7923775
    Abstract: A semiconductor device includes a plurality of trench patterns formed over a substrate; gate insulation layers formed over sidewalls of the trench patterns; gate electrodes formed over the trench patterns; line patterns coupling the gate electrodes; and source and drain regions formed in upper and lower portions of the substrate adjacent to the sidewalls of the trench patterns.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: April 12, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventors: Kwang-Ok Kim, Hye-Ran Kang
  • Patent number: 7923776
    Abstract: A field effect transistor includes a body region of a first conductivity type in a semiconductor region of a second conductivity type. A gate trench extends through the body region and terminating within the semiconductor region. A source region of the second conductivity type extends in the body region adjacent the gate trench. The source region and an interface between the body region and the semiconductor region define a channel region therebetween which extends along the gate trench sidewall. A channel enhancement region of the second conductivity type is formed adjacent the gate trench. The channel enhancement region partially extends into a lower portion of the channel region to thereby reduce a resistance of the channel region.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: April 12, 2011
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Hamza Yilmaz, Daniel Calafut, Christopher Boguslaw Kocon, Steven P. Sapp, Dean E. Probst, Nathan L. Kraft, Thomas E. Grebs, Rodney S. Ridley, Gary M. Dolny, Bruce D. Marchant, Joseph A. Yedinak
  • Patent number: 7923333
    Abstract: A method for fabricating a semiconductor device includes forming a trench in a substrate, forming a gate electrode buried over the trench to form a buried gate pattern, etching portions of the substrate on both sides of the buried gate pattern to a certain depth, performing an ion implantation process on the substrate to form source/drain junctions, and forming metal patterns over the source/drain junctions.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: April 12, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Sang-Hyun Lee
  • Publication number: 20110073940
    Abstract: A method for fabricating a semiconductor device includes forming a first conductive layer doped with an impurity for forming a cell junction over a semiconductor substrate, forming a second conductive layer over the first conductive layer, forming a plurality of active regions by etching the second conductive layer and the first conductive layer, the plurality of the active regions being separated from one another by trenches, forming a side contact connected to a sidewall of the first conductive layer, and forming a plurality of metal bit lines each connected to the side contact and filling a portion of each trench.
    Type: Application
    Filed: December 30, 2009
    Publication date: March 31, 2011
    Inventors: Jin-Ku LEE, Young-Ho Lee, Mi-Ri Lee
  • Patent number: 7915672
    Abstract: In one embodiment, a structure for a semiconductor device having a trench shield electrode includes a control pad, control runners, shield runners, and a control/shield electrode contact structure. The structure is configured to use a single level of metal to connect the various components. In another embodiment, a shield runner is placed in an offset from center configuration.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: March 29, 2011
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventor: Prasad Venkatraman
  • Publication number: 20110068395
    Abstract: A semiconductor device includes a P-body layer formed in an N-epitaxial layer; a gate electrode formed in a trench in the P-body and N-epitaxial layer; a top source region formed from the P-body layer next to the gate electrode; a gate insulator disposed along a sidewall of the gate electrode between the gate electrode and the source, between the gate electrode and the P-body and between the gate electrode and the N-epitaxial layer; a cap insulator disposed on top of the gate electrode; and an N+ doped spacer disposed along a sidewall of the source and a sidewall of the gate insulator. The source includes N+ dopants diffused from the spacer. A body contact region containing P-type dopants is formed from the N-epitaxial layer. The contact region touches one or more P-doped regions of the P-body layer and the source. Methods for manufacturing such a device are also disclosed. Embodiments of this invention may also be applied to P-channel devices.
    Type: Application
    Filed: December 1, 2010
    Publication date: March 24, 2011
    Applicant: Alpha and Omega Semiconductor Incorporated
    Inventor: Francois Hebert
  • Publication number: 20110068394
    Abstract: A trench gate transistor whose gate changes the depth thereof intermittently in the gate width direction, has a first offset region and a second offset region formed below the source and drain, respectively. The sum of length measurements of the underlying portion of the second offset region measured from the lower corner of the trench in a direction parallel to the substrate and in a direction perpendicular to the substrate is 0.1 ?m or greater.
    Type: Application
    Filed: September 22, 2010
    Publication date: March 24, 2011
    Applicant: Renesas Electronics Corporation
    Inventors: Kazuhiko Sanada, Hiroshi Kawaguchi
  • Patent number: 7910990
    Abstract: In an insulated-gate type semiconductor device in which a gate-purpose conductive layer is embedded into a trench which is formed in a semiconductor substrate, and a source-purpose conductive layer is provided on a major surface of the semiconductor substrate, a portion of a gate pillar which is constituted by both the gate-purpose conductive layer and a cap insulating film for capping an upper surface of the gate-purpose conductive layer is projected from the major surface of the semiconductor substrate; a side wall spacer is provided on a side wall of the projected portion of the gate pillar; and the source-purpose conductive layer is connected to a contact region of the major surface of the semiconductor substrate, which is defined by the side wall spacer.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: March 22, 2011
    Assignees: Renesas Electronics Corporation, Hitachi Tobu Semiconductor, Ltd.
    Inventors: Hiroshi Inagawa, Nobuo Machida, Kentaro Oishi
  • Patent number: 7910987
    Abstract: A gate electrode <13> is provided to fill up a trench <300> while covering its opening. Assuming that WG represents the diameter (sectional width) of a head portion of the gate electrode <13> located upward beyond a P-type base layer <4> and an N+-type emitter diffusion layer <51>, WT represents the diameter (sectional width) of an inner wall of a linearly extending portion of the trench <300> and WC represents the distance between the boundary (the inner wall of the trench 300) between a gate oxide film <11> and the P-type base layer <4> and an end surface of the gate electrode <13> located upward beyond the trench <300> in a section of the trench <300>, relation of either WG?1.3·WT or WC?0.2 ?m holds between these dimensions.
    Type: Grant
    Filed: November 7, 2005
    Date of Patent: March 22, 2011
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Katsumi Nakamura
  • Patent number: 7906809
    Abstract: A semiconductor device with an elevated source/drain structure provided in each predetermined position defined by the oxide film and gate wiring on a semiconductor silicon substrate, where an orthographic projection image of a shape of an upper end portion of the elevated source/drain structure on the semiconductor silicon substrate along the direction normal to the semiconductor silicon substrate is substantially in agreement with a predetermined shape defined by the corresponding oxide film and gate wiring on the semiconductor silicon substrate, and at least one of orthographic projection images of cross-sections taken along planes parallel with the semiconductor silicon substrate of the elevated source/drain structure on the semiconductor silicon substrate along the direction normal to the semiconductor silicon substrate is larger than the predetermined shape defined by the corresponding oxide film and gate wiring on the semiconductor silicon substrate.
    Type: Grant
    Filed: November 17, 2008
    Date of Patent: March 15, 2011
    Assignee: Elpida Memory, Inc.
    Inventor: Fumiki Aiso
  • Patent number: 7898025
    Abstract: A semiconductor device having a recess gate includes a semiconductor substrate having a recess, a conductive pattern for a gate electrode filled into the recess, and having an extension portion protruding higher than a surface of the semiconductor substrate, an epitaxial semiconductor layer having a top surface disposed over the semiconductor substrate, and a gate insulating layer disposed between the epitaxial semiconductor layer and the conductive pattern, and between the semiconductor substrate and the conductive pattern. Further, a method of fabricating the same is disclosed.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: March 1, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Young-Kyun Jung
  • Patent number: 7893487
    Abstract: A recessed channel transistor includes a single crystalline silicon substrate having a recessed portion, a bottom surface of the recessed portion including an elevated central portion, a channel doping region in the single crystalline silicon substrate, the channel doping region being under the bottom surface of the recessed portion, a gate structure in the recessed portion, and source/drain regions in the single crystalline silicon substrate at both sides of the recessed portion, the source/drain regions being spaced apart from the bottom surface of the recessed portion.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: February 22, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Woo Lee, Tae-Young Chung, Joo-Young Lee
  • Patent number: 7893488
    Abstract: This invention discloses a semiconductor power device disposed on a semiconductor substrate includes a plurality of deep trenches with an epitaxial layer filling said deep trenches and a simultaneously grown top epitaxial layer covering areas above a top surface of said deep trenches over the semiconductor substrate. A plurality of trench MOSFET cells disposed in said top epitaxial layer with the top epitaxial layer functioning as the body region and the semiconductor substrate acting as the drain region whereby a super-junction effect is achieved through charge balance between the epitaxial layer in the deep trenches and regions in the semiconductor substrate laterally adjacent to the deep trenches. Each of the trench MOSFET cells further includes a trench gate and a gate-shielding dopant region disposed below and substantially aligned with each of the trench gates for each of the trench MOSFET cells for shielding the trench gate during a voltage breakdown.
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: February 22, 2011
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventor: François Hébert
  • Patent number: 7888732
    Abstract: An integrated circuit (200) includes one of more transistors (210) on or in a substrate (10) having semiconductor surface layer, the surface layer having a top surface. At least one of the transistors are drain extended metal-oxide-semiconductor (DEMOS) transistor (210). The DEMOS transistor includes a drift region (14) in the surface layer having a first dopant type, a field dielectric (23) in or on a portion of said surface layer, and a body region of a second dopant type (16) within the drift region (14). The body region (16) has a body wall extending from the top surface of the surface layer downwards along at least a portion of a dielectric wall of an adjacent field dielectric region. A gate dielectric (21) is on at least a portion of the body wall. An electrically conductive gate electrode (22) is on the gate dielectric (21) on the body wall.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: February 15, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Marie Denison, Taylor Rice Efland
  • Patent number: 7880225
    Abstract: A trench is formed so as to reach a p?-type epitaxial layer from an upper surface of a source region. A gate electrode is formed so as to bury the trench. Each of body contact trenches is formed away from the gate electrode. A body contact region is formed at the bottom of the body contact trench. An n-type semiconductor region that is a feature of the present invention is formed in a layer below each body contact region. The impurity concentration of the n-type semiconductor region is higher than a channel forming area and lower than the body contact region.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: February 1, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Hitoshi Matsuura, Yoshito Nakazawa
  • Publication number: 20110018058
    Abstract: A high-voltage transistor includes a drain, a source, and one or more drift regions extending from the drain toward the source. A field plate member laterally surrounds the drift regions and is insulated from the drift regions by a dielectric layer. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
    Type: Application
    Filed: August 26, 2010
    Publication date: January 27, 2011
    Applicant: Power Integrations, Inc.
    Inventor: Donald Ray Disney
  • Patent number: 7875927
    Abstract: In a semiconductor device, a memory region and a logic region are provided on one silicon substrate. A trench is provided in the silicon substrate in the memory region, a memory cell transistor is provided in the memory region and a logic transistor is provided in the logic region. The memory cell transistor includes a first gate electrode constituted by a metal material. The first gate electrode is provided to be buried in the trench and to protrude outside of the trench. The logic transistor includes a second gate electrode constituted by same material as the metal material constituting the first gate electrode.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: January 25, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Ken Inoue
  • Patent number: 7872307
    Abstract: A power metal-oxide-semiconductor field-effect transistor (MOSFET) array structure is provided. The power MOSFET array is disposed under a gate pad, and space under the gate pad can be well used to increase device integration. When the array and the conventional power MOSFET array disposed under the source pad are connected to an array pair by using circuit connection region, the same gate pad and source pad can be shared, so as to achieve an objective of increasing device integration.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: January 18, 2011
    Assignee: ProMOS Technologies Inc.
    Inventor: Ting-Shing Wang
  • Patent number: 7872303
    Abstract: At least one gate dielectric, a gate electrode, and a gate cap dielectric are formed over at least one channel region of at least one semiconductor fin. A gate spacer is formed on the sidewalls of the gate electrode, exposing end portions of the fin on both sides of the gate electrode. The exposed portions of the semiconductor fin are vertically and laterally etched, thereby reducing the height and width of the at least one semiconductor fin in the end portions. Exposed portions of the insulator layer may also be recessed. A lattice-mismatched semiconductor material is grown on the remaining end portions of the at least one semiconductor fin by selective epitaxy with epitaxial registry with the at least one semiconductor fin. The lattice-mismatched material applies longitudinal stress along the channel of the finFET formed on the at least one semiconductor fin.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: January 18, 2011
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Qiqing Christine Ouyang, Dae-Gyu Park, Xinhui Wang
  • Patent number: 7867845
    Abstract: A transistor gate forming method includes forming a metal layer within a line opening and forming a fill layer within the opening over the metal layer. The fill layer is substantially selectively etchable with respect to the metal layer. A transistor structure includes a line opening, a dielectric layer within the opening, a metal layer over the dielectric layer within the opening, and a fill layer over the metal layer within the opening. The metal layer/fill layer combination exhibits less intrinsic less than would otherwise exist if the fill layer were replaced by an increased thickness of the metal layer. The inventions apply at least to 3-D transistor structures.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: January 11, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Gordon A. Haller, Prashant Raghu, Ravi Iyer
  • Patent number: 7868381
    Abstract: In a trench-gated MIS device contact is made to the gate within the trench, thereby eliminating the need to have the gate material, typically polysilicon, extend outside of the trench. This avoids the problem of stress at the upper corners of the trench. Contact between the gate metal and the polysilicon is normally made in a gate metal region that is outside the active region of the device. Various configurations for making the contact between the gate metal and the polysilicon are described, including embodiments wherein the trench is widened in the area of contact. Since the polysilicon is etched back below the top surface of the silicon throughout the device, there is normally no need for a polysilicon mask, thereby saving fabrication costs.
    Type: Grant
    Filed: November 5, 2007
    Date of Patent: January 11, 2011
    Assignee: Vishay-Siliconix
    Inventors: Anup Bhalla, Domon Pitzer, Jacek Korec, Xiaorong Shi, Sik Lui
  • Patent number: 7863679
    Abstract: A vertical power MOSFET includes a semiconductor substrate including a trench, a gate electrode layer having a prescribed impurity concentration and being formed inside the trench, and a cap insulating layer having a lower impurity concentration than the impurity concentration of the gate electrode layer and covering the gate electrode layer to provide insulation.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: January 4, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Kei Takehara
  • Publication number: 20100327346
    Abstract: A semiconductor and a method for forming the same are disclosed. The method for forming the semiconductor device includes forming a buried gate on a semiconductor substrate including an active region, forming an insulating layer on the semiconductor substrate, selectively removing the insulating layer from at least an upper part of the active region, forming a bit line on an upper part between the buried gates formed on the active region, and forming a storage electrode contact that is formed at both sides of the bit line and has an extended lower part, so that prevents short circuiting between the storage electrode contact and the bit line, and improves contact resistance by enlarging a contact area between the storage electrode contact and the active region, so that unique characteristics of the semiconductor device are improved.
    Type: Application
    Filed: December 30, 2009
    Publication date: December 30, 2010
    Applicant: Hynix Semiconductor Inc.
    Inventors: Mun Mo JEONG, Dong Geun Lee
  • Patent number: 7859051
    Abstract: The application relates to a semiconductor device made of silicon with regionally reduced band gap and a process for the production of same. One embodiment provides a semiconductor device including a body zone, a drain zone and a source zone. A gate extends between the source zone and the drain zone. A reduced band gap region is provided in a region of the body zone, made of at least ternary compound semiconductor material.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: December 28, 2010
    Assignee: Infineon Technologies Austria AG
    Inventors: Ralf Siemieniec, Christian Foerster, Joachim Krumrey, Franz Hirler
  • Patent number: 7859042
    Abstract: Methods of fabricating a nonvolatile memory device include forming a trench mask pattern on a semiconductor substrate including a first region and a second region. Substrate trenches defining active regions are formed in the semiconductor substrate in the first region and the second region using the trench mask pattern as a mask. Device isolation layer patterns are formed on the semiconductor substrate including the trench mask pattern and substrate trenches. The device isolation patterns fill the substrate trenches in the first region and in the second region. First and second openings are formed exposing top surfaces of the corresponding active regions in the first and second regions by removing the trench mask pattern. The second opening has a greater width than the first opening. A first lower conductive pattern is formed in the first opening and has a bottom portion in a lower region of the first opening and an extended portion extending from the bottom portion to an upper region of the first opening.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: December 28, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Bong-Tae Park, Jeong-Hyuk Choi
  • Publication number: 20100320533
    Abstract: In an insulated-gate type semiconductor device in which a gate-purpose conductive layer is embedded into a trench which is formed in a semiconductor substrate, and a source-purpose conductive layer is provided on a major surface of the semiconductor substrate, a portion of a gate pillar which is constituted by both the gate-purpose conductive layer and a cap insulating film for capping an upper surface of the gate-purpose conductive layer is projected from the major surface of the semiconductor substrate; a side wall spacer is provided on a side wall of the projected portion of the gate pillar; and the source-purpose conductive layer is connected to a contact region of the major surface of the semiconductor substrate, which is defined by the side wall spacer.
    Type: Application
    Filed: August 25, 2010
    Publication date: December 23, 2010
    Applicants: Renesas Electronics Corporation, Hitachi Tobu Semiconductor, Ltd.
    Inventors: HIROSHI INAGAWA, Nobuo Machida, Kentaro Oishi