Gate Electrode Self-aligned With Groove Patents (Class 257/332)
  • Patent number: 7855413
    Abstract: A transistor and diode having a low resistance and a high breakdown voltage are provided. When the bottom portion of a narrow trench having the shape of a rectangular parallelepiped is filled with a semiconductor grown by epitaxial method, a {1 0 0} plane is exposed at the sidewalls of the narrow trench. The semiconductor is epitaxially grown at a constant rate on each sidewall of the narrow trench; thereby, creating a filling material with no voids present therein. The concentration and width of the filling material are optimized. This allows the portion located between the filling materials in a drain layer to be completely depleted when the filling material is completely depleted; thereby, making it possible to establish an electric field having a constant strength in the depletion layer extended in the drain layer.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: December 21, 2010
    Assignee: Shindengen Electric Manufacturing Co., Ltd.
    Inventors: Mizue Kitada, Kosuke Oshima, Toru Kurosaki, Shinji Kunori, Akihiko Sugai
  • Publication number: 20100314659
    Abstract: A semiconductor device includes a first semiconductor layer and a second semiconductor layer of opposite conductivity type, a first epitaxial layer of the first conductivity type formed on sidewalls of the trenches, and a second epitaxial layer of the second conductivity type formed on the first epitaxial layer where the second epitaxial layer is electrically connected to the second semiconductor layer. The first epitaxial layer and the second epitaxial layer form parallel doped regions along the sidewalls of the trenches, each having uniform doping concentration. The second epitaxial layer has a first thickness and a first doping concentration and the first epitaxial layer and a mesa of the first semiconductor layer together having a second thickness and a second average doping concentration where the first and second thicknesses and the first doping concentration and second average doping concentrations are selected to achieve charge balance in operation.
    Type: Application
    Filed: June 12, 2009
    Publication date: December 16, 2010
    Applicant: ALPHA & OMEGA SEMICONDUCTOR, INC.
    Inventors: Hamza Yilmaz, Xiaobin Wang, Anup Bhalla, John Chen, Hong Chang
  • Patent number: 7851854
    Abstract: A SiC semiconductor device includes: a substrate; a drift layer on the substrate; a trench on the drift layer; a base region in the drift layer sandwiching the trench; a channel between the base region and the trench; a source region in the base region sandwiching the trench via the channel; a gate electrode in the trench via a gate insulation film; a source electrode coupled with the source region; a drain electrode on the substrate opposite to the drift layer; and a bottom layer under the trench. An edge portion of the bottom layer under a corner of a bottom of the trench is deeper than a center portion of the bottom layer under a center portion of the bottom of the trench.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: December 14, 2010
    Assignee: DENSO CORPORATION
    Inventors: Eiichi Okuno, Naohiro Suzuki, Nobuyuki Kato
  • Patent number: 7851855
    Abstract: A semiconductor device includes a semiconductor substrate provided with an active region including a gate forming area, a source forming area and a drain forming area. A recess is formed in the gate forming area. A gate is formed over the gate forming area that is formed with the recess and includes an insulation layer formed at an upper end portion of a side wall of the recess that is in contact with the source forming area. A source area and a drain area are formed in the active region on opposite sides of the gate.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: December 14, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Sung Kil Chun
  • Patent number: 7847345
    Abstract: There is provided a structure wherein an emitter layer 3 is provided in the region A on the first major surface side of a semiconductor substrate 1, and emitter layer 3 is not provided in the region b. There is provided a structure wherein a collector P layer 5 is provided in the region A on the second major surface side of a semiconductor substrate 1, and a cathode N layer 4 is provided in the region B. Specifically, there is provided a structure wherein IGBTs are composed in the region A, and diodes are composed in the region B. By the above-described structure, ON characteristics when the gate is turned on can be improved while suppressing the elevation of the forward voltage Vf and the recovery current of the diodes.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: December 7, 2010
    Assignee: Mitsubishi Electric Corporation
    Inventor: Hideki Takahashi
  • Patent number: 7843020
    Abstract: A high withstand voltage transistor is capable of preventing its gate oxidized film from being damaged by a surge voltage/current, and includes: a gate electrode provided in a trench formed on a semiconductor substrate; a source and a drain which are respectively formed on a side of the gate electrode and another side of the gate electrode, and which are a predetermined distance away from the gate electrode; first electric field relaxation layers one of which is formed on a wall of the trench on the side of the source and another one of which is formed on a wall of the trench on the side of the drain; and second electric field relaxation layers one of which is formed between the source and the gate electrode, and another one of which is formed between the drain and the gate electrode.
    Type: Grant
    Filed: September 24, 2007
    Date of Patent: November 30, 2010
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Keiji Hayashi
  • Patent number: 7842572
    Abstract: A method of manufacturing a local recess channel transistor in a semiconductor device. A hard mask layer is formed on a semiconductor substrate that exposes a portion of the substrate. The exposed portion of the substrate is etched using the hard mask layer as an etch mask to form a recess trench. A trench spacer is formed on the substrate along a portion of sidewalls of the recess trench. The substrate along a lower portion of the recess trench is exposed after the trench spacer is formed. The exposed portion of the substrate along the lower portion of the recess trench is doped with a channel impurity to form a local channel impurity doped region surrounding the lower portion of the recess trench. A portion of the local channel impurity doped region surrounding the lower portion of the recess trench is doped with a Vth adjusting impurity to form a Vth adjusting impurity doped region inside the local channel impurity doped region. The width of the lower portion of the recess trench is expanded.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: November 30, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Se-myeong Jang, Yong-chul Oh, Makoto Yoshida
  • Patent number: 7843006
    Abstract: A semiconductor component arrangement includes a power transistor and a temperature measurement circuit. The power transistor includes a gate electrode, a source zone, a drain zone and a body zone. The body zone is arranged in a first semiconductor zone of a first conduction type. The temperature measuring circuit comprises a temperature-dependent resistor and an evaluation circuit coupled to the temperature-dependent resistor. The resistor is formed by a portion of said first semiconductor zone.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: November 30, 2010
    Assignee: Infineon Technologies AG
    Inventors: Rainald Sander, Markus Zundel
  • Patent number: 7843000
    Abstract: A semiconductor device having multiple fin heights is provided. Multiple fin heights are provided by using multiple masks to recess a dielectric layer within a trench formed in a substrate. In another embodiment, an implant mold or e-beam lithography are utilized to form a pattern of trenches in a photoresist material. Subsequent etching steps form corresponding trenches in the underlying substrate. In yet another embodiment, multiple masking layers are used to etch trenches of different heights separately. A dielectric region may be formed along the bottom of the trenches to isolate the fins by performing an ion implant and a subsequent anneal.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: November 30, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Chen-Nan Yeh, Yu-Rung Hsu
  • Patent number: 7843001
    Abstract: In an insulated-gate type semiconductor device in which a gate-purpose conductive layer is embedded into a trench which is formed in a semiconductor substrate, and a source-purpose conductive layer is provided on a major surface of the semiconductor substrate, a portion of a gate pillar which is constituted by both the gate-purpose conductive layer and a cap insulating film for capping an upper surface of the gate-purpose conductive layer is projected from the major surface of the semiconductor substrate; a side wall spacer is provided on a side wall of the projected portion of the gate pillar; and the source-purpose conductive layer is connected to a contact region of the major surface of the semiconductor substrate, which is defined by the side wall spacer.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: November 30, 2010
    Assignees: Renesas Electronics Corporation, Hitachi Tobu Semiconductor Ltd.
    Inventors: Hiroshi Inagawa, Nobuo Machida, Kentaro Oishi
  • Patent number: 7829946
    Abstract: A semiconductor device including a MOSFET has a plurality of transistor cell regions disposed on a semiconductor substrate and a Schottky cell region disposed between the plurality of transistor cell regions. Each transistor cell region has a plurality of first trenches disposed in a main surface of the semiconductor substrate, a well region between the plurality of first trenches, a first gate insulating film and a first gate electrode of the MOSFET in each first trench, and a source region of the MOSFET in each well region. The Schottky cell region has a plurality of second trenches disposed in the main surface of the semiconductor substrate, a second gate insulating film and a second gate electrode of the MOSFET in each second trench, gate lead-out wiring connected to each second gate electrode, and a plurality of guard ring regions enclosing the respective second trenches.
    Type: Grant
    Filed: March 14, 2009
    Date of Patent: November 9, 2010
    Assignee: Renesas Electronics Corporation
    Inventors: Nobuyuki Shirai, Nobuyoshi Matsuura, Yoshito Nakazawa
  • Patent number: 7825464
    Abstract: A semiconductor device and a method for manufacturing the same are disclosed. The disclosed semiconductor device includes a semiconductor substrate having a device isolation structure for delimiting an active region, the active region being recessed and grooves being defined in channel forming areas of the active region; gates formed in and over the grooves; gate spacers formed on both sidewalls of the gates over portions of the recessed active region which are positioned on both sides of the gates; an LDD region formed in the active region under the gate spacers; junction areas formed in the active region on both sides of the gates including the gate spacers; and landing plugs formed on the junction areas.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: November 2, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Gyu Seog Cho
  • Patent number: 7825465
    Abstract: A trench-gate field effect transistor includes trenches extending into a silicon region of a first conductivity type, and a gate electrodes in each trench. Body regions of second conductivity type extend over the silicon region between adjacent trenches. Each body region forms a first PN junction with the silicon region, and each body region includes a silicon-germanium layer of the second conductivity type laterally extending between adjacent trenches. Source regions of the first conductivity flank the trenches, and each source region forms a second PN junction with one of the body regions. Channel regions extend in the body regions along sidewalls of the trenches between the source regions and a bottom surface of the body regions. The silicon-germanium layers extend into corresponding channel regions to thereby reduce the channel resistance.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: November 2, 2010
    Assignee: Fairchild Semiconductor Corporation
    Inventors: James Pan, Qi Wang
  • Patent number: 7825463
    Abstract: A semiconductor device includes a silicon substrate; a device isolation structure formed in the silicon substrate to delimit an active region which has a pair of gate forming areas, a drain forming area between the gate forming areas, and source forming areas outside the gate forming areas; an asymmetric bulb-type recess gate formed in each gate forming area of the active region and having the shape of a bulb on the lower end portion of the sidewall thereof facing the source forming area; and source and drain areas respectively formed on the surface of the substrate on both sides of the asymmetric bulb-type recess gate.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: November 2, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Kyung Do Kim
  • Publication number: 20100270613
    Abstract: In a transistor region, a source interconnect layer and a gate electrode are buried in trenches. A source extending region is provided adjacent to the transistor region or in the transistor region, and a source interconnect layer is designed to protrude from the upper end of a trench. This source interconnect layer is connected to a source electrode formed in the transistor region immediately above the trench. A gate extending region is provided outside the source extending region, and the gate electrode and a gate interconnect layer are connected. The gate electrode is formed by performing etchback without forming a resist pattern, after a polysilicon film is formed. Here, the polysilicon film remains like a side-wall on the sidewall of the portion of the source interconnect layer protruding from the upper end of the trench.
    Type: Application
    Filed: April 20, 2010
    Publication date: October 28, 2010
    Applicant: NEC ELECTRONICS CORPORATION
    Inventor: Kei Takehara
  • Patent number: 7816720
    Abstract: A trench MOSFET structure having improved avalanche capability is disclosed, wherein the source region is formed by performing source Ion Implantation through contact open region of a thick contact interlayer, and further diffused to optimize a trade-off between Rds and the avalanche capability. Thus, only three masks are needed in fabrication process, which are trench mask, contact mask and metal mask. Furthermore, said source region has a doping concentration along channel region lower than along contact trench region, and source junction depth along channel region shallower than along contact trench, and source doping profile along surface of epitaxial layer has Gaussian-distribution from trenched source-body contact to channel region.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: October 19, 2010
    Assignee: Force Mos Technology Co., Ltd.
    Inventor: Fu-Yuan Hsieh
  • Patent number: 7816210
    Abstract: A method is disclosed for producing a trench transistor which has at least two trenches with in each case a field electrode arranged therein and a gate electrode arranged therein. In the method, it is provided to implement the trenches with different trench widths and then to produce the field electrodes by filling up the trenches with an electrode material and subsequent cutting back of the electrode material. The different trench width leads to different etching rates during the cutting back of the electrode material, and thus to field electrodes which are spaced apart from a top edge of the trenches by different amounts. Following this, the gate electrodes are produced which, due to the different dimensions of the field electrodes, extend into the trenches to a different depth, resulting in different gate capacitances for the gate electrodes in the two trenches.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: October 19, 2010
    Assignee: Infineon Technologies AG
    Inventors: Martin Poelzl, Franz Hirler
  • Patent number: 7808041
    Abstract: Some embodiments include methods of recessing multiple materials to a common depth utilizing etchant comprising C4F6 and C4F8. The recessed materials may be within isolation regions, and the recessing may be utilized to form trenches for receiving gatelines. Some embodiments include structures having an island of semiconductor material laterally surrounded by electrically insulative material. Two gatelines extend across the insulative material and across the island of semiconductor material. One of the gatelines is recessed deeper into the electrically insulative material than the other.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: October 5, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Larson Lindholm, Aaron R. Wilson, David K. Hwang
  • Patent number: 7800172
    Abstract: In a method of manufacturing a semiconductor device, a preliminary active pattern including gate layers and channel layers is formed on a substrate. The gate layers and the channel layers are alternatively stacked. A hard mask is formed on the preliminary active pattern. The preliminary active pattern is partially etched using the hard mask as an etching mask to expose a surface of the substrate. The etched preliminary active pattern is trimmed to form an active channel pattern having a width less than a lower width of the hard mask. Source/drain layers are formed on exposed side faces of the active channel pattern and the surface. The gate layers are selectively etched to form tunnels. A gate encloses the active channel pattern and filling the tunnels. Related intermediate structures are also disclosed.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: September 21, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-Young Lee, Sung-Min Kim, Dong-Gun Park, Chang-Woo Oh, Eun-Jung Yun
  • Patent number: 7795678
    Abstract: A semiconductor device includes a buried isolation pattern between an active pattern on which transistors are formed and a substrate. The active pattern has adjacent sections each extending longitudinally in a first direction. A field isolation pattern is interposed between the adjacent sections of the active pattern. The buried isolation pattern has sections spaced apart from each other in the first direction under each section of the active pattern. Each section of the buried isolation pattern extends from a lower portion of the field isolation pattern in a second direction perpendicular to the first direction. At least one gate structure is disposed on each section of the active pattern, and an impurity region is located adjacent to the gate structure at the upper surface of the active pattern. The impurity region is spaced from the buried isolation pattern in a third direction perpendicular to the first and second directions.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: September 14, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Man Park, Satoru Yanada, Sang-Yeon Han, Jun-Bum Lee, Si-Ok Sohn
  • Patent number: 7795670
    Abstract: The semiconductor device includes an active region, a recess channel region, a storage node junction region, a gate insulating film, and a gate electrode. The active region is defined by a device isolation structure formed in a semiconductor substrate, wherein a lower part of sidewalls of the active region is recessed. The recess channel is formed in the semiconductor substrate under the active region, wherein the recess channel has a vertical channel region and a horizontal channel region. The storage node junction region is formed over the device isolation structure and the semiconductor substrate. The gate insulating film is formed over the active region including the recess channel region. The gate electrode is formed over the gate insulating film to fill up the recess channel region.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: September 14, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Sang Don Lee, Jae Goan Jeong
  • Patent number: 7795090
    Abstract: A method of fabricating self-aligned recess utilizing asymmetric poly spacer is disclosed. A semiconductor substrate having thereon a first pad layer and second pad layer is provided. A plurality of trenches is embedded in a memory array region of the semiconductor substrate. Each of the trenches includes a trench top layer that extrudes from a main surface of the semiconductor substrate. Asymmetric poly spacer is formed on one side of the extruding trench top layer and is used, after oxidized, as a mask for forming a recess in close proximity to the trenches.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: September 14, 2010
    Assignee: Nanya Technology Corp.
    Inventors: Shian-Jyh Lin, Chien-Li Cheng, Pei-Ing Lee, Chung-Yuan Lee
  • Patent number: 7791135
    Abstract: An insulated gate silicon carbide semiconductor device is provided having small on-resistance in a structure obtained by combining the SIT and MOSFET structures having normally-off operation. The device includes an n? semiconductor layer on an SiC n+ substrate, a p-type base region and highly doped p-region both buried in the layer, a trench from the semiconductor layer surface to the p-base region, an n+ first source region in the surface of a p-type base region at the bottom of the trench, a p-type channel region in the surface of the sidewall of the trench, one end of which contacts the first source region, a gate electrode contacting the trench-side surface of the channel region via a gate insulating film, and a source electrode contacting the trench-side surface of the gate electrode via an interlayer insulating film and contacting the exposed first source region and p-base region at the bottom of the trench.
    Type: Grant
    Filed: January 29, 2008
    Date of Patent: September 7, 2010
    Assignee: Fuji Electric Systems Co., Ltd.
    Inventor: Katsunori Ueno
  • Patent number: 7781829
    Abstract: A semiconductor device having a recessed channel and a method for manufacturing the same. The semiconductor device comprises a semiconductor substrate formed with an isolation layer defining an active region including a channel region and a junction region, a recessed trench including a top trench formed within the channel region of the semiconductor substrate and a bottom trench formed from a bottom surface of the top trench with a width narrower than the top trench, and a gate stack overlapping the recessed trench and extending across the active region.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: August 24, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jin Yul Lee
  • Patent number: 7777273
    Abstract: A MOSFET having a recessed channel and a method of fabricating the same. The critical dimension (CD) of a recessed trench defining the recessed channel in a semiconductor substrate is greater than the CD of the gate electrode disposed on the semiconductor substrate. As a result, the misalignment margin for a photolithographic process used to form the gate electrodes can be increased, and both overlap capacitance and gate induced drain leakage (GIDL) can be reduced.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: August 17, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Ji-Young Kim
  • Patent number: 7772632
    Abstract: A memory array includes a plurality of memory cells formed on a semiconductor substrate. Individual of the memory cells include first and second field effect transistors respectively comprising a gate, a channel region, and a pair of source/drain regions. The gates of the first and second field effect transistors are hard wired together. A conductive data line is hard wired to two of the source/drain regions. A charge storage device is hard wired to at least one of the source/drain regions other than the two. Other aspects and implementations are contemplated, including methods of fabricating memory arrays.
    Type: Grant
    Filed: August 21, 2006
    Date of Patent: August 10, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Gordon A. Haller, Sanh D. Tang
  • Patent number: 7772642
    Abstract: A trench-gated field effect transistor (FET) is formed as follows. Using one mask, a plurality of active gate trenches and at least one gate runner trench are defined and simultaneously formed in a silicon region such that (i) the at least one gate runner trench has a width greater than a width of each of the plurality of active gate trenches, and (ii) the plurality of active gate trenches are contiguous with the at least one gate runner trench.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: August 10, 2010
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Bruce Douglas Marchant
  • Patent number: 7772641
    Abstract: A power semiconductor device includes: a semiconductor layer having a trench extending along a first direction in a stripe configuration; a gate electrode buried in the trench for controlling a current flowing in the semiconductor layer; and a gate plug made of a material having higher electrical conductivity than the gate electrode, the gate plug having the stripe configuration and being connected to the gate electrode along the first direction. The semiconductor layer includes: a first semiconductor layer of a first conductivity type; a second semiconductor layer of a second conductivity type provided partially in an upper face of the first semiconductor layer; a third semiconductor layer of the first conductivity type provided partially on the second semiconductor layer; and a fourth semiconductor layer of the second conductivity type provided on a lower face of the first semiconductor layer.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: August 10, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ichiro Omura, Yoko Sakiyama, Hideki Nozaki, Atsushi Murakoshi, Masanobu Tsuchitani, Koichi Sugiyama, Tsuneo Ogura, Masakazu Yamaguchi, Tatsuo Naijo
  • Patent number: 7767524
    Abstract: A method of forming a charge balance MOSFET includes the following steps. A substrate with an overlying epitaxial layer both of a first conductivity type, are provided. A gate trench extending through the epitaxial layer and terminating within the substrate is formed. A shield dielectric lining sidewalls and bottom surface of the gate trench is formed. A shield electrode is formed in the gate trench. A gate dielectric layer is formed along upper sidewalls of the gate trench. A gate electrode is formed in the gate trench such that the gate electrode extends over but is insulated from the shield electrode. A deep dimple extending through the epitaxial layer and terminating within the substrate is formed such that the deep dimple is laterally spaced from the gate trench. The deep dimple is filled with silicon material of the second conductivity type.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: August 3, 2010
    Assignee: Fairchild Semiconductor Corporatiion
    Inventors: Hamza Yilmaz, Daniel Calafut, Steven Sapp, Nathan Kraft, Ashok Challa
  • Patent number: 7768065
    Abstract: A semiconductor device includes a gate electrode GE electrically connected to a gate portion which is made of a polysilicon film provided in the inside of a plurality of grooves formed in a striped form along the direction of T of a chip region CA wherein the gate electrode GE is formed as a film at the same layer level as a source electrode SE electrically connected to a source region formed between adjacent stripe-shaped grooves and the gate electrode GE is constituted of a gate electrode portion G1 formed along a periphery of the chip region CA and a gate finger portion G2 arranged so that the chip region CA is divided into halves along the direction of X. The source electrode SE is constituted of an upper portion and a lower portion, both relative to the gate finger portion G2, and the gate electrode GE and the source electrode SE are connected to a lead frame via a bump electrode.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: August 3, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Nobuyuki Shirai, Nobuyoshi Matsuura
  • Patent number: 7763924
    Abstract: A dynamic random access memory structure includes a recessed-gate transistor disposed in the substrate; a trench capacitor structure disposed in the substrate and electrically connected to a first source/drain of the recessed-gate transistor; a first conductive structure disposed on and contacting the trench capacitor structure; a stack capacitor structure disposed on and contacting the first conductive structure, wherein a bottom electrode of the trench capacitor structure and a top electrode of the stack capacitor structure are electrically connected to serve as a common electrode; and a bit line disposed above a second source/drain of the recessed-gate transistor and electrically connected to the second source/drain, wherein the top of the bit line is lower than the top of the gate conductive layer of the recessed-gate transistor.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: July 27, 2010
    Assignee: Nanya Technology Corp.
    Inventor: Wen-Kuei Huang
  • Patent number: 7750396
    Abstract: A semiconductor device includes: a semiconductor substrate; a source region and a drain region formed in the upper part of the semiconductor substrate so as to be spaced; a channel region formed in a part of the semiconductor substrate between the source region and the drain region; a first dielectric film formed on the channel region of the semiconductor substrate; a second dielectric film formed on the first dielectric film and having a higher permittivity than the first dielectric film; a third dielectric film formed on at least an end surface of the second dielectric film near the drain region out of end surfaces of the second dielectric film near the source and drain regions; and a gate electrode formed on the second dielectric film and the third dielectric film.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: July 6, 2010
    Assignee: Panasonic Corporation
    Inventor: Yoshinori Takami
  • Publication number: 20100163977
    Abstract: A method for fabricating a semiconductor device includes forming a trench in a substrate, forming a gate electrode buried over the trench to form a buried gate pattern, etching portions of the substrate on both sides of the buried gate pattern to a certain depth, performing an ion implantation process on the substrate to form source/drain junctions, and forming metal patterns over the source/drain junctions.
    Type: Application
    Filed: May 28, 2009
    Publication date: July 1, 2010
    Inventor: Sang-Hyun Lee
  • Patent number: 7745878
    Abstract: This invention discloses a semiconductor power device that includes a plurality of power transistor cells surrounded by a trench opened in a semiconductor substrate. At least one active cell further includes a trenched source contact opened between the trenches wherein the trenched source contact opened through a source region into a body region for electrically connecting the source region to a source metal disposed on top of an insulation layer wherein a trench bottom surface of the trenched source contact further covered with a conductive material to function as an integrated Schottky barrier diode in said active cell. A shielding structure is disposed at the bottom and insulated from the trenched gate to provide shielding effect for both the trenched gate and the Schottky diode.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: June 29, 2010
    Assignee: Alpha & Omega Semiconductor, Ltd
    Inventors: Anup Bhalla, Sik K Lui
  • Patent number: 7741676
    Abstract: A semiconductor apparatus includes a cell section including at least two transistors. A layer interval insulation coat is formed at least overlying the gate electrode use polysilicon and the gate contact use polysilicon. A source electrode metal coat is formed overlying the semiconductor substrate and insulated from the gate electrode use polysilicon and the gate contact use polysilicon, and is electrically connected to the body diffusion layer and the source diffusion layer. A gate use connection hole is formed on the layer interval insulation coat overlying the gate contact use polysilicon. The gate use connection hole has a width larger than that of the trench. A gate electrode metal coat is formed on the gate use connection hole and the layer interval insulation coat. The polysilicon coat is formed at the same level or lower than the surface of the semiconductor substrate.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: June 22, 2010
    Assignee: Ricoh Company, Ltd.
    Inventor: Yasunori Hashimoto
  • Patent number: 7741675
    Abstract: A semiconductor component has a semiconductor body in which a trench structure is provided. An electrode structure embedded in the trench structure is at least partly insulated from its surroundings by an insulation structure, and is contact-connected in a contact-connecting region via a contact hole that penetrates through an upper region of the insulation structure. The semiconductor component has at least two trenches running next to one another, at least one of said trenches containing a part of the electrode structure. The trenches are oriented so that at least the regions of the insulation structure which are provided in the upper region of the trenches overlap one another in an overlap region. The contact hole is arranged above the at least two trenches in such a way that at least parts of the overlap region and at least one of the electrode structure parts are contact-connected via the contact hole.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: June 22, 2010
    Assignee: Infineon Technologies Austria AG
    Inventor: Franz Hirler
  • Patent number: 7736979
    Abstract: A nanotube field effect transistor and a method of fabrication are disclosed. The method includes electrophoretic deposition of a nanotube to contact a region of a conductive layer defined by an aperture. Embodiments of the present disclosure provide a method of depositing nanotubes in a region defined by an aperture, with control over the number of nanotubes to be deposited, as well as the pattern and spacing of nanotubes. For example, electrophoretic deposition, along with proper configuration of the aperture, allows at least one nanotube to be deposited in a target region with nanometer scale precision. Pre-sorting of nanotubes, e.g., according to their geometries or other properties, may be used in conjunction with embodiments of the present disclosure to facilitate fabrication of devices with specific performance requirements.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: June 15, 2010
    Assignee: New Jersey Institute of Technology
    Inventors: Reginald Conway Farrow, Amit Goyal
  • Patent number: 7732848
    Abstract: A semiconductor device is disclosed that improves heat dissipation by providing blind contact elements on a dielectric layer. Embodiments are disclosed which include a substrate having at least one electrode contact area accessible at a surface of the substrate and a surface adjacent the electrode contact area, a dielectric layer disposed above the surface; an intermediate oxide layer disposed above the dielectric layer, a current conducting metallization layer disposed above the intermediate oxide layer; and at least one contact element vertically extending from the dielectric layer through the intermediate oxide layer to the metallization layer above the surface adjacent the electrode contact area, the at least one contact element having a heat conductivity that is higher than that of the intermediate oxide layer.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: June 8, 2010
    Assignee: Infineon Technologies AG
    Inventor: Matthias Stecher
  • Patent number: 7732876
    Abstract: A power transistor includes a first semiconductor region of a first conductivity type extending over and in contact with a second semiconductor region of the first conductivity type. Gate trenches extend into the first semiconductor region. Well regions of a second conductivity type extend over the first semiconductor region and between adjacent gate trenches. A sinker trench extends through the first semiconductor region and terminates within the second semiconductor region, and is laterally spaced from an outer one of the gate trenches with no well regions abutting sidewalls of the sinker trench. Source regions of the first conductivity type extend over the well regions. A conductive material in the sinker trench makes electrical contact with the second semiconductor region along the bottom of the sinker trench and with a drain interconnect layer extending along the top of the sinker trench.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: June 8, 2010
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Thomas E. Grebs, Gary M. Dolny
  • Patent number: 7728385
    Abstract: A device structure is disclosed for preventing gate oxide damage of a trench MOSFET during wafer processing while adding an ESD protection module atop the trench MOSFET. The ESD protection module has a low temperature oxide (LTO) bottom layer whose patterning process was found to cause the gate oxide damage before. The present invention structure includes a semiconductor substrate having an active area and a termination area; numerous trench MOSFET cells disposed in the active area; numerous electrostatic discharge (ESD) diodes disposed above the semiconductor substrate in the termination area; and an insulation layer comprising Oxide/Nitride/Oxide (ONO) sandwiched between the ESD diodes and the semiconductor substrate. In one embodiment, the active area does not contain the ONO insulation layer.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: June 1, 2010
    Assignee: Alpha & Omega Semiconductor, Ltd.
    Inventors: Mengyu Pan, Zengyi He, Kaiyu Chen
  • Publication number: 20100117149
    Abstract: The semiconductor device having a recess channel transistor includes a device isolation structure formed in a semiconductor substrate to define an active region having a recess region at a lower part of sidewalls thereof and a recess channel region formed in the semiconductor substrate under the active region. A method for fabricating the semiconductor device includes forming a device isolation structure in a semiconductor substrate to form an active region having a recess region at a lower part of sidewalls thereof, a gate insulating film formed over the semiconductor substrate including the recess channel region, and a gate electrode formed over the gate insulating film to fill up the recess channel region.
    Type: Application
    Filed: November 9, 2009
    Publication date: May 13, 2010
    Applicant: Hynix Semiconductor Inc.
    Inventors: Sung Woong Chung, Sang Don Lee
  • Patent number: 7714383
    Abstract: A semiconductor device includes: a semiconductor layer, a first semiconductor region provided on a major surface of the semiconductor layer, a second semiconductor region provided in a surface portion of the first semiconductor region, a trench extending through the second semiconductor region and the first semiconductor region to the semiconductor layer, a first insulating film provided on an inner wall of the trench, a third semiconductor region filling the trench below an interface between the semiconductor layer and the first semiconductor region, a second insulating film provided on the third semiconductor region, a gate electrode filling the trench above the second insulating film. A portion of the first insulating film in contact with the semiconductor layer is opened. The semiconductor layer is in contact with the third semiconductor region through the opened portion.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: May 11, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Keiko Kawamura, Kenji Maeyama
  • Patent number: 7700998
    Abstract: A type semiconductor device includes: a first semiconductor layer of a first conductivity type; a second semiconductor layer of a second conductivity type; a third semiconductor layer of the first conductivity type; a plurality of gate electrodes which are formed in gate trenches via gate insulating films, the gate trenches being formed through the second semiconductor layer and the third semiconductor layer; a plurality of impurity regions of the second conductivity type which are formed at regions below bottoms of contact trenches, the contact trenches being formed at the third semiconductor layer in a thickness direction thereof between corresponding ones of the gate trenches and longitudinal cross sections of the contact trenches being shaped in ellipse, respectively; first electrodes which are formed so as to embed the contact trenches and contacted with the impurity regions, respectively; and a second electrode formed on a rear surface of the semiconductor substrate.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: April 20, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideki Okumura, Takayoshi Nogami, Hiroto Misawa
  • Patent number: 7701002
    Abstract: A semiconductor device includes an isolation layer disposed in a semiconductor device to define an active region. A gate trench is disposed across the active region and extends to the isolation layer. An insulated gate electrode fills a portion of the gate trench and covers at least one sidewall of the active region. A portion of the gate electrode, that covers at least one sidewall of the active region, extends under a portion of the gate electrode that crosses the active region. An insulating pattern is disposed on the gate electrode.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: April 20, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyeong-Won Seo, Jae-Man Yoon, Kang-Yoon Lee, Young-Woong Son
  • Patent number: 7701003
    Abstract: A semiconductor substrate has a trench in a first main surface. An insulated gate field effect part includes a gate electrode formed in the first main surface. A potential fixing electrode fills the trench and has an expanding part expanding on the first main surface so that a width thereof is larger than the width of the trench. An emitter electrode is formed on the first main surface and insulated from the gate electrode electrically and connected to a whole upper surface of the expanding part of the potential fixing electrode. Thus, a semiconductor device capable of enhancing reliability in order to prevent an aluminum spike from generating and a manufacturing method thereof can be provided.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: April 20, 2010
    Assignee: Mitsubishi Electric Corporation
    Inventors: Tadaharu Minato, Kazutoyo Takano
  • Patent number: 7696570
    Abstract: According to some embodiments of the invention, transistors of a semiconductor device have a channel region in a channel-portion hole. Methods include forming embodiments of the transistor having a channel-portion hole disposed in a semiconductor substrate. A channel-portion trench pad and a channel-portion layer are sequentially formed at a lower portion of the channel-portion hole. A word line insulating layer pattern and a word line pattern are sequentially stacked on the channel-portion layer and fill the channel-portion hole, disposed on the semiconductor substrate. The channel-portion layer is formed to contact the semiconductor substrate through a portion of sidewall of the channel-portion hole, and forms a channel region under the word line pattern. Punchthrough is prevented between electrode impurity regions corresponding to source and drain regions.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: April 13, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyeoung-Won Seo, Du-Heon Song, Sang-Hyun Lee
  • Patent number: 7696569
    Abstract: A semiconductor device includes a trench provided in a semiconductor substrate, a gate electrode formed in the trench through a gate dielectric film, and a diffusion layer formed in the vicinity of the trench. The trench includes an opening portion provided in a surface of the semiconductor substrate, a recess curved surface portion including a cross-sectional contour having a substantially circular arc shape, and a connection curved surface portion connecting the recess curved surface portion and the opening portion. The connection curved surface portion includes a continuous curved surface between the opening portion and the recess curved surface portion.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: April 13, 2010
    Assignee: Elpida Memory, Inc.
    Inventors: Hiroyuki Fujimoto, Yasuhiko Ueda
  • Patent number: 7687866
    Abstract: A semiconductor device includes a semiconductor layer formed partially on a semiconductor substrate by epitaxial growth, an embedded oxide film embedded between the semiconductor substrate and the semiconductor layer, first and second gate electrodes disposed on sidewalls of the semiconductor layer, a source layer formed in the semiconductor layer and disposed in the first gate electrode, and a drain layer formed in the semiconductor layer and disposed in the second gate electrode, wherein the sidewalls of the semiconductor layer are film-forming surfaces of the epitaxial growth.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: March 30, 2010
    Assignee: Seiko Epson Corporation
    Inventor: Juri Kato
  • Patent number: 7679136
    Abstract: The on-resistance of a semiconductor device having a power transistor with a trench gate structure is reduced. A power MIS-FET with a trench gate structure is so formed that the relation expressed as 0?b?a holds, where a is the distance between an end of an interlayer insulating layer over the upper face of a semiconductor region for source and the end (position on the periphery of a trench) of the upper face of the semiconductor region for source farther from the gate electrode; and b is the length of the overlap between the interlayer insulating layer and the upper face of the semiconductor region for source. (b is the distance between the position of the end of the interlayer insulating layer over the upper face of the semiconductor region for source and position on the periphery of a trench). As a result, the area of contact between source pads and the semiconductor regions for source is increased, and further the distance between the source pads and a channel forming region can be shortened.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: March 16, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Tsuyoshi Kachi, Yoshinori Hoshino
  • Patent number: 7679137
    Abstract: A method of fabricating self-aligned gate trench utilizing TTO poly spacer is disclosed. A semiconductor substrate having thereon a pad oxide layer and pad nitride layer is provided. A plurality of trench capacitors are embedded in a memory array region of the semiconductor substrate. Each of the trench capacitors has a trench top oxide (TTO) that extrudes from a main surface of the semiconductor substrate. Poly spacers are formed on two opposite sides of the extruding TTO and are used, after oxidized, as an etching hard mask for etching a recessed gate trench in close proximity to the trench capacitor.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: March 16, 2010
    Assignee: Nanya Technology Corp.
    Inventors: Pei-Ing Lee, Chien-Li Cheng, Shian-Jyh Lin