Protection Device Includes Insulated Gate Transistor Structure (e.g., Combined With Resistor Element) Patents (Class 257/360)
  • Patent number: 7855419
    Abstract: An improved layout pattern for electrostatic discharge protection is disclosed. A first heavily doped region of a first type is formed in a well of said first type. A second heavily doped region of a second type is formed in a well of said second type. A battlement layout pattern of said first heavily doped region is formed along the boundary of said first heavily doped region and said second heavily doped region. A battlement layout pattern of said second heavily doped region is formed along the boundary of said first heavily doped region and said second heavily doped region. By adjusting a distance between the battlement layout pattern of a heavily doped region and a edge of well of said second type, i.e. n-well, a first distance will be shorter than what is typically required by the layout rules of internal circuit; and a second distance will be longer than the first distance to ensure that the I/O device have a better ESD protection capability.
    Type: Grant
    Filed: June 15, 2006
    Date of Patent: December 21, 2010
    Assignee: Himax Technologies Limited
    Inventor: Tung-Yang Chen
  • Patent number: 7847287
    Abstract: An inverter, a logic circuit including the inverter and method of fabricating the same are provided. The inverter includes a load transistor of a depletion mode, and a driving transistor of an enhancement mode, which is connected to the load transistor. The load transistor may have a first oxide layer as a first channel layer. The driving transistor may have a second oxide layer as a second channel layer.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: December 7, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-wook Kim, Young-soo Park, Jae-chul Park
  • Publication number: 20100301418
    Abstract: Disclosed is an electrostatic discharge protection device that overcomes problems of an LVTNR device by serially connecting a diode to the LVTNR device and coupling a gate of a MOSFET structure thereto. The electrostatic discharge protection device of the present invention includes a diode comprising N well/P+ diffusion regions; a resistor connected in parallel to the diode; a MOS transistor having a drain connected to the diode and the resistor and constituting a cathode along with a source and a gate; and at least one diode connected in series to the cathode.
    Type: Application
    Filed: May 26, 2010
    Publication date: December 2, 2010
    Inventor: Kil Ho Kim
  • Patent number: 7842970
    Abstract: An electrostatic discharge (ESD) protective device structure is disclosed. The ESD protection device includes: at least a first conductive type metal-oxide semiconductor (MOS), in which the drain and source of the first conductive type MOS are electrically connected to a first power terminal and a second power terminal separately; at least a second conductive type diffusion region; and at least a dummy gate disposed between the first conductive type MOS and the second conductive type diffusion region, wherein the gate length of the dummy gate is less than the gate length of the first conductive type MOS gate, such that the junction between the second conductive type diffusion region and the drain of the first conductive type MOS have a low breakdown voltage.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: November 30, 2010
    Assignee: United Microelectronics Corp.
    Inventor: Ching-Hung Kao
  • Patent number: 7838965
    Abstract: The integrated capacitor structure comprises a first branch with a first capacitor (60) and a second branch with a second capacitor (70). The second capacitor (70) has a higher capacitance density and a lower breakdown voltage than the first capacitor (60). The first branch has a shorter RC time constant than the second branch, such that a voltage peak will substantially follow the first branch. This first capacitor (60) has a sufficient capacity to store the charge of the voltage peak. In one embodiment, the second capacitor (70) is a stacked capacitor. The structure is suitable for ESD-protection and may, to this end, additionally comprise diodes (21) and resistors (22).
    Type: Grant
    Filed: February 27, 2006
    Date of Patent: November 23, 2010
    Assignee: NXP B.V.
    Inventors: Mareike Klee, Rainer Kiewitt, Ulrich Schiebel, Hans-Wolfgang Brand, Ruediger Mauczok
  • Patent number: 7838937
    Abstract: Circuits including a laterally diffused output driver transistor and a distinct device configured to provide electrostatic discharge (ESD) protection for the laterally diffused output driver transistor are presented. In general, the device configured to provide ESD protection includes a drain extended metal oxide semiconductor transistor (DEMOS) transistor configured to breakdown at a lower voltage than a breakdown voltage of the laterally diffused output driver transistor. The laterally diffused output driver transistor may be a pull-down or a pull-up output driver transistor. The device also includes a silicon controlled rectifier (SCR) configured to inject charge within a semiconductor layer of the circuit upon breakdown of the DEMOS transistor. Moreover, the device includes a region configured to collect the charge injected from the SCR and further includes an ohmic contact region configured to at least partially affect the holding voltage of the SCR.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: November 23, 2010
    Assignee: Cypress Semiconductor Corporation
    Inventors: Andrew J. Walker, Helmut Puchner, Harold M. Kutz, James H. Shutt
  • Patent number: 7838941
    Abstract: Disclosed is an electrostatic discharge protection device that has a low trigger voltage and protects an internal circuit from electrostatic discharge. The ESD protection device includes an NMOS transistor in which a first pad and a drain are connected to each other and a second pad and a source are connected to each other. A capacitor in which an end is connected to the first pad and the other end is connected to a gate of the NMOS transistor and a substrate contact of the NMOS transistor. The ESD protection devices also includes a resistor in which an end is connected to the second pad and the other end is connected to the capacitor. The first pad may be a power pad and the second pad may be a ground pad. Alternately, the first pad may be an input/output pad and the second pad may be a ground pad.
    Type: Grant
    Filed: December 24, 2007
    Date of Patent: November 23, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Kook Whee Kwak
  • Patent number: 7834401
    Abstract: The semiconductor device includes: memory cells each having a first multilayer electrode including a first lower electrode made of a first conductive film and a first upper electrode made of a second conductive film formed one on the other with a first interface film therebetween; and a diode having a diode electrode made of the second conductive film and a second interface film as a silicon oxide film formed at the interface between the diode electrode and a substrate. The first interface film has a thickness with which electrical connection between the lower electrode and the upper electrode is maintained, and the second interface film has a thickness with which epitaxial growth between the substrate and the diode electrode is inhibited.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: November 16, 2010
    Assignee: Panasonic Corporation
    Inventor: Nobuyoshi Takahashi
  • Patent number: 7825475
    Abstract: An input/output (I/O) mixed-voltage drive circuit and electrostatic discharge protection device for coupling to an I/O pad. The device includes an NFET device having a gate, a drain, a source and body, the gate adapted for coupling to a pre-drive circuit, the source and the body being coupled to one another and to ground. The device also includes a bipolar junction transistor having a collector, an emitter and a base, the emitter being coupled to the drain of the NFET and the collector being coupled to the I/O pad.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: November 2, 2010
    Assignees: International Business Machines Corporation, Samsung Electronics Co., Ltd., Infineon Technologies AG
    Inventors: Kiran V. Chatty, David Alvarez, Bong Jae Kwon, Christian C. Russ
  • Patent number: 7821070
    Abstract: Trig modulation electrostatic discharge (ESD) protection devices are presented. An ESD protection device includes a semiconductor substrate. A high voltage N-well (HVNW) region is formed in the semiconductor substrate. An NDD region, a first P-body region and a second P-body region are formed in the HVNW region, wherein the first P-body region is separated from the second P-body region with a predetermined distance, and wherein the NDD region is isolated from the first P-body region with an isolation region. An N+ doped source region is disposed in the NDD region. An N+ doped region is disposed in the first P-body region. A P+ doped region is disposed in the second P-body region. A first gate is disposed between the N+ doped region and the isolation region, and a second gate is disposed between the N+ doped region and the P+ doped region.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: October 26, 2010
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Yeh-Ning Jou, Hwa-Chyi Chiou
  • Publication number: 20100265622
    Abstract: A robust ESD protection circuit, method and design structure for tolerant and failsafe designs are disclosed. A circuit includes a middle junction control circuit that turns off a top NFET of a stacked NFET electrostatic discharge (ESD) protection circuit during an ESD event.
    Type: Application
    Filed: April 15, 2009
    Publication date: October 21, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John B. CAMPI, JR., Shunhua T. CHANG, Kiran V. CHATTY, Robert J. GAUTHIER, JR., Junjun LI, Mujahid MUHAMMAD
  • Patent number: 7816761
    Abstract: A semiconductor device having a semiconductor substrate, an insulating layer, a fuse, a diffusion layer and a resistor. The semiconductor substrate has a first conductivity type. The insulating layer is selectively formed on the surface of the semiconductor substrate. The fuse is formed on the insulating layer. The diffusion layer has a second conductivity type. The diffusion layer is formed on the surface of the semiconductor substrate and electrically connected to the fuse. The first resistor is electrically connected to the fuse.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: October 19, 2010
    Assignee: Oki Semiconductor Co., Ltd.
    Inventors: Noboru Egawa, Yasuhiro Fukuda
  • Patent number: 7807528
    Abstract: An electrostatic discharge (ESD) transistor structure includes a self-aligned outrigger less than 0.4 microns from a gate electrode that is 50 microns wide. The outrigger is fabricated on ordinary logic transistors of an integrated circuit without severely affecting the performance of the transistors. The outrigger is used as an implant blocking structure to form first and second drain regions on either side of a lightly doped region that underlies the outrigger. The self-aligned outrigger and the lightly doped region beneath it are used to move the location of avalanche breakdown upon an ESD event away from the channel region. Durability is extended when fewer “hot carrier” electrons accumulate in the gate oxide. A current of at least 100 milliamperes can flow into the drain and then through the ESD transistor structure for a period of more than 30 seconds without causing a catastrophic failure of the ESD transistor structure.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: October 5, 2010
    Assignee: ZiLOG, Inc.
    Inventors: John A. Ransom, Brett D. Lowe, Michael J. Westphal
  • Patent number: 7808047
    Abstract: A trigger circuit is provided for a pull-down device by connecting a diode between the I/O pad and the body of the pull-down device. In one embodiment, the pull-down device is formed as a plurality of discrete transistors in a single well. The drain of each transistor is connected through a ballast resistor to the I/O pad; and the source of each transistor is connected through a ballast resistor to ground. The trigger circuit is a diode formed in a different well from that of the transistors. The cathode of the diode is connected to the I/O pad and the anode is connected to the transistor well through a center tap located between the transistors. Preferably, the transistors are NMOS transistors formed in a P-well. Advantageously, the diode is an N+/PLDD diode. Alternatively, the diode is an N+/P diode where the P region is formed by an ESD implant. In other embodiments the diode is formed in the same well as the transistors.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: October 5, 2010
    Assignee: Altera Corporation
    Inventors: Antonio Gallerano, Cheng-Hsiung Huang, Chih-Ching Shih, Jeffrey T. Watt
  • Publication number: 20100244137
    Abstract: A semiconductor device which, in spite of the existence of a dummy active region, eliminates the need for a larger chip area and improves the surface flatness of the semiconductor substrate. In the process of manufacturing it, a thick gate insulating film for a high voltage MISFET is formed over an n-type buried layer as an active region and a resistance element IR of an internal circuit is formed over the gate insulating film. Since the thick gate insulating film lies between the n-type buried layer and the resistance element IR, the coupling capacitance produced between the substrate (n-type buried layer) and the resistance element IR is reduced.
    Type: Application
    Filed: June 10, 2010
    Publication date: September 30, 2010
    Inventors: Keiichi YOSHIZUMI, Kazuhisa Higuchi, Takayuki Nakaji, Masami Koketsu, Hideki Yasuoka
  • Patent number: 7804135
    Abstract: An integrated semiconductor diode arrangement is provided. The arrangement includes an anode region and a cathode region that are formed in a semiconductor material region. The anode region has an arrangement of alternately occurring and directly adjacent first and second anode zones, which alternate in their conductivity type. The anode region furthermore has a first particular anode zone of the second conductivity type, the lateral extent of which is comparatively larger than that of the further anode zones of the same conductivity type.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: September 28, 2010
    Assignee: Infineon Technologies AG
    Inventors: Nils Jensen, Andreas Meiser
  • Patent number: 7804151
    Abstract: Disclosed are embodiments of a semiconductor structure, a design structure for the semiconductor structure and a method of forming the semiconductor structure. The embodiments reduce harmonics and improve isolation between the active semiconductor layer and the substrate of a semiconductor-on-insulator (SOI) wafer. Specifically, the embodiments incorporate a trench isolation region extending to a fully or partially amorphized region of the wafer substrate. The trench isolation region is positioned outside lateral boundaries of at least one integrated circuit device located at or above the active semiconductor layer of the SOI wafer and, thereby improves isolation. The fully or partially amorphized region of the substrate reduces substrate mobility, which reduces the charge layer at the substrate/BOX interface and, thereby reduces harmonics. Optionally, the embodiments can incorporate an air gap between the wafer substrate and integrated circuit device(s) in order to further improve isolation.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: September 28, 2010
    Assignee: International Business Machines Corporation
    Inventors: Brennan J. Brown, James R. Elliott, Alvin J. Joseph, Edward J. Nowak
  • Patent number: 7800180
    Abstract: A semiconductor device is disclosed. The semiconductor device includes an internal circuit having a high breakdown voltage transistor, and a first electrostatic protection circuit in which electrostatic protection elements are connected in series. The sum of the breakdown voltage values of the electrostatic protection elements in the first electrostatic protection circuit is almost equal to the breakdown voltage value of the high breakdown voltage transistor. The first electrostatic protection circuit is connected between an input/output terminal and a ground terminal of the semiconductor device to which terminals the internal circuit is connected.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: September 21, 2010
    Assignee: Mitsumi Electric Co., Ltd.
    Inventors: Atsushi Watanabe, Yasuhisa Ishikawa
  • Patent number: 7800174
    Abstract: A single semiconductor power module includes a power semiconductor chip including an embedded IGBT (the power semiconductor switching-device) and a control semiconductor chip. The power semiconductor chip also includes a gate series resistor integrated therein as a resistor through which the control semiconductor chip drives the power semiconductor chip. In such a configuration, a gate wire between the gate series resistor and a gate has a small lead inductance and a small parasitic capacitance with respect to the ground.
    Type: Grant
    Filed: April 8, 2005
    Date of Patent: September 21, 2010
    Assignee: Denso Corporation
    Inventors: Motoo Yamaguchi, Naohito Kato, Yutaka Tomatsu
  • Patent number: 7781808
    Abstract: A configuration is adopted comprising an NchMOS transistor 1 equipped with an insulating isolation layer 4 providing insulation and isolation using an SOI structure, and a capacitor formed using an insulating film, with a silicon substrate B being made thin and substrate capacitance being reduced. The NchMOS transistor 1 is equipped with insulating isolation regions 5a, 5b that are perfectly depleted or partially depleted in a manner close to being perfectly depleted. An electrode 6 connected to a gate electrode G of the NchMOS transistor 1 and an impurity diffusion layer 7 are connected via a capacitor 2. A source electrode S is connected to a power supply terminal 3a, a gate electrode G is connected to an internal signal line S1, and a drain electrode D is connected to an internal signal line S2. Substrate bias voltage is then controlled using capacitor coupling when the NchMOS transistor 1 is turned on/off.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: August 24, 2010
    Assignee: Panasonic Corporation
    Inventor: Minoru Ito
  • Patent number: 7781769
    Abstract: A transistor array panel includes switching elements provided in intersecting portions between gate and data lines, and display electrodes connected to the switching elements. A conductive film pattern is provided to be electrically insulated from the gate and data lines, and display electrodes, and to be overlapped on the display electrodes, thereby forming a storage capacitance between each of the display electrodes and the conductive film pattern. A protection circuit is electrically connected to the gate and data lines, and disposed in an outer peripheral portion of a display region in which the switching elements and the display electrodes are formed on the one side of the substrate. A common line is insulated from the protection circuit, connected to the conductive film pattern, and provided to be insulated from the protection circuit and to be at least partially overlapped on the protection circuit, in the outer peripheral portion of the display region.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: August 24, 2010
    Assignee: Casio Computer Co., Ltd.
    Inventor: Yayoi Nakamura
  • Publication number: 20100208400
    Abstract: The pad interface circuit includes a first stack MOS transistor having a first terminal connected to a pad and a bulk connected to a first supply voltage; a second stack MOS transistor having a first terminal connected to a second terminal of the first stack MOS transistor and a second terminal, a gate terminal, and a bulk that are connected to the first supply voltage; and a voltage level sensing circuit generating a feedback voltage by using a pad voltage applied from the pad. In addition, the feedback voltage is applied to a gate terminal of the first stack MOS transistor.
    Type: Application
    Filed: January 21, 2010
    Publication date: August 19, 2010
    Inventors: Chan-hee Jeon, Han-gu Kim, Min-sun Hong, Tae-hoon Ha, Doo-hyung Kim, Jung-soon Lee
  • Patent number: 7777277
    Abstract: The present invention provides a dual triggered silicon controlled rectifier (DTSCR) including: a semiconductor substrate, an N-well, a P-well, a first N+ diffusion region and a first P+ diffusion region, a second N+ diffusion region and a second P+ diffusion region; a third P+ diffusion region, positioned in one side of the DTSCR and across the N-well and the P-well; a third N+ diffusion region, positioned in another side of the DTSCR and across the N-well and the P-well; a first gate, positioned above the N-well between the second and the third P+ diffusion regions, utilized as a P-type trigger node to receive a first trigger current or a first trigger voltage; and a second gate, positioned above the P-well between the first and the third N+ diffusion regions, utilized as an N-type trigger node to receive a second trigger current or a second trigger voltage.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: August 17, 2010
    Assignee: Raydium Semiconductor Corporation
    Inventor: Kei-Kang Hung
  • Patent number: 7777999
    Abstract: An electrostatic discharge (ESD) protection device includes an I/O terminal structure and a current discharge structure. The current discharge structure includes a conductive region separated from a bridge region by a gate electrode, a well region formed below the conductive region, another well region separated from the well region by another conductive region, and multiple additional conductive regions implementing dual current discharge paths through another well region.
    Type: Grant
    Filed: January 7, 2008
    Date of Patent: August 17, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Myoung-Gon Kang, Ki-Whan Song
  • Publication number: 20100200922
    Abstract: Embodiments of the invention relate to an electrostatic discharge (ESD) device and method for forming an ESD device. An embodiment is an ESD protection device comprising a p well disposed in a substrate, an n well disposed in the substrate, a high voltage n well (HVNW) disposed between the p well and the n well in the substrate, a source n+ region disposed in the p well, and a plurality of drain n+ regions disposed in the n well.
    Type: Application
    Filed: October 30, 2009
    Publication date: August 12, 2010
    Inventors: Ming-Song Sheu, Jian-Hsing Lee, Yao-Wu Feng
  • Publication number: 20100193869
    Abstract: A semiconductor device includes a semiconductor substrate of a first conductivity-type, a buried diffusion layer of a second conductivity-type formed in the semiconductor substrate, a first well of the second conductivity-type having a bottom portion in contact with a top portion of the buried diffusion layer, the first well having an annular shape in a planar view, and a second well of the first conductivity-type formed to be surrounded by the first well. The semiconductor device further includes a diffusion region formed between a first portion of the second well and a second portion of the second well, the diffusion region having an impurity concentration lower than that of the second well, so that a depletion layer formed in the diffusion region can be provided, a transistor formed on the second well to function as an ESD (electro-static discharge) protection element, and an external terminal connected to a drain of the transistor.
    Type: Application
    Filed: February 1, 2010
    Publication date: August 5, 2010
    Applicant: NEC ELECTRONICS CORPORATION
    Inventor: Tadayuki Habasaki
  • Publication number: 20100188787
    Abstract: An input/output (“I/O”) circuit has a first N-channel metal-oxide semiconductor (“NMOS”) field-effect transistor (“FET”) coupled to the input pin with a silicide block. A first P-channel metal-oxide semiconductor (“PMOS”) FET is directly connected to the input pin, with its N-well electrically coupled to an ESD well bias circuit. An NMOS low-voltage differential signal (“LVDS”) driver is also directly connected to the input pin, and has cascaded NMOS FETs. The first NMOS FET of the LVDS driver is fabricated within a first P-tap guard ring electrically coupled to ground and an N-well guard ring coupled to the ESD well bias. The second NMOS FET of the LVDS driver is fabricated within a second P-tap guard ring electrically coupled to ground.
    Type: Application
    Filed: January 29, 2009
    Publication date: July 29, 2010
    Applicant: XILINX, INC.
    Inventors: James Karp, Richard C. Li, Fu-Hing Ho, Mohammed Fakhruddin
  • Patent number: 7763908
    Abstract: A silicon-controlled rectifier apparatus, comprising a substrate upon which a low-voltage triggered silicon-controlled rectifier is configured. A plurality of triggering components (e.g., NMOS fingers) are formed upon the substrate and integrated with the low-voltage triggered silicon-controlled rectifier, wherein the plurality of triggering components are inserted into the low-voltage triggered silicon-controlled rectifier in order to permit the low-voltage triggered silicon-controlled rectifier to protect against electrostatic discharge during human-body model and charged-device model stress events.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: July 27, 2010
    Assignee: LSI Corporation
    Inventor: Jau-Wen Chen
  • Publication number: 20100181621
    Abstract: An integrated circuit, design structures and methods of forming the integrated circuit which includes a signal pad ESD coupled to an I/O signal pad and a power supply ESD coupled to a source VDD. The signal pad ESD and the power supply ESD are integrated in a single ESD structure.
    Type: Application
    Filed: January 19, 2009
    Publication date: July 22, 2010
    Applicant: International Business Machines Corporation
    Inventors: Shunhua T. Chang, Kiran V. Chatty, Robert J. Gauthier, JR., Mujahid Muhammad
  • Patent number: 7755140
    Abstract: A SOI device features a conductive pathway between active SOI devices and a bulk SOI substrate. The conductive pathway provides the ability to sink plasma-induced process charges into a bulk substrate in the event of process charging, such as interlayer dielectric deposition in a plasma environment, plasma etch deposition, or other fabrication provides. A method is also disclosed which includes dissipating electrostatic and process charges from a top of a SOI device to the bottom of the device. The top and bottom of the SOI device may characterize a region of active devices and a semiconductor method respectively. The method further includes a single masking step to create seed regions for an epitaxial-silicon pathway.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: July 13, 2010
    Assignee: Intel Corporation
    Inventors: Sangwoo Pae, Jose Maiz
  • Patent number: 7750439
    Abstract: An ESD protection device includes: a semiconductor substrate of a first conductivity type having a first major surface and a second major surface; a signal input electrode formed on the first major surface of the semiconductor substrate; a base region of a second conductivity type formed on a surface region of the second major surface of the semiconductor substrate; a diffusion region of the first conductivity type; a resistor layer formed on the second major surface of the semiconductor substrate of the first conductivity type; a signal output electrode electrically connected to the diffusion region of the first conductivity type; and a ground electrode electrically connected to the resistor layer. The diffusion region is selectively formed on a surface region of the base region of the second conductivity type in the semiconductor substrate of the first conductivity type. The resistor layer is electrically connected to the diffusion region of the first conductivity type.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: July 6, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Tomoki Inoue
  • Patent number: 7750407
    Abstract: A semiconductor device includes a substrate and a memory cell formed on the substrate. The memory cell includes a word line. The semiconductor device also includes a protection area formed in the substrate, a conductive structure configured to extend the word line to the protection area, and a contact configured to short the word line and the protection area.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: July 6, 2010
    Assignee: Spansion LLC
    Inventors: Wei Zheng, Jean Yang, Mark Randolph, Ming Kwan, Yi He, Zhizheng Liu, Meng Ding
  • Patent number: 7746608
    Abstract: An ESD protection circuit (710) is guarded by a parallel first precharge elimination circuit (720) relative to an I/O pad (721) and a parallel second precharge elimination circuit (730) relative to a VDD pad (731). The precharge elimination circuits are synchronized with the ESD protection circuit to eliminate any precharge voltage to ground before an ESD pulse affects the I/O pad or VDD pad. A diode (722) is connected between I/O pad and VDD. Circuit (720) is between I/O pad and ground (740) and is powered by the same VDD. Circuit (720) includes a first resistor (723), a first nMOS transistor (724), and a first RC timer including a second resistor (725) and a first capacitor (726). Circuit (730) includes a third resistor (733), a second nMOS transistor (734), and a second RC timer including a fourth resistor (735) and a second capacitor (736).
    Type: Grant
    Filed: October 10, 2006
    Date of Patent: June 29, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Chih-Ming Hung, Charvaka Duvvury
  • Publication number: 20100149701
    Abstract: A method and integrated circuit renders a shunt structure non-conductive during a power up event or noise event for and in addition, during an electrostatic discharge event, keeps the shunt structure conductive for a period of time to discharge electrostatic energy through the shunt structure. In one example, a shunt structure, such as a transistor, is interposed between a power node and a ground node. Circuitry is operative during a power up event or noise event, to render the shunt structure non-conductive for a period of time during the power up event or during the noise event (when power is applied). Second circuit is operative, during an electrostatic discharge event, to keep the shunt structure conductive for a period of time to discharge electrostatic energy through the shunt structure. In one example, a plurality of resistor/capacitors (RC) circuits are utilized wherein the RC circuits have different time constants.
    Type: Application
    Filed: December 11, 2008
    Publication date: June 17, 2010
    Applicant: ATI Technologies ULC
    Inventors: Oleg Drapkin, Grigori Temkine, Peter Bade
  • Patent number: 7723823
    Abstract: An improved lateral bipolar electrostatic discharge (ESD) protection device (40) comprises a semiconductor (SC) substrate (42), an overlying epitaxial SC layer (44), emitter-collector regions (48, 50) laterally spaced apart by a first distance (52) in the SC layer, a base region (54) adjacent the emitter region (48) extending laterally toward and separated from the collector region (50) by a base-collector spacing (56) that is selected to set the desired trigger voltage Vt1. By providing a buried layer region (49) under the emitter region (48) Ohmically coupled thereto, but not providing a comparable buried layer region (51) under the collector region (50), an asymmetrical structure is obtained in which the DC trigger voltage (Vt1DC) and transient trigger voltage (Vt1TR) are closely matched so that |Vt1TR?Vt1DC|˜0.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: May 25, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Chai Ean Gill, Changsoo Hong, James D. Whitfield, Rouying Zhan
  • Patent number: 7723794
    Abstract: A load driving device includes a drive control signal generation circuit generating a load drive control signal and a semiconductor buffer circuit generating an output signal in response to the load drive control signal. The buffer circuit has a pair of gate driven switching elements which are connected to each other in push-pull configuration and driven at their gate terminals by the load drive control signal. The buffer circuit has an output terminal which is connected to a connection point between ends of controlled electrodes of the gate driven switching elements, and a power source terminal and a ground connection terminal respectively connected to the remaining ends of the other controlled electrodes of the gate driven switching elements. A ground connection side element of a pair of gate driven switching elements has a set of MOS transistors which are connected across the connection point and the ground connection terminal.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: May 25, 2010
    Assignee: Oki Semiconductor Co., Ltd.
    Inventors: Toshikazu Kuroda, Hirokazu Hayashi, Yasuhiro Fukuda
  • Publication number: 20100118455
    Abstract: A semiconductor device includes a semiconductor substrate including a semiconductor layer, a power device formed in the semiconductor substrate, a plurality of concentric guard rings formed in the semiconductor substrate and surrounding the power device, and voltage applying means for applying successively higher voltages respectively to the plurality of concentric guard rings, with the outermost concentric guard ring having the highest voltage applied thereto.
    Type: Application
    Filed: May 6, 2009
    Publication date: May 13, 2010
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventor: Shigeru KUSUNOKI
  • Patent number: 7714633
    Abstract: By using a stacked gate transistor including a floating gate in a limiter, a threshold voltage Vth of the stacked gate transistor can be corrected by controlling the amount of charge accumulated in the floating gate of the stacked gate transistor even in the case where there are variations in the threshold voltage Vth of the stacked gate transistor.
    Type: Grant
    Filed: April 6, 2005
    Date of Patent: May 11, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd
    Inventor: Kiyoshi Kato
  • Patent number: 7705403
    Abstract: In a LVTSCR or snapback NMOS ESD structure, low voltage protection as well as higher voltage protection is provided by introducing a floating gate that capacitively couples with the control gate of the ESD structure and programming the floating gate to have different charges on it as desired.
    Type: Grant
    Filed: January 3, 2006
    Date of Patent: April 27, 2010
    Assignee: National Semiconductor Corporation
    Inventors: Vladislav Vashchenko, Yuri Mirgorodski, Peter J. Hopper
  • Patent number: 7705404
    Abstract: An electrostatic discharge (ESD) protection device and a layout thereof are provided. A bias conducting wire is mainly used to couple each base of a plurality of parasitic transistors inside ESD elements together, in order to simultaneously trigger all the parasitic transistors to bypass the ESD current, avoid the elements of a core circuit being damaged, and solve the non-uniform problem of bypassing the ESD current when ESD occurs. Furthermore, in the ESD protection layout, it only needs to add another doped region on a substrate neighboring to, but not contacting, doped regions of the ESD protection elements and use contacts to connect the added doped region, so as to couple each base of the parasitic transistors together without requiring for additional layout area.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: April 27, 2010
    Assignee: Amazing Microelectronic Corporation
    Inventors: Ming-Dou Ker, Jia-Huei Chen, Ryan Hsin-Chin Jiang
  • Patent number: 7696591
    Abstract: The invention relates to an overvoltage protection apparatus having a semiconductor substrate, a first doping region in order to provide a protection diode, and a second doping region in order to provide a protection resistance, with the second doping region being immediately adjacent to the first doping region.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: April 13, 2010
    Assignee: Infineon Technologies AG
    Inventors: Michael Schrenk, Christian Herzum
  • Patent number: 7692247
    Abstract: An integrated receiver with channel selection and image rejection substantially implemented on a single CMOS integrated circuit is described. A receiver front end provides programmable attenuation and a programmable gain low noise amplifier. Frequency conversion circuitry advantageously uses LC filters integrated onto the substrate in conjunction with image reject mixers to provide sufficient image frequency rejection. Filter tuning and inductor Q compensation over temperature are performed on chip. The filters utilize multi track spiral inductors. The filters are tuned using local oscillators to tune a substitute filter, and frequency scaling during filter component values to those of the filter being tuned. In conjunction with filtering, frequency planning provides additional image rejection. The advantageous choice of local oscillator signal generation methods on chip is by PLL out of band local oscillation and by direct synthesis for in band local oscillator.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: April 6, 2010
    Assignee: Broadcom Corporation
    Inventors: Agnes N. Woo, Kenneth R. Kindsfater, Fang Lu
  • Patent number: 7687858
    Abstract: An integrated receiver with channel selection and image rejection substantially implemented on a single CMOS integrated circuit is described. A receiver front end provides programmable attenuation and a programmable gain low noise amplifier. Frequency conversion circuitry advantageously uses LC filters integrated onto the substrate in conjunction with image reject mixers to provide sufficient image frequency rejection. Filter tuning and inductor Q compensation over temperature are performed on chip. The filters utilize multi track spiral inductors. The filters are tuned using local oscillators to tune a substitute filter, and frequency scaling during filter component values to those of the filter being tuned. In conjunction with filtering, frequency planning provides additional image rejection. The advantageous choice of local oscillator signal generation methods on chip is by PLL out of band local oscillation and by direct synthesis for in band local oscillator.
    Type: Grant
    Filed: January 3, 2008
    Date of Patent: March 30, 2010
    Assignee: Broadcom Corporation
    Inventors: Agnes N. Woo, Kenneth R. Kindsfater, Fang Lu
  • Patent number: 7683433
    Abstract: An apparatus and method of manufacture for metal-oxide semiconductor (MOS) transistors is disclosed. Devices in accordance with the invention are operable at voltages below 2V. The devices are area efficient, have improved drive strength, and have reduced leakage current. A dynamic threshold voltage control scheme comprised of a forward biased diode in parallel with a capacitor is used, implemented without changing the existing MOS technology process. This scheme controls the threshold voltage of each transistor. In the OFF state, the magnitude of the threshold voltage of the transistor increases, keeping the transistor leakage to a minimum. In the ON state, the magnitude of the threshold voltage decreases, resulting in increased drive strength. The invention is particularly useful in MOS technology for both bulk and silicon on insulator (SOI) CMOS. The use of reverse biasing of the well, in conjunction with the above construct to further decrease leakage in a MOS transistor, is also shown.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: March 23, 2010
    Assignee: Semi Solution, LLC
    Inventors: Ashok Kumar Kapoor, Robert Strain, Reuven Marko
  • Patent number: 7679143
    Abstract: A semiconductor device includes: a MOS transistor; a protection diode; and a semiconductor substrate. The MOS transistor and the protection diode are disposed in the semiconductor substrate. The drain of the MOS transistor is connected to the cathode of the protection diode. The source of the MOS transistor is connected to the anode of the protection diode. The MOS transistor has a withstand voltage defined as VT. The protection diode has a withstand voltage defined as VD, a parasitic resistance defined as RD, and a maximum current defined as IRmax. They satisfy a relationship of VT>VD+IRmax×RD. The maximum current of IRmax is equal to or larger than 45 Amperes.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: March 16, 2010
    Assignee: DENSO CORPORATION
    Inventors: Naohiro Suzuki, Hitoshi Yamaguchi
  • Patent number: 7671416
    Abstract: A device for providing electrostatic discharge (ESD) protection is provided. The device includes a semiconductor substrate having a drain, a source, and a gate formed therein. The drain contains a region having a resistance that is higher than the resistance of the remainder of the drain and the source. The gate region is in contact with this higher resistance region and the source. In one embodiment, the higher resistance is lacking silicide in order to provide the higher resistance. A method of forming a device for providing ESD protection is included.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: March 2, 2010
    Assignee: Altera Corporation
    Inventors: Hugh Sungki O, Chih-Ching Shih, Cheng-Hsiung Huang, Yow-Juang Bill Liu
  • Patent number: 7667243
    Abstract: A semiconductor device for locally protecting an integrated circuit input/output (I/O) pad (301) against ESD events, when the I/O pad is located between a power pad (303) and a ground potential pad (305a). A first diode (311) and a second diode (312) are connected in series, the anode (311b) of the series connected to the I/O pad and the cathode (312a) connected to the power pad. A third diode (304) has its anode (304b) tied to the ground pad and its cathode (304a) tied to the I/O pad. A string (320) of at least one diode has its anode (321b) connected to the series between the first and second diode (node 313), isolated from the I/O pad, and its cathode (323a) connected to the ground pad. The string (320) may comprise three or more diodes.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: February 23, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Charvaka Duvvury, Gianluca Boselli
  • Patent number: 7667272
    Abstract: In a semiconductor device, where, with respect to a parasitic resistor in a current mirror circuit, a compensation resistor for compensating the parasitic resistor is provided in the current mirror circuit, the current mirror circuit includes at least two thin film transistors. The thin film transistors each have an island-shaped semiconductor film having a channel formation region and source or drain regions, a gate insulating film, a gate electrode, and source or drain electrodes, and the compensation resistor compensates the parasitic resistor of any one of the gate electrode, the source electrode, and the drain electrode. In addition, each compensation resistor has a conductive layer containing the same material as the gate electrode, the source or drain electrodes, or the source or drain regions.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: February 23, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Atsushi Hirose
  • Patent number: 7659585
    Abstract: An ESD protection circuit is disclosed for an n-channel MOS transistor formed in an inner p-well of a triple-well process and connected to an I/O pad that may experience both positive and negative voltages according to the present invention. A first switch connects the p-well containing the n-channel MOS transistor to ground if the voltage at the I/O pad is positive and a second switch connects the p-well containing the n-channel MOS transistor to the I/O pad if the voltage at the I/O pad is negative. A third switch connects the gate of the n-channel MOS transistor to the p-well if it is turned off and a fourth switch connects the gate of the n-channel MOS transistor to Vcc if it is turned on.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: February 9, 2010
    Assignee: Actel Corporation
    Inventor: Gregory Bakker
  • Patent number: 7656009
    Abstract: An electric discharge device includes a bipolar transistor configuration comprising a base, an emitter, and a collector. At least one pinched resistor is formed in a region comprising both the base and emitter so as to produce a pinched resistive area that develops a voltage once the bipolar transistor experiences junction breakdown.
    Type: Grant
    Filed: April 9, 2007
    Date of Patent: February 2, 2010
    Assignee: Analog Devices, Inc.
    Inventors: Moshe Gerstenhaber, Padraig Cooney