Dielectric Isolation Means (e.g., Dielectric Layer In Vertical Grooves) Patents (Class 257/374)
  • Patent number: 6495899
    Abstract: In a semiconductor device including a semiconductor substrate, a well formed on the semiconductor substrate, and a thick field insulating layer for surrounding an active area of the well, a contact structure is buried in a contact hole provided in the thick field insulating layer and connected to the well, so as to fix a voltage at the well.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: December 17, 2002
    Assignee: NEC Corporation
    Inventor: Hidetaka Natsume
  • Patent number: 6492684
    Abstract: An SOI chip having an isolation barrier. The SOI chip includes a substrate, an oxide layer deposited on the substrate, and a silicon layer deposited on the oxide layer. A gate is deposited above the silicon layer. A first metal contact is deposited above the gate to form an electrical contact with the gate. Second and third metal contacts are deposited to form electrical contacts with the silicon layer. The isolation barrier extends through the silicon layer and the oxide layer, and partially into the substrate, to block impurities in the oxide layer outside the isolation barrier from diffusing into the oxide layer inside the isolation barrier. The isolation barrier surrounds the gate, the first metal contact, the second metal contact, and the third metal contact—which define an active chip area inside the isolation barrier. A method of manufacturing the SOI chip is also disclosed.
    Type: Grant
    Filed: June 11, 2001
    Date of Patent: December 10, 2002
    Assignee: International Business Machines Corporation
    Inventors: Ronald J. Bolam, Subhash B. Kulkarni, Dominic J. Schepis
  • Patent number: 6486517
    Abstract: A semiconductor device having a shallow trench isolation (STI) structure, which is capable of reducing leakage current in a P-FET and improving the device characteristics of a memory device, and a manufacturing method thereof, including a semiconductor substrate having a first area with a first trench formed therein and a second area with a second trench formed therein; a first sidewall oxide layer formed on the inner surface of the first trench; a second sidewall oxide layer, which is thinner than the first sidewall oxide layer, formed on the inner surface of the second trench; a liner formed on the surfaces of the first and second sidewall oxide layers; and a dielectric material that fills the first and second trenches.
    Type: Grant
    Filed: November 29, 2001
    Date of Patent: November 26, 2002
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Joo-Wook Park
  • Patent number: 6479875
    Abstract: The present invention relates to the formation of multiple gettering structures within a semiconductive substrate by ion implantation through recesses in the semiconductive substrate. A preferred embodiment of the present invention includes forming the recesses by using a reactive anisotropic etching medium, followed by implanting a gettering material. The gettering material is implanted by changing the gettering material for the reactive anisotropic etching medium. An advantage of the method of the present invention is that gettering structures are formed without the cost of an extra masking procedure and without the expense of MeV implantation equipment and procedures. As a result, metallic contaminants will not move as freely through the semiconductive substrate in the region of an active area proximal to the gettering structures.
    Type: Grant
    Filed: July 31, 2000
    Date of Patent: November 12, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Fernando Gonzalez
  • Patent number: 6476451
    Abstract: A twin-well CMOS integrated circuit device includes an n-well region and a p-well region. Each of the n-well and p-well region includes spaced-apart regions which serve as drain and source regions, a channel region between the spaced-apart regions, a shallow trench isolation structure contiguous with one of the spaced-apart regions, and a doped diffused region extending from the surface of the well region, around and underneath the trench isolation structure, to a region beneath the contiguous spaced-apart region.
    Type: Grant
    Filed: March 20, 2001
    Date of Patent: November 5, 2002
    Assignee: Winbond Electronics Corporation
    Inventor: Shyh-Chyi Wong
  • Patent number: 6465822
    Abstract: A method of reducing the capacitance of a conductive layer and a semiconductor obtained thereby. In the method, a well region is formed below the isolation, adjacent to it, an in a floating form. The well region has a dopant type different than the dopant type of the substrate. A depletion region can be formed at the interface between the floating well and the substrate. By connecting the capacitance of the depletion region and the parasitic capacitance generated between the conductive layer and the floating well in series, the total parasitic capacitance of the conductive layer can be reduced so as to increase the operational speed of the device.
    Type: Grant
    Filed: June 11, 2001
    Date of Patent: October 15, 2002
    Assignee: Macronix International Co., Ltd.
    Inventor: Hsiao-Ming Lin
  • Publication number: 20020135024
    Abstract: A method of forming a semiconductor device with improved leakage control, includes: providing a semiconductor substrate; forming a trench in the substrate; forming a leakage stop implant in the substrate under the bottom of the trench and under and aligned to a sidewall of the trench; filling the trench with an insulator; and forming an N-well (or a P-well) in the substrate adjacent to and in contact with an opposite sidewall of the trench, the N-well (or the N-well) extending under the trench and forming an upper portion of an isolation junction with the leakage stop implant, the upper portion of the isolation junction located entirely under the trench. The leakage control implant is self-aligned to the trench sidewalls.
    Type: Application
    Filed: March 10, 2001
    Publication date: September 26, 2002
    Applicant: International Business Machines Corporation
    Inventors: Lyndon R. Logan, James A. Slinkman
  • Publication number: 20020135025
    Abstract: A device isolation structure in a semiconductor device and a method for fabricating the same are disclosed. A trench is formed in a semiconductor substrate to confine a plurality of active regions, an insulating material is deposited to fill the trench and the insulating material having a portion extending from the trench to above the semiconductor substrate, and a trench oxidation preventive film is formed on the insulating material. The semiconductor device preferably further includes a gate line extending in one direction on the semiconductor substrate having the trench oxidation-preventive film, and a sidewall spacer formed a sidewall of the gate line, wherein the trench oxidation-preventive film is disposed on the insulating material and disposed under the gate line and the sidewall spacer.
    Type: Application
    Filed: September 27, 2001
    Publication date: September 26, 2002
    Applicant: Samsung Electronics Co., Ltd.
    Inventor: Tai-Su Park
  • Patent number: 6452246
    Abstract: A trench is formed on a primary surface of a semiconductor substrate, and is filled with trench material to separate the surface region of the semiconductor substrate into plural active regions. At least a portion of the surface of the trench material adjoining the semiconductor substrate is depressed by a predetermined depth with reference to the primary surface of the semiconductor device. Thus, prevented is a decrease in a drain current of a semiconductor device having a trench isolation structure.
    Type: Grant
    Filed: February 28, 2000
    Date of Patent: September 17, 2002
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Shigeki Komori
  • Patent number: 6445048
    Abstract: A semiconductor configuration includes a substrate having a first conduction type. A transistor configuration is disposed at the substrate and is formed from at least one field-effect transistor having at least two doped regions embedded in the substrate and at least one gate electrode. The regions have a second conduction type, are disposed between the transistor configuration and the substrate edge, and extend from the substrate surface into the substrate and surround the transistor configuration. At least two adjacent insulating trench regions are disposed between the regions and extend from the substrate surface into the substrate for isolating the doped regions from one another. The trenches may have a smaller depth than the doped regions. A method for fabricating a semiconductor configuration includes providing a substrate having a first conduction type and producing regions in the substrate by introducing a dopant. The regions have a second conduction type.
    Type: Grant
    Filed: September 7, 2000
    Date of Patent: September 3, 2002
    Assignee: Infineon Technologies AG
    Inventor: Frank Pfirsch
  • Patent number: 6441444
    Abstract: Providing a method of producing a semiconductor device and a structure of the semiconductor device employing a trench isolation structure for isolating semiconductor elements wherein volumetric expansion of a trench-filling material due to oxidation process after forming the trench isolation structure is controlled thereby making it possible to prevent deterioration of the electrical characteristics of the semiconductor device. A nitriding treatment is applied to the trench surface of the silicon substrate after forming the trench by etching, thereby to form a thin nitride layer having a better effect of preventing oxidation in the interface of silicon.
    Type: Grant
    Filed: July 14, 1999
    Date of Patent: August 27, 2002
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Naoki Tsuji, Kiyoteru Kobayashi
  • Publication number: 20020113273
    Abstract: A semiconductor device having a contact plug and a method for manufacturing the same are provided. A diffusion barrier layer is formed on a semiconductor substrate on which an insulating layer having a contact hole has been formed. A first metal layer is formed on the diffusion barrier layer filling the contact hole, and the first metal layer is etched back to a predetermined depth to expose a void in the first metal layer, if any, thereby forming a first sub-plug. A second metal layer is formed on the semiconductor substrate on which the first sub-plug has been formed. The second metal layer is polished so as to expose the top surface of the diffusion barrier layer on the insulating layer. As a result, a second sub-plug in the contact hole is formed. Therefore, a contact plug comprising the first and second sub-plugs and having strong resistance to particles generated in chemical and mechanical polishing (CMP) has been formed in the contact hole without a void or crack.
    Type: Application
    Filed: September 17, 2001
    Publication date: August 22, 2002
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Yoo-Sang Hwang, Su-Jin Ahn
  • Publication number: 20020113288
    Abstract: Thermal cooling structures of diamond or diamond-like materials are provided for conducting heat away from semiconductor devices. A first silicon-on-insulator embodiment comprises a plurality of thermal paths, formed after shallow trench and device fabrication steps are completed, which extend through the buried oxide and provide heat dissipation through to the underlying bulk silicon substrate. The thermal conduction path material is preferably diamond which has high thermal conductivity with low electrical conductivity. A second diamond trench cooling structure, formed after device fabrication has been completed, comprises diamond shallow trenches disposed between the devices and extending through the buried oxide layer. An alternative diamond thermal cooling structure includes a diamond insulation layer deposited over the semiconductor devices in either an SOI or bulk silicon structure.
    Type: Application
    Filed: July 28, 1999
    Publication date: August 22, 2002
    Inventors: LAWRENCE A. CLEVENGER, LOUIS L. HSU, LI-KONG WANG, TSORNG-DIH YUAN
  • Patent number: 6429490
    Abstract: On one side of a shallow trench isolation region formed on the surface of a p type well, an n type source region is provided while on the other side thereof, an n type drain region is provided so as to sandwich the shallow trench isolation region. In the drain region, a bent portion to allow a breakdown current to flow is provided and connected to a gate of a MOSFET comprising a circuit to be protected. Furthermore, a well contact connected to the source region is formed on the well surface and this well contact is grounded. When a positive high voltage which is higher than a predetermine voltage is applied to the drain region, since electric fields concentrate at the bent portion, a breakdown current flows from this bent portion toward the well contact. Thereafter, a current flows between the source and the drain.
    Type: Grant
    Filed: December 1, 2000
    Date of Patent: August 6, 2002
    Assignee: NEC Corporation
    Inventor: Kouichi Sawahata
  • Patent number: 6429477
    Abstract: The preferred embodiment overcomes the difficulties found in the background art by providing a body contact and diffusion contact formed in a single shared via for silicon on insulator (SOI) technologies. By forming the body contact and diffusion contact in a single shared via, device size is minimized and performance is improved. Particularly, the formed body contact connects the SOI layer with the underlying substrate to avoid instabilities and leakage resulting from a floating SOI channel region. The formed diffusion contact connects device diffusions to above wiring to facilitate device operation. By providing the body contact and diffusion contact together in a single shared via, the preferred embodiment avoids the area penalty that would result from separate contacts. Additionally, the preferred embodiment provides a body contact that is self aligned with other devices, minimizing tolerances needed while minimizing process complexity.
    Type: Grant
    Filed: October 31, 2000
    Date of Patent: August 6, 2002
    Assignee: International Business Machines Corporation
    Inventors: Jack A. Mandelman, Rama Divakaruni, William R. Tonti
  • Patent number: 6426532
    Abstract: A semiconductor device according to the present invention includes a semiconductor substrate; device isolation regions provided in the semiconductor substrate; a first conductivity type semiconductor layer provided between the device isolation regions; a gate insulating layer provided on an active region of the first conductivity type semiconductor layer; a gate electrode provided on the gate insulating layer; gate electrode side wall insulating layers provided on side walls of the gate electrode; and second conductivity type semiconductor layers provided adjacent to the gate electrode side wall insulating layers so as to cover a portion of the corresponding device isolation region, the second conductivity type semiconductor layers acting as a source region and/or a drain region. The gate electrode and the first conductivity type semiconductor layer are electrically connected to each other.
    Type: Grant
    Filed: April 19, 2001
    Date of Patent: July 30, 2002
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Hiroshi Iwata, Seizo Kakimoto, Masayuki Nakano, Kouichiro Adachi
  • Publication number: 20020089019
    Abstract: A method of fabricating a MOSFET device with a multiple T-shaped gate has the following steps. A substrate with an active region and a non-active region is provided, wherein the active region has a plurality of trenches, and the non-active region has a plurality shallow trench isolation structures. A thin insulating layer and a conducting layer are formed in the trenches. The conducting layer is defined to form a gate. The device is implanted with first ions. Then, the device is further implanted with second ions by using a mask, wherein the mask expose the trenches of the active region, and the opening of the mask is wider than the trench. The MOSFET device has at least the following structures. There is a substrate with an active region and a non-active region, wherein the active region has a plurality of trenches and the non-active region has a plurality of shallow trench isolation structures.
    Type: Application
    Filed: February 7, 2002
    Publication date: July 11, 2002
    Inventor: Kuan-Yu Fu
  • Patent number: 6414361
    Abstract: An integrated semiconductor device includes a substrate having a buried shallow trench isolation structure and an epitaxial layer disposed over the substrate and the buried shallow trench isolation structure. The epitaxial layer includes a shallow trench isolation structure that extends over the buried shallow trench isolation structure in the substrate to substantially reduce leakage current in the substrate to prevent device latch-up.
    Type: Grant
    Filed: January 5, 2001
    Date of Patent: July 2, 2002
    Assignee: Winbond Electronics Corporation
    Inventors: Shyh-Chyi Wong, Shi-Tron Lin
  • Patent number: 6404034
    Abstract: A CMOS circuit has all-around dielectrically insulated source-drain regions. Trenches are formed in the source-drain regions. The trenches are etched onto the mono-crystalline silicon and filled with undoped or very lightly doped silicon. The completely or nearly completely depleted silicon in the trenches represents a dielectrically insulating layer and insulates the source-drain regions towards the adjacent silicon substrate.
    Type: Grant
    Filed: July 21, 2000
    Date of Patent: June 11, 2002
    Assignee: Infineon Technologies AG
    Inventors: Dietrich Widmann, Martin Kerber
  • Patent number: 6404020
    Abstract: A semiconductor device having a self-aligned contact pad and the method for manufacturing the device are disclosed. The semiconductor device includes: an isolation region formed in a semiconductor substrate; multiple conductive structures formed on the top surface of the semiconductor substrate; self-aligned conductive pads filling spaces between adjacent conductive structures and between the isolation region and the conductive structures. The method includes: forming a conductive structure on a semiconductor substrate; forming insulating sidewall spacers on the conductive structures, forming a conductive layer that fills spaces between the conductive structures and contacts the semiconductor substrate; and patterning the conductive layer.
    Type: Grant
    Filed: July 27, 1999
    Date of Patent: June 11, 2002
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Byeung-chul Kim
  • Patent number: 6399985
    Abstract: Provided are a semiconductor device that can obtain more output current without increasing the occupied area of a MOS transistor, and a method for manufacturing the same. MOS transistors (M11, M12) are electrically isolated by a trench isolation oxide film (21). The MOS transistor (M11) has a groove portion (GP) in which the width of the top is 20 nm to 80 nm and the depth is 50 nm to 150 nm. The groove portion (GP) is disposed at the boundary part between a trench isolation insulating film (22) and an active region (AR1) so as to surround the active region (AR1). A gate electrode (31A) is not only disposed above the active region (AR1) but also buried in the groove (GP) with a gate oxide film (30) interposed therebetween.
    Type: Grant
    Filed: January 2, 2001
    Date of Patent: June 4, 2002
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Katsuyuki Horita, Takashi Kuroi, Yoshinori Okumura
  • Patent number: 6399993
    Abstract: In a bipolar transistor block, a base layer (20a) of SiGe single crystals and an emitter layer (26) of almost 100% of Si single crystals are stacked in this order over a collector diffused layer (9). Over both edges of the base layer (20a), a base undercoat insulating film (5a) and base extended electrodes (22) made of polysilicon are provided. The base layer (20a) has a peripheral portion with a thickness equal to that of the base undercoat insulating film (5a) and a center portion thicker than the peripheral portion. The base undercoat insulating film (5a) and gate insulating films (5b and 5c) for a CMOS block are made of the same oxide film. A stress resulting from a difference in thermal expansion coefficient between the SiGe layer as the base layer and the base undercoat insulating film 5a can be reduced, and a highly reliable BiCMOS device is realized.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: June 4, 2002
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Teruhito Ohnishi, Akira Asai, Takeshi Takagi, Tohru Saitoh, Yo Ichikawa, Yoshihiro Hara, Koichiro Yuki, Katsuya Nozawa, Koji Katayama, Yoshihiko Kanzawa
  • Publication number: 20020056881
    Abstract: A semiconductor device having a trench element separation region is disclosed. A pad oxide film (2), and a silicon nitride film (3) may be formed on a semiconductor substrate (1). A trench (4) may be formed by dry etching using the silicon nitride film (3) as a mask. The silicon substrate (1) may be thermally oxidized using the silicon nitride film (3) as an oxidation mask and a modified layer may be formed on the surface of the silicon nitride film (3). The modified layer may be removed by a neutral radical containing fluorine. The surface of the silicon nitride film (3) may be etched by a predetermined thickness. A filling insulation film may be deposited to completely fill the trench (4). The insulation film may then be chemical mechanical polished using the silicon nitride film (3a) as a polishing stopper to form a trench element separation insulation material (8).
    Type: Application
    Filed: September 27, 2001
    Publication date: May 16, 2002
    Inventor: Kazuo Ogawa
  • Patent number: 6388334
    Abstract: A circuit modification tool and method for a flip-chip IC permits access to circuit regions near the interconnects using an aperture formed through the circuit side. In one embodiment, an etching tool is adapted to remove substrate from the backside of the semiconductor devices and to form a via into the circuit side and beyond a first region in the circuitry. A depth indicating the location of the first region is determined, and a focused ion-beam generator is used to modify a second region in the circuit side using the via for access. After the modification, the first region is rebuilt using the via for access.
    Type: Grant
    Filed: July 27, 1999
    Date of Patent: May 14, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Jeffrey D. Birdsley
  • Publication number: 20020047164
    Abstract: A device isolation structure and a method thereof including a semiconductor substrate wherein a field isolation region including a plurality of dummy active regions and an active region are defined, a plurality of trenches formed among the regions, a filling layer filled in the plurality of trenches, a gate insulation layer formed on the semiconductor substrate having the filling layer, and a second conduction layer formed on the gate insulation layer, is capable of preventing a dishing from being generated in etching by forming the plurality of dummy active regions in the field isolation region and basically preventing the wide trenches from being formed, minimizing a parasitic capacitance generated in the dummy active-gate insulation layer-gate insulation layer in the field isolation region, and simplifying an isolation process by using the dummy active pattern.
    Type: Application
    Filed: November 21, 2001
    Publication date: April 25, 2002
    Applicant: Hyundai Electronics Industries Co., Ltd.
    Inventor: Jae-Gyung Ahn
  • Patent number: 6376292
    Abstract: Self-aligning photolithography method and a method of fabricating a semiconductor device using the same, in which the photolithography method is performed using a lower pattern without employing a separate mask. The self-aligning photolithography method includes the steps of forming a lower pattern layer on a semiconductor substrate, depositing a photoresist, and subjecting to exposure without a photomask such that the photoresist aligned with the lower pattern layer is not to be exposed by diffraction of light, and either removing or leaving only the photoresist aligned with the lower pattern layer by development.
    Type: Grant
    Filed: June 15, 2000
    Date of Patent: April 23, 2002
    Assignee: Hynix Semiconductor Inc.
    Inventors: Kang Sik Youn, Hae Wang Lee
  • Patent number: 6368952
    Abstract: Within a method for forming a microelectronic fabrication, there is first provided a substrate. There is then formed over the substrate a microelectronic device passivated with a patterned first dielectric layer in turn annularly surrounded by a patterned second dielectric layer. There is also formed over the substrate a patterned conductor layer separated from the microelectronic device by the patterned first dielectric layer and the patterned second dielectric layer. Within the method: (1) the patterned first dielectric layer is formed from a first dielectric material having a first diffusion coefficient with respect to a conductor material from which is formed the patterned conductor layer; (2) the patterned second dielectric layer is formed from a second dielectric material having a second diffusion coefficient with respect to the conductor material from which is formed the patterned conductor layer; and (3) the first diffusion coefficient is greater than the second diffusion coefficient.
    Type: Grant
    Filed: August 15, 2000
    Date of Patent: April 9, 2002
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd
    Inventors: Mong-Song Liang, Syun-Ming Jang
  • Patent number: 6368924
    Abstract: An improved and novel semiconductor device including an amorphous carbon layer for improved adhesion of photoresist and method of fabrication. The device includes a substrate having a surface, a carbon layer formed on the surface of the substrate, and a resist layer formed on a surface of the carbon layer. The device is formed by providing a substrate having a surface, depositing a carbon layer on the surface of the substrate using plasma enhanced chemical vapor deposition (PECVD) or sputtering, and forming a resist layer on a surface of the carbon layer.
    Type: Grant
    Filed: October 31, 2000
    Date of Patent: April 9, 2002
    Assignee: Motorola, Inc.
    Inventors: David P. Mancini, Steven M. Smith, Douglas J. Resnick
  • Publication number: 20020038901
    Abstract: A trench is formed in a substrate and a silicon oxide film which serves as a trench isolation is buried in the trench. The silicon oxide film has no shape sagging from a main surface of the substrate. A channel impurity layer to control a threshold voltage of a MOSFET is formed in the main surface of the substrate. The channel impurity layer is made of P-type layer, having an impurity concentration higher than that of the substrate. A first portion of the channel impurity layer is formed near an opening edge of the trench along a side surface of the trench in the source/drain layer, and more specifically, in the N+-type layer. A second portion of the channel impurity layer is formed deeper than the first portion. A gate insulating film and a gate electrode are formed on the main surface of the substrate.
    Type: Application
    Filed: March 15, 2001
    Publication date: April 4, 2002
    Applicant: MITSUBISHI DENKI KABUSHIKI KAISHA
    Inventors: Takashi Kuroi, Syuichi Ueno, Katsuyuki Horita
  • Patent number: 6362510
    Abstract: A method for fabricating an integrated circuit is presented wherein a semiconductor substrate is provided having a dielectric layer formed on its upper surface. A groove is formed in the dielectric layer that extends from the upper surface of the semiconductor substrate to the upper surface of the dielectric layer. A silicon epitaxial layer is then grown within the groove. Barrier atoms are incorporated into the silicon epitaxial layer concurrently with the epitaxial growth process.
    Type: Grant
    Filed: December 7, 1998
    Date of Patent: March 26, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Mark I. Gardner, H. Jim Fulford, Jr., Charles E. May
  • Patent number: 6362035
    Abstract: A method for incorporating an ion implanted channel stop layer under field isolation for a twin-well CMOS process is described in which the layer is placed directly under the completed field isolation by a blanket boron ion implant over the whole wafer. The channel stop implant follows planarization of the field oxide and is thereby essentially at the same depth in both field and active regions. Subsequently implanted p- and n-wells are formed deeper than the channel stop layer, the n-well implant being of a sufficiently higher dose to over compensate the channel stop layer, thereby removing it's effect from the n-well. A portion of the channel stop implant under the field oxide adjacent the p-well provides effective anti-punchthrough protection with only a small increase in junction capacitance. The method is shown for, and is particularly effective in, processes utilizing shallow trench isolation.
    Type: Grant
    Filed: February 7, 2000
    Date of Patent: March 26, 2002
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Jiaw-Ren Shih, Shui-Hung Chen, Jian-Hsing Lee, Hsien-Chin Lin
  • Patent number: 6355974
    Abstract: A method to prevent the formation of a thinner portion of insulating layer, especially a gate oxide layer, at the junction between the side walls and the bottom insulator is disclosed. First, a pad oxide layer is formed on the side walls and the bottom of the trench. Next, a bottom oxide is formed on the lower portion of the trench. Then, the upper portion of the bottom oxide and the exposed pad oxide layer are removed by wet etching to leave a bottom oxide having a concave surface. Next, the conformal gate oxide layer is grown on the exposed side walls of the trench.
    Type: Grant
    Filed: May 31, 2000
    Date of Patent: March 12, 2002
    Assignee: Mosel Vitelic, Inc.
    Inventors: Ping-Wei Lin, Ming-Kuan Kao, Jui-Ping Li
  • Publication number: 20020024103
    Abstract: An improved borderless contact structure and method of making the structure including a substrate with side walls formed on the side of the shallow trench. An insulator is formed over the side walls and in the remainder of the trench such that the insulator extends above an upper surface of the substrate. The side walls are formed of a first etch selection type and the insulator is formed of a second etch selection type.
    Type: Application
    Filed: August 28, 2001
    Publication date: February 28, 2002
    Inventors: Chang Yong Kang, Seong Hyung Park
  • Patent number: 6351014
    Abstract: According to a semiconductor device of the present invention, a field oxide film is formed so as to cover the main surface of an SOI layer and to reach the main surface of a buried oxide film. As a result, a pMOS active region of the SOI and an nMOS active region of the SOI can be electrically isolated completely. Therefore, latchup can be prevented completely. As a result, it is possible to provide a semiconductor device using an SOI substrate which can implement high integration by eliminating reduction of the breakdown voltage between source and drain, which was a problem of a conventional SOI field effect transistor, as well as by efficiently disposing a body contact region, which hampers high integration, and a method of manufacturing the same.
    Type: Grant
    Filed: March 6, 2000
    Date of Patent: February 26, 2002
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Yasuo Inoue, Tadashi Nishimura, Yasuo Yamaguchi, Toshiaki Iwamatsu
  • Publication number: 20020020887
    Abstract: A method of forming a shallow trench isolation type semiconductor device comprises forming an etch protecting layer pattern to define at least one active region on a substrate, forming at least one trench by etching the substrate partially by using the etch protecting layer pattern as an etch mask, forming a thermal-oxide film on an inner wall of the trench, filling the trench having the thermal-oxide film with a CVD silicon oxide layer to form an isolation layer, removing the etch protecting layer pattern from the substrate over which the isolation layer is formed, removing the thermal-oxide film formed on a top end of the inner wall of the trench to a depth of 100 to 350 Å, preferably 200 Å from the upper surface of the substrate, and forming a gate oxide film on the substrate from which the active region and the top end are exposed.
    Type: Application
    Filed: July 31, 2001
    Publication date: February 21, 2002
    Inventors: Keum-Joo Lee, Young-Min Kwon, Chang-Lyoung Song, In-Seak Hwang
  • Publication number: 20020014669
    Abstract: An active surface with a source area, a channel area and a drain area is provided in a semiconductor substrate. Each of the areas lie adjacent to a main surface of the semiconductor substrate. At least one trench is provided in the main surface of the semiconductor substrate. The trench is adjacent to the channel area and is situated in the gate electrode part. The gate electrode preferably has two opposite parts which are each adjacent to the channel area. The transistor is produced using standard process steps.
    Type: Application
    Filed: May 18, 2001
    Publication date: February 7, 2002
    Inventors: Dietrich Widmann, Helga Widmann, Armin Wieder, Justus Kuhn, Jens Lupke, Jochen Muller, Peter Pochmuller, Michael Schittenhelm
  • Publication number: 20020003266
    Abstract: The invention is a method for creating a portion of an integrated circuit on a semiconductor wafer. The invention comprises doping a substrate to form a doped well region having an opposite conductivity type than the substrate. Separate photomasking steps are used to define N-channel and P-channel metal oxide semiconductor (MOS) transistor gates. A trench is formed near the well without using additional masking steps. The trench improves the latch up immunity of the device. The invention is also the apparatus created by the method and comprises a trench positioned in the substrate to interrupt the conduction of minority carriers between two regions of the substrate. Thus, the invention improves latch up immunity without additional process complexity.
    Type: Application
    Filed: July 30, 1998
    Publication date: January 10, 2002
    Inventor: MONTE MANNING
  • Patent number: 6335235
    Abstract: Isolation regions are formed with greater accuracy and consistency by forming an oxide-silicon nitride stack and then depositing an amorphous silicon antireflective layer, on the silicon nitride layer before patterning. Embodiments also include depositing the silicon nitride layer and the amorphous silicon layer in the same tool.
    Type: Grant
    Filed: August 17, 1999
    Date of Patent: January 1, 2002
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Jayendra D. Bhakta, Carl P. Babcock
  • Patent number: 6326255
    Abstract: A method for manufacturing a semiconductor device includes the steps of (1) forming a pad oxide film of 5 nm or more on a circuit forming surface of a semiconductor substrate; (2) forming an oxidation inhibition film on the pad oxide film; (3) forming grooves of a given depth with the oxidation inhibition film as a mask; (4) receding the pad oxide film; (5) oxidizing the grooves formed on the semiconductor substrate in the range of 0<C≦0.88t-924 in which the oxidizing atmosphere is dry oxidation (H2/O2≈0), the oxygen partial pressure in the air corresponding to the oxygen partial pressure ratio is C %, and the oxidizing temperature is t (° C.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: December 4, 2001
    Assignee: Hitachi, Ltd.
    Inventors: Norio Ishitsuka, Hideo Miura, Shuji Ikeda, Yasuko Yoshida, Norio Suzuki, Michimasa Funabashi
  • Patent number: 6323532
    Abstract: A semiconductor structure comprises first gate conductors which wrap around N-wells of buried-channel P-type metal oxide semiconductor field effect transistors and second gate conductors which do not wrap around P-wells of surface-channel N-type metal oxide semiconductor field effect transistors and a method of manufacturing the same comprises forming insulators adjacent each of the N-wells and the P-wells, protecting the N-wells with a patterned mask, forming first divots in areas of the insulators adjacent the N-wells and forming second divots in areas of the insulators P-wells, wherein the first divots have a greater depth than the second divots.
    Type: Grant
    Filed: July 3, 2000
    Date of Patent: November 27, 2001
    Assignee: International Business Machines Corporation
    Inventors: Hans-Oliver Joachim, Jack A. Mandelman, Rajesh Rengarajah
  • Publication number: 20010042890
    Abstract: A MOSFET structure in which the channel region is contiguous with the semiconductor substrate while the source and drain junctions are substantially isolated from the substrate, includes a dielectric volume formed adjacent and subjacent to portions of the source and drain regions.
    Type: Application
    Filed: April 9, 1999
    Publication date: November 22, 2001
    Inventor: CHULIN LIANG
  • Patent number: 6320233
    Abstract: A CMOS semiconductor device comprises a P-substrate, an N-type shallow well for forming a PMOS transistor and a P-type shallow well for forming NMOS transistor, which are selectively formed in a surface region of the P-substrate, a leading region for the N-type shallow well and a leading region for the P-type shallow well, STI regions for separating the CMOS transistor formed in a surface region of the P-substrate and positioned between the drain region of the PMOS transistor and the drain region of the NMOS transistor and between the N-type shallow well and the P-type shallow well, the STI regions being formed deeper than the shallow wells, and an STI region for isolating the CMOS region formed in a surface region of the P-substrate, the STI region being formed deeper than the shallow wells.
    Type: Grant
    Filed: January 19, 2000
    Date of Patent: November 20, 2001
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akira Yamaguchi, Toru Takahashi
  • Patent number: 6303486
    Abstract: A method is provided for forming a copper interconnect, the method including forming a first dielectric layer above a structure layer, forming a first opening in the first dielectric layer, and forming a first copper structure in the first opening. The method also includes forming a sacrificial dielectric layer above the first dielectric layer and above the first copper structure, forming a second opening in the sacrificial dielectric layer above at least a portion of the first copper structure, and forming a second copper structure in the second opening, the second copper structure contacting the at least the portion of the first copper structure. The method further includes removing the sacrificial dielectric layer above the first dielectric layer and adjacent the second copper structure, and forming the copper interconnect by annealing the second copper structure and the first copper structure.
    Type: Grant
    Filed: January 28, 2000
    Date of Patent: October 16, 2001
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Stephen Keetai Park
  • Publication number: 20010017392
    Abstract: MOSFET comprising:
    Type: Application
    Filed: March 22, 2001
    Publication date: August 30, 2001
    Applicant: International Business Machines Corporation.
    Inventors: James Hartfiel Comfort, Young Hoon Lee, Yaun Taur, Samuel Jonas Wind, Hom-Sum Philip Wong
  • Patent number: 6281555
    Abstract: An integrated circuit is provided having an improved packing density due to an improved isolation structure between a plurality of devices on the substrate. An ultra shallow trench isolation structure is provided, typically having a trench depth just deeper than the doped regions of a transistor or other device placed thereon, but substantially shallower than the depth of a well associated with the transistor. A nitrogen ion implantation step is utilized to fabricate an implanted portion beneath the insulative portion, the implanted portion extending preferably below the depth of the well. Due to a shallower trench isolation structure, the structure may also be narrower, providing for improved packing density in a semiconductor device.
    Type: Grant
    Filed: November 6, 1998
    Date of Patent: August 28, 2001
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Bin Yu, Ming-Ren Lin
  • Patent number: 6271566
    Abstract: A manufacturing method produces a semiconductor IC device which can maintain a low power consumption for electronic circuits and form gate-isolation layers of different thicknesses without increasing the manufacturing cost. The semiconductor IC device has gate-isolation layers of different thicknesses on the same semiconductor substrate surface. To form such gate-isolation layers, a silicon dioxide layer is formed in first and second regions. The dopant-concentration is adjusted in silicon dioxide layer that is to have a thickness different from the above silicon dioxide layer thickness in the second region B. A carbon-containing semiconductor layer is selectively formed in either the first region or the second region. Therefore, there is no need for additional steps for forming silicon dioxide layers of different thicknesses in the first region and in the second region.
    Type: Grant
    Filed: November 16, 1999
    Date of Patent: August 7, 2001
    Assignee: Toshiba Corporation
    Inventor: Masakatsu Tsuchiaki
  • Publication number: 20010010381
    Abstract: The claimed invention relates to a semiconductor device and a method of fabricating the semiconductor device. More particularly, the claimed invention relates to a method of fabricating the semiconductor device in which parts of a gate electrode at the ends of a channel are lightly doped compared to the center part of the gate electrode, thereby eliminating a hump on a subthreshold current slope. To achieve the objects of the claimed invention, there is provided a semiconductor device that includes a semiconductor substrate divided into an isolation region and an active region. A gate oxide film is formed on a first upper surface of the active region. A gate electrode is formed on a second upper surface of the gate oxide film, the gate electrode having a first part and a second part. The first part is more lightly doped with impurities than the second part. A channel is formed in an upper end of the active region proximate the gate electrode.
    Type: Application
    Filed: December 1, 2000
    Publication date: August 2, 2001
    Applicant: Hyundai Electronics Industries Co., Ltd.
    Inventors: Jong-Wan Jung, Jeong Seok Nam
  • Publication number: 20010009290
    Abstract: A twin-well CMOS integrated circuit device includes an n-well region and a p-well region. Each of the n-well and p-well region includes spaced-apart regions which serve as drain and source regions, a channel region between the spaced-apart regions, a shallow trench isolation structure contiguous with one of the spaced-apart regions, and a doped diffused region extending from the surface of the well region, around and underneath the trench isolation structure, to a region beneath the contiguous spaced-apart region.
    Type: Application
    Filed: March 20, 2001
    Publication date: July 26, 2001
    Applicant: Winbond Electronics Corporation
    Inventor: Shyh-Chyi Wong
  • Patent number: 6265285
    Abstract: A method of forming a self-aligned trench isolation comprises forming a silicon film on a pad oxide that is grown upon a semiconductor substrate, and then etching the silicon film to expose the pad oxide and form a first opening. A poly-oxide is grown up by thermal process to cover on the silicon film and form a second opening with a width smaller than that of the first opening, and then the poly-oxide is etched back to form a poly-oxide spacer. In the formation of the poly-oxide spacer, the pad oxide is also etched to expose the semiconductor substrate. After a trench is formed into the semiconductor substrate through the second opening, a dielectric film is deposited and filled in the trench, and then etched back to expose the silicon film and leave the portion of the dielectric film inside the trench. The silicon film is then removed to form the resultant trench isolation.
    Type: Grant
    Filed: October 25, 2000
    Date of Patent: July 24, 2001
    Assignee: Vanguard International Semiconductor Corporation
    Inventor: Horng-Huei Tseng
  • Patent number: 6265743
    Abstract: There is provided a trench type element isolation structure wherein no recess develops in the edge part of an imbedded oxide film of a trench type element isolation. Thermal oxidation films having higher etching resistance than a CVD film are formed not only on the surroundings of the imbedded oxide film inside the groove formed on the silicon substrate but also on the lateral sides of the imbedded oxide film projecting upward from the silicon substrate surface.
    Type: Grant
    Filed: November 4, 1997
    Date of Patent: July 24, 2001
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Maiko Sakai, Takashi Kuroi, Katsuyuki Horita