Magnetic Field Patents (Class 257/421)
  • Patent number: 8994130
    Abstract: A magnetic memory element includes: a first magnetization free layer formed of a ferromagnetic material having perpendicular magnetic anisotropy; a second magnetization free layer provided near the first magnetization free layer and formed of a ferromagnetic material having in-plane magnetic anisotropy; a reference layer formed of a ferromagnetic material having in-plane magnetic anisotropy; and a non-magnetic layer provided between the second magnetization free layer and the reference layer. The first magnetization free layer includes: a first magnetization fixed region of which magnetization is fixed, a second magnetization fixed region of which magnetization is fixed, and a magnetization free region which is connected to the first magnetization fixed region and the second magnetization fixed region, and of which magnetization can be switched. The second magnetization free layer is included in the first magnetization free layer in a plane parallel to a substrate.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: March 31, 2015
    Assignee: NEC Corporation
    Inventors: Shunsuke Fukami, Tetsuhiro Suzuki, Kiyokazu Nagahara, Nobuyuki Ishiwata, Norikazu Ohshima
  • Publication number: 20150084140
    Abstract: The present invention is directed to a memory device having a via landing pad in the peripheral circuit that minimizes the memory cell size. A device having features of the present invention comprises a peripheral circuit region and a magnetic memory cell region including at least a magnetic tunnel junction (MTJ) element. The peripheral circuit region comprises a substrate and a bottom contact formed therein; a landing pad including a first magnetic layer structure formed on top of the bottom contact and a second magnetic layer structure separated from the first magnetic layer structure by an insulating tunnel junction layer, wherein each of the insulating tunnel junction layer and the second magnetic layer structure has an opening aligned to each other; and a via partly embedded in the landing pad and directly coupled to the first magnetic layer structure through the openings.
    Type: Application
    Filed: September 20, 2013
    Publication date: March 26, 2015
    Applicant: Avalanche Technology Inc.
    Inventors: Kimihiro Satoh, Yiming Huai
  • Publication number: 20150084142
    Abstract: According to one embodiment, a magnetoresistive element includes first and second magnetic layers and a first nonmagnetic layer. The first magnetic layer has an axis of easy magnetization perpendicular to a film plane, and a variable magnetization. The second magnetic layer has an axis of easy magnetization perpendicular to a film plane, and an invariable magnetization. The first nonmagnetic layer is provided between the first and second magnetic layers. The second magnetic layer includes third and fourth magnetic layers, and a second nonmagnetic layer formed between the third and fourth magnetic layers. The third magnetic layer is in contact with the first nonmagnetic layer and includes Co and at least one of Zr, Nb, Mo, Hf, Ta, and W.
    Type: Application
    Filed: December 12, 2014
    Publication date: March 26, 2015
    Inventors: Toshihiko Nagase, Eiji Kitagawa, Katsuya Nishiyama, Tadashi Kai, Koji Ueda, Daisuke Watanabe
  • Publication number: 20150084141
    Abstract: According to one embodiment, a semiconductor device includes a MRAM chip including a semiconductor substrate and a memory cell array area includes magnetoresistive elements which are provided on the semiconductor substrate, and a magnetic shield layer surrounding the memory cell array area in a circumferential direction of the MRAM chip, and having a closed magnetic path.
    Type: Application
    Filed: December 24, 2013
    Publication date: March 26, 2015
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Takeshi FUJIMORI
  • Patent number: 8987847
    Abstract: A MTJ for a spintronic device is disclosed and includes a thin seed layer that enhances perpendicular magnetic anisotropy (PMA) in an overlying laminated layer with a (Co/X)n or (CoX)n composition where n is from 2 to 30, X is one of V, Rh, Ir, Os, Ru, Au, Cr, Mo, Cu, Ti, Re, Mg, or Si, and CoX is a disordered alloy. The seed layer is preferably NiCr, NiFeCr, Hf, or a composite thereof with a thickness from 10 to 100 Angstroms. Furthermore, a magnetic layer such as CoFeB may be formed between the laminated layer and a tunnel barrier layer to serve as a transitional layer between a (111) laminate and (100) MgO tunnel barrier. The laminated layer may be used as a reference layer, dipole layer, or free layer in a MTJ. Annealing between 300° C. and 400° C. may be used to further enhance PMA in the laminated layer.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: March 24, 2015
    Assignee: Headway Technologies, Inc.
    Inventors: Guenole Jan, Ru-Ying Tong, Yu-Jen Wang
  • Patent number: 8987006
    Abstract: A magnetic junction usable in a magnetic memory and a method for providing the magnetic memory are described. The method includes providing a pinned layer, providing an engineered nonmagnetic tunneling barrier layer, and providing a free layer. The pinned layer and the free layer each include at least one ferromagnetic layer. The engineered nonmagnetic tunneling barrier layer has a tuned resistance area product. In some aspects, the step of providing the engineered nonmagnetic tunneling barrier layer further includes radio-frequency depositing a first oxide layer, depositing a metal layer, and oxidizing the metal layer to provide a second oxide.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: March 24, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kiseok Moon, Xueti Tang, Mohamad Towfik Krounbi
  • Patent number: 8987848
    Abstract: A MTJ for a spintronic device that is a domain wall motion device is disclosed and includes a thin seed layer that enhances perpendicular magnetic anisotropy (PMA) in an overlying laminated layer with a (Co/X)n or (CoX)n composition where n is from 2 to 30, X is one of V, Rh, Ir, Os, Ru, Au, Cr, Mo, Cu, Ti, Re, Mg, or Si, and CoX is a disordered alloy. The seed layer is preferably NiCr, NiFeCr, Hf, or a composite thereof with a thickness from 10 to 100 Angstroms. Furthermore, a magnetic layer such as CoFeB may be formed between the laminated layer and a tunnel barrier layer to serve as a transitional layer between a (111) laminate and (100) MgO tunnel barrier. The laminated layer may be used as a reference layer, dipole layer, or free layer in a MTJ. Annealing between 300° C. and 400° C. may be used to further enhance PMA in the laminated layer.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: March 24, 2015
    Assignee: Headway Technologies, Inc.
    Inventors: Guenole Jan, Ru-Ying Tong, Yu-Jen Wang
  • Patent number: 8987850
    Abstract: Provided are magnetic memory devices, electronic systems and memory cards including the same, methods of manufacturing the same, and methods of controlling a magnetization direction of a magnetic pattern. In a magnetic memory device, atomic-magnetic moments non-parallel to one surface of a free pattern increase in the free pattern. Therefore, critical current density of the magnetic memory device may be reduced, such that power consumption of the magnetic memory device is reduced or minimized and/or the magnetic memory device is improved or optimized for a higher degree of integration.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: March 24, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sechung Oh, Jangeun Lee, Woojin Kim, Heeju Shin
  • Patent number: 8988109
    Abstract: High speed precessionally switched magnetic logic devices and architectures are described. In a first example, a magnetic logic device includes an input electrode having a first nanomagnet and an output electrode having a second nanomagnet. The spins of the second nanomagnet are non-collinear with the spins of the first nanomagnet. A channel region and corresponding ground electrode are disposed between the input and output electrodes. In a second example, a magnetic logic device includes an input electrode having an in-plane nanomagnet and an output electrode having a perpendicular magnetic anisotropy (PMA) magnet. A channel region and corresponding ground electrode are disposed between the input and output electrodes.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: March 24, 2015
    Assignee: Intel Corporation
    Inventors: Sasikanth Manipatruni, Dmitri E. Nikonov, Ian A. Young
  • Patent number: 8987846
    Abstract: According to one embodiment, a magnetic memory is disclosed. The magnetic memory includes a substrate, and a contact plug provided on the substrate. The contact plug includes a first contact plug, and a second contact plug provided on the first contact plug and having a smaller diameter than that of the first contact plug. The magnetic memory further includes a magnetoresistive element provided on the second contact plug. The diameter of the second contact plug is smaller than that of the magnetoresistive element.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: March 24, 2015
    Inventor: Yoshinori Kumura
  • Patent number: 8987798
    Abstract: Provided is a magnetic tunneling junction device including a first structure including a magnetic layer; a second structure including at least two extrinsic perpendicular magnetization structures, each including a magnetic layer and; a perpendicular magnetization inducing layer on the magnetic layer; and a tunnel barrier between the first and second structures.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: March 24, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong Heon Park, Woo Chang Lim, Se Chung Oh, Young Hyun Kim, Sang Hwan Park, Jang Eun Lee
  • Patent number: 8987849
    Abstract: A MTJ for a spintronic device is disclosed and includes a thin seed layer that enhances perpendicular magnetic anisotropy (PMA) in an overlying laminated layer with a (Co/X)n or (CoX)n? composition where n is from 2 to 30, X is one of V, Rh, Ir, Os, Ru, Au, Cr, Mo, Cu, Ti, Re, Mg, or Si, and CoX is a disordered alloy. The seed layer is preferably NiCr, NiFeCr, Hf, or a composite thereof with a thickness from 10 to 100 Angstroms. Furthermore, a magnetic layer such as CoFeB may be formed between the laminated layer and a tunnel barrier layer to serve as a transitional layer between a (111) laminate and (100) MgO tunnel barrier. The laminated layer may be used as a reference layer, dipole layer, or free layer in a MTJ. Annealing between 300° C. and 400° C. may be used to further enhance PMA in the laminated layer.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: March 24, 2015
    Assignee: Headway Technologies, Inc.
    Inventors: Guenole Jan, Ru-Ying Tong, Yu-Jen Wang
  • Publication number: 20150076633
    Abstract: A magnetic cell includes an attracter material proximate to a magnetic region (e.g., a free region). The attracter material is formulated to have a higher chemical affinity for a diffusible species of a magnetic material, from which the magnetic region is formed, compared to a chemical affinity between the diffusible species and at least another species of the magnetic material. Thus, the diffusible species is removed from the magnetic material to the attracter material. The removal accommodates crystallization of the depleted magnetic material. The crystallized, depleted magnetic material enables a high tunnel magneto resistance, high energy barrier, and high energy barrier ratio. The magnetic region may be formed as a continuous magnetic material, thus enabling a high exchange stiffness, and positioning the magnetic region between two magnetic anisotropy-inducing oxide regions enables a high magnetic anisotropy strength. Methods of fabrication and semiconductor devices are also disclosed.
    Type: Application
    Filed: September 18, 2013
    Publication date: March 19, 2015
    Applicant: Micron Technology
    Inventors: Manzar Siddik, Andy Lyle, Witold Kula
  • Publication number: 20150076485
    Abstract: A magnetic cell includes a free region between an intermediate oxide region (e.g., a tunnel barrier) and a secondary oxide region. Both oxide regions may be configured to induce magnetic anisotropy (“MA”) with the free region, enhancing the MA strength of the free region. A getter material proximate to the secondary oxide region is formulated and configured to remove oxygen from the secondary oxide region to reduce an oxygen concentration and, thus, an electrical resistance of the secondary oxide region. Thus, the secondary oxide region contributes only minimally to the electrical resistance of the cell core. Embodiments of the present disclosure therefore enable a high effective magnetoresistance, low resistance area product, and low programming voltage along with the enhanced MA strength. Methods of fabrication, memory arrays, memory systems, and electronic systems are also disclosed.
    Type: Application
    Filed: September 13, 2013
    Publication date: March 19, 2015
    Applicant: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Witold Kula
  • Publication number: 20150076635
    Abstract: A magnetoresistive element according to an embodiment includes: a base layer; a first magnetic layer formed on the base layer, and including a first magnetic film having an axis of easy magnetization in a direction perpendicular to a film plane, the first magnetic film including MnxGa100-x (45?x<64 atomic %); a first nonmagnetic layer formed on the first magnetic layer; and a second magnetic layer formed on the first nonmagnetic layer, and including a second magnetic film having an axis of easy magnetization in a direction perpendicular to a film plane, the second magnetic film including MnyGa100-y (45?y<64 atomic %). The first and second magnetic layers include different Mn composition rates from each other, a magnetization direction of the first magnetic layer is changeable by a current flowing between the first magnetic layer and the second magnetic layer via the first nonmagnetic layer.
    Type: Application
    Filed: November 20, 2014
    Publication date: March 19, 2015
    Applicants: KABUSHIKI KAISHA TOSHIBA, WPI-AIMR, Tohoku University
    Inventors: Tadaomi DAIBOU, Junichi ITO, Tadashi KAI, Minoru AMANO, Hiroaki YODA, Terunobu MIYAZAKI, Shigemi MIZUKAMI, Koji ANDO, Kay YAKUSHIJI, Shinji YUASA, Hitoshi KUBOTA, Akio FUKUSHIMA, Taro NAGAHAMA, Takahide KUBOTA
  • Publication number: 20150076634
    Abstract: A magnetic device includes a substrate, a sensing block and a repair layer. The substrate has a bottom electrode, a registration layer and a barrier layer disposed on the registration layer. The sensing block is patterned to distribute on the barrier layer. The repair layer is disposed substantially on the barrier layer, wherein the barrier layer is configured to have a tunneling effect when a bias voltage exists between the sensing block and the registration layer.
    Type: Application
    Filed: October 31, 2014
    Publication date: March 19, 2015
    Inventors: CHENG WEI CHIEN, KUEI HUNG SHEN, YUNG HUNG WANG
  • Patent number: 8980650
    Abstract: Magnetic tunnel junctions (MTJ) suitable for spin transfer torque memory (STTM) devices, include perpendicular magnetic layers and one or more anisotropy enhancing layer(s) separated from a free magnetic layer by a crystallization barrier layer. In embodiments, an anisotropy enhancing layer improves perpendicular orientation of the free magnetic layer while the crystallization barrier improves tunnel magnetoresistance (TMR) ratio with better alignment of crystalline texture of the free magnetic layer with that of a tunneling layer.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: March 17, 2015
    Assignee: Intel Corporation
    Inventors: Kaan Oguz, Mark L. Doczy, Brian Doyle, Uday Shah, David L. Kencke, Roksana Golizadeh Mojarad, Robert S. Chau
  • Patent number: 8981508
    Abstract: A magnetic field sensor having a support with a top side and a bottom side, whereby a Hall plate is provided on the top side of the support and the Hall plate comprises a carbon-containing layer.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: March 17, 2015
    Assignee: Micronas GmbH
    Inventor: Joerg Franke
  • Patent number: 8981505
    Abstract: A MTJ is disclosed with a discontinuous Mg or Mg alloy layer having a thickness from 1 to 3 Angstroms between a free layer and a capping layer in a bottom spin valve configuration. It is believed the discontinuous Mg layer serves to block conductive material in the capping layer from diffusing through the free layer and into the tunnel barrier layer thereby preventing the formation of conductive channels that function as electrical shunts within the insulation matrix of the tunnel barrier. As a result, the “low tail” percentage in a plot of magnetoresistive ratio vs Rp is minimized which means the number of high performance MTJ elements in a MTJ array is significantly increased, especially when a high temperature anneal is included in the MTJ fabrication process. The discontinuous layer is formed by a low power physical vapor deposition process.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: March 17, 2015
    Assignee: Headway Technologies, Inc.
    Inventors: Takahiro Moriyama, Yu-Jen Wang, Ru-Ying Tong
  • Patent number: 8982614
    Abstract: According to one embodiment, a magnetoresistive effect element includes a first ferromagnetic layer, a tunnel barrier provided on the first ferromagnetic layer, and a second ferromagnetic layer provided on the tunnel barrier. The tunnel barrier includes a nonmagnetic mixture containing MgO and a metal oxide with a composition which forms, in a solid phase, a single phase with MgO.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: March 17, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Makoto Nagamine, Daisuke Ikeno, Katsuya Nishiyama, Katsuaki Natori, Koji Yamakawa
  • Patent number: 8981506
    Abstract: A perpendicular spin-transfer torque magnetic random access memory (STTMRAM) element is configured to store a state when electrical current is applied thereto. The perpendicular STTMRAM element includes a magnetization layer having a first free layer and a second free layer, separated by a non-magnetic separation layer (NMSL). The direction of magnetization of the first and second free layers each is in-plane prior to the application of electrical current and after the application of electrical current, the direction of magnetization of the second free layer becomes substantially titled out-of-plane and the direction of magnetization of the first free layer switches. Upon electrical current being discontinued, the direction of magnetization of the second free layer remains in a direction that is substantially opposite to that of the first free layer.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: March 17, 2015
    Assignee: Avalanche Technology, Inc.
    Inventors: Yuchen Zhou, Yiming Huai, Jing Zhang, Rajiv Yadav Ranjan, Roger Klas Malmhall
  • Patent number: 8981436
    Abstract: A stacked structure according to an embodiment includes: a semiconductor layer; a first layer formed on the semiconductor layer, the first layer containing at least one element selected from Zr, Ti, and Hf, the first layer being not thinner than a monoatomic layer and not thicker than a pentatomic layer; a tunnel barrier layer formed on the first layer; and a magnetic layer formed on the tunnel barrier layer.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: March 17, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiaki Saito, Tomoaki Inokuchi, Mizue Ishikawa, Hideyuki Sugiyama, Tetsufumi Tanamoto
  • Patent number: 8981502
    Abstract: Methods for forming a magnetic tunnel junction (MTJ) storage element and MTJ storage elements formed are disclosed. The MTJ storage element includes a MTJ stack having a pinned layer stack, a barrier layer and a free layer. An adjusting layer is formed on the free layer, such that the free layer is protected from process related damages. A top electrode is formed on the adjusting layer and the adjusting layer and the free layer are etched utilizing the top electrode as a mask. A spacer layer is then formed, encapsulating the top electrode, the adjusting layer and the free layer. The spacer layer and the remaining portions of the MTJ stack are etched. A protective covering layer is deposited over the spacer layer and the MTJ stack.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: March 17, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Wei-Chuan Chen, Seung H. Kang
  • Patent number: 8981504
    Abstract: A vertical Hall sensor includes first and second vertical Hall effect regions in a semiconductor substrate, with first and second pluralities of contacts arranged at one side of the first or second vertical Hall effect regions, respectively. The second vertical Hall effect region is connected in series with the first vertical Hall effect region regarding a power supply. The vertical Hall sensor further includes first and second layers adjacent to the first and second vertical Hall effect regions at a side other than a side of the first or second pluralities of contacts. The first and second layers have different doping properties than the first and second vertical Hall effect regions and insulate the first and second vertical Hall effect regions from a bulk of the semiconductor substrate by at least one reverse-biased p-n junction per vertical Hall effect region during an operation of the vertical Hall sensor.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: March 17, 2015
    Assignee: Infineon Technologies AG
    Inventors: Mario Motz, Udo Ausserlechner
  • Patent number: 8981503
    Abstract: An STT MTJ cell is formed with a magnetic anisotropy of its free and reference layers that is perpendicular to their planes of formation. The reference layer of the cell is an SAF multilayered structure with a single magnetic domain to enhance the bi-stability of the magnetoresistive states of the cell. The free layer of the cell is etched back laterally from the reference layer, so that the fringing stray field of the reference layer is no more than 15% of the coercivity of the free layer and has minimal effect on the free layer.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: March 17, 2015
    Assignee: Headway Technologies, Inc.
    Inventors: Robert Beach, Guenole Jan, Yu-Jen Wang, Witold Kula, Po-Kang Wang
  • Patent number: 8981507
    Abstract: According to one embodiment, a method for manufacturing a nonvolatile memory device including a plurality of memory cells is disclosed. Each of the plurality of memory cells includes a base layer including a first electrode, a magnetic tunnel junction device provided on the base layer, and a second electrode provided on the magnetic tunnel junction device. The magnetic tunnel junction device includes a first magnetic layer, a tunneling barrier layer provided on the first magnetic layer, and a second magnetic layer provided on the tunneling barrier layer. The method can include etching a portion of the second magnetic layer and a portion of the first magnetic layer by irradiating gas clusters onto a portion of a surface of the second magnetic layer or a portion of a surface of the first magnetic layer.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: March 17, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shigeki Takahashi, Kyoichi Suguro, Junichi Ito, Yuichi Ohsawa, Hiroaki Yoda
  • Patent number: 8981442
    Abstract: A semiconductor magnetic field sensor comprising a semiconductor well on top of a substrate layer is disclosed. The semiconductor well includes a first current collecting region and a second current collecting region and a current emitting region placed between the first current collecting region and the second current collecting region. The semiconductor well also includes a first MOS structure, having a first gate terminal, located between the first current collecting region and the current emitting region and a second MOS structure, having a second gate terminal, located between the current emitting region and the second current collecting region. In operation, the first gate terminal and the second gate terminal are biased for increasing a deflection length of a first current and of a second current. The deflection length is perpendicular to a plane defined by a surface of the semiconductor magnetic field sensor and parallel to a magnetic field.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: March 17, 2015
    Assignee: NXP B.V.
    Inventors: Victor Zieren, Anco Heringa, Olaf Wunnicke, Jan Slotboom, Robert Hendrikus Margaretha van Veldhoven, Jan Claes
  • Publication number: 20150069552
    Abstract: According to one embodiment, a magnetic memory device includes a magnetoresistance effect element having a structure in which a first magnetic layer, a nonmagnetic layer, a second magnetic layer, and a third magnetic layer are stacked, wherein the third magnetic layer comprises a first region and a plurality of second regions, and each of the second regions is surrounded by the first region, has conductivity, and has a greater magnetic property than the first region.
    Type: Application
    Filed: March 7, 2014
    Publication date: March 12, 2015
    Inventors: Yutaka HASHIMOTO, Tadashi KAI, Masahiko NAKAYAMA, Hiroaki YODA, Toshihiko NAGASE, Masatoshi YOSHIKAWA, Yasuyuki SONODA
  • Publication number: 20150069547
    Abstract: According to one embodiment, a magnetic memory includes a magnetoresistive effect element provided in a memory cell, the magnetoresistive effect element including a multilayer structure including a first magnetic layer, a second magnetic layer, and a nonmagnetic layer between the first magnetic layer and the second magnetic layer, a first electrode provided on an upper portion of the multilayer structure and including a first material, and a first film provided on a side surface of the first electrode and including a second material which is different from the first material of the first electrode.
    Type: Application
    Filed: March 7, 2014
    Publication date: March 12, 2015
    Inventors: Masayoshi IWAYAMA, Hisanori AIKAWA
  • Publication number: 20150069554
    Abstract: According to one embodiment, a magnetic memory is disclosed. The memory includes a conductive layer containing a first metallic material, a stacked body formed above the conductive layer and including a first magnetic layer containing a second metallic material, a second magnetic layer, and a tunnel barrier layer formed between the first magnetic layer and the second magnetic layer, and an insulating layer formed on a side face of the stacked body and containing an oxide of the first metallic material. A standard electrode potential of the first metallic material is lower than the standard electrode potential of the second metallic material.
    Type: Application
    Filed: March 7, 2014
    Publication date: March 12, 2015
    Inventors: Masahiko NAKAYAMA, Yasuyuki SONODA, Hiroaki YODA, Makoto NAGAMINE, Masatoshi YOSHIKAWA, Masaru TOKO, Tadashi KAI, Daisuke WATANABE, Youngmin EEH, Koji UEDA, Kazuya SAWADA, Toshihiko NAGASE
  • Publication number: 20150070984
    Abstract: A spin valve includes two layers, a reference layer and a free layer, magnetised perpendicularly to a layer plane and an intermediate layer disposed between the magnetic layers. The reference layer predetermines a preferred orientation of a direction of the magnetisation, is formed from a ferrimagnetic material, and has a higher coercive field strength than the free layer. The free layer is formed from a ferromagnetic or ferrimagnetic material. The intermediate layer is electrically conductive or non-conductive. The reference layer and the free layer have a single-domain magnetisation. The reference layer is formed from an alloy comprising a rare earth element and a transition metal. The coercive field strength of the reference layer is set via its composition and is more than 0.8 kA/m. An anisotropy and layer thickness of the reference layer and a coupling constant define an exchange bias field between 0.8 and 80 kA/m.
    Type: Application
    Filed: March 1, 2013
    Publication date: March 12, 2015
    Inventor: Florin Radu
  • Publication number: 20150069548
    Abstract: According to one embodiment, a magnetoresistive element includes a storage layer having a variable magnetization direction, a reference layer having an invariable magnetization direction, a tunnel barrier layer formed between the storage layer and the reference layer, and a heater layer formed on an opposite side to the tunnel barrier layer of the storage layer. The storage layer includes a first layer formed on a side of the heater layer, and a second layer formed on the side of the tunnel barrier layer and having a Curie temperature higher than that of the first layer.
    Type: Application
    Filed: March 7, 2014
    Publication date: March 12, 2015
    Inventors: Masahiko NAKAYAMA, Tadashi KAI, Hiroaki YODA
  • Publication number: 20150070980
    Abstract: A magnetic memory device includes a magnetic thin wire including magnetic domains along a direction in which the magnetic thin wire extends. Magnetization directions of the magnetic domains are variable. A magnetic tunnel junction (MTJ) structure includes a pinned layer with a fixed magnetization direction and an insulator, and makes an MTJ including the pinned layer and insulator and a magnetic domain in the magnetic thin wire in a first position to sandwich the insulator with pinned layer. First and second electrodes are at both ends of the magnetic thin wire. At least one third electrode is coupled to the magnetic thin wire between the first and second electrodes.
    Type: Application
    Filed: January 15, 2014
    Publication date: March 12, 2015
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yoshihisa IWATA, Yoshiaki OSADA, Sumiko DOMAE
  • Publication number: 20150069550
    Abstract: According to one embodiment, a magnetoresistive element is disclosed. The element includes a lower electrode, a stacked body provided on the lower electrode and including a first magnetic layer, a tunnel barrier layer and a second magnetic layer. The first magnetic layer is under the tunnel barrier layer, the second magnetic layer is on the tunnel barrier layer. The first magnetic layer includes a first region and a second region outside the first region to surround the first region. The second region includes an element in the first region and other element being different from the element.
    Type: Application
    Filed: March 7, 2014
    Publication date: March 12, 2015
    Inventors: Kuniaki SUGIURA, Tadashi KAI
  • Publication number: 20150069559
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device includes a magnetoresistive element formed on a semiconductor substrate, a first contact plug which extends through an interlayer dielectric film formed on the semiconductor substrate and immediately below the magnetoresistive element, has a bottom surface in contact with an upper surface of the semiconductor substrate, and is adjacent to the magnetoresistive element, and an insulating film formed between the magnetoresistive element and the first contact plug and on the interlayer dielectric film, wherein the insulating film includes a first region positioned on a side of the interlayer dielectric film, and a second region positioned in the insulating film and on an upper surface of the first region, the insulating film is made of SiN, and the first region is a nitrogen rich film compared to the second region.
    Type: Application
    Filed: March 10, 2014
    Publication date: March 12, 2015
    Inventors: Shuichi TSUBATA, Masatoshi YOSHIKAWA, Satoshi SETO, Kazuhiro TOMIOKA, Ga Young HA
  • Publication number: 20150069555
    Abstract: According to one embodiment, a magnetic memory includes first and second magnetoresistive effect elements neighboring in a first direction in a cell array of a substrate, each of the first and second magnetoresistive effect elements including a first magnetic layer with an invariable direction of magnetization, a second magnetic layer with a variable direction of magnetization, and a nonmagnetic layer between the first magnetic layer and the second magnetic layer. Directions of magnetization of the first magnetic layers of the first and second magnetoresistive effect elements are different from each other.
    Type: Application
    Filed: March 7, 2014
    Publication date: March 12, 2015
    Inventors: Shintaro SAKAI, Masahiko NAKAYAMA
  • Publication number: 20150069561
    Abstract: A device and a method of forming a device are presented. A substrate is provided. Front end of line processing is performed to form circuit component on the substrate and back end of line processing is performed to include the uppermost inter level dielectric (ILD) layer. The uppermost ILD layer includes first and second interconnects. A pad level is formed over the uppermost ILD layer. A storage unit of a memory cell is provided in the pad level. The storage unit is coupled to the first interconnect of the uppermost ILD layer. A cell interconnect and a pad interconnect are formed in the pad level. The cell interconnect is formed on top of and coupled to the storage unit and the pad interconnect is coupled to the second interconnect in the uppermost ILD layer.
    Type: Application
    Filed: September 11, 2014
    Publication date: March 12, 2015
    Inventors: Juan Boon TAN, Wanbing YI, Danny Pak-Chum SHUM, Yi JIANG
  • Publication number: 20150069545
    Abstract: According to one embodiment, a semiconductor device includes a MRAM chip including a semiconductor substrate and a memory cell array area includes magnetoresistive elements which are provided on the semiconductor substrate, and a magnetic shield layer separated from the MRAM chip, surrounding the memory cell array area in a circumferential direction of the MRAM chip, and having a closed magnetic path.
    Type: Application
    Filed: January 28, 2014
    Publication date: March 12, 2015
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Kenji NOMA
  • Publication number: 20150070983
    Abstract: According to one embodiment, a magnetic memory device includes a bit line, a source line, a magnetoresistance effect element between the bit line and the source line, and a nonlinear element provided between the bit line and the source line and connected in series to the magnetoresistance effect element. The nonlinear element has a voltage-current characteristic in which current increases until a voltage to be applied becomes a predetermined applied voltage, when current flowing through the nonlinear element is within a range not exceeding a predetermined current, and current increases within an applied voltage range lower than the predetermined applied voltage, when current flowing through the nonlinear element is within a range exceeding the predetermined current.
    Type: Application
    Filed: March 10, 2014
    Publication date: March 12, 2015
    Inventor: Yoshinori KUMURA
  • Publication number: 20150069560
    Abstract: Magnetic memory devices and methods of manufacturing the same are disclosed. A method may include forming a magnetic tunnel junction layer on a substrate, forming mask patterns on the magnetic tunnel junction layer, and sequentially performing a plurality of ion implantation processes using the mask patterns as ion implantation masks to form an isolation region in the magnetic tunnel junction layer. The isolation region may thereby define magnetic tunnel junction parts that are disposed under corresponding ones of the mask patterns. A magnetic memory device may include a plurality of magnetic tunnel junction parts electrically and magnetically isolated from each other through the isolation region.
    Type: Application
    Filed: June 20, 2014
    Publication date: March 12, 2015
    Inventors: Yoonchul CHO, Ken TOKASHIKI
  • Publication number: 20150069549
    Abstract: According to one embodiment, a first magnetic layer, a first nonmagnetic layer on the first magnetic layer, a second magnetic layer on the first nonmagnetic layer, a second nonmagnetic layer on the second magnetic layer, and a third magnetic layer on the second nonmagnetic layer, the third magnetic layer having a sidewall includes a material which is included in the second nonmagnetic layer.
    Type: Application
    Filed: March 7, 2014
    Publication date: March 12, 2015
    Inventors: Kazuhiro TOMIOKA, Satoshi SETO, Masatoshi YOSHIKAWA
  • Publication number: 20150069541
    Abstract: Some embodiments of the present disclosure relate to a method that achieves a substantially uniform pattern of magnetic random access memory (MRAM) cells with a minimum dimension below the lower resolution limit of some optical lithography techniques. A copolymer solution comprising first and second polymer species is spin-coated over a heterostructure which resides over a surface of a substrate. The heterostructure comprises first and second ferromagnetic layers which are separated by an insulating layer. The copolymer solution is subjected to self-assembly into a phase-separated material comprising a pattern of micro-domains of the second polymer species within a polymer matrix comprising the first polymer species. The first polymer species is then removed, leaving a pattern of micro-domains of the second polymer species. A pattern of magnetic memory cells within the heterostructure is formed by etching through the heterostructure while utilizing the pattern of micro-domains as a hardmask.
    Type: Application
    Filed: September 11, 2013
    Publication date: March 12, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Ming Chen, Chern-Yow Hsu, Szu-Yu Wang, Chung-Yi Yu, Chia-Shiung Tsai, Xiaomeng Chen
  • Publication number: 20150069551
    Abstract: According to one embodiment, a magnetoresistive element is disclosed. The magnetoresistive element includes a reference layer. The reference layer includes a first region, and a second region provided outside the first region to surround the same. The second region contains an element contained in the first region and another element being different from the element. The magnetoresistive element further includes a storage layer, and a tunnel barrier layer provided between the reference layer and the storage layer. The storage layer is free from the another element.
    Type: Application
    Filed: March 7, 2014
    Publication date: March 12, 2015
    Inventors: Masaru TOKO, Masahiko NAKAYAMA, Kuniaki SUGIURA, Yutaka HASHIMOTO, Tadashi KAI, Akiyuki MURAYAMA, Tatsuya KISHI
  • Publication number: 20150069557
    Abstract: According to one embodiment, a magnetoresistive element is disclosed. The magnetoresistive element includes a reference layer, a tunnel barrier layer, a storage layer. The storage layer includes a first region and a second region provided outside the first region to surround the first region, the second region including element included in the first region and another element being different from the element. The magnetoresistive element further includes a cap layer including a third region and a fourth region provided outside the third region to surround the third region, the fourth region including an element included in the third region and the another element.
    Type: Application
    Filed: March 10, 2014
    Publication date: March 12, 2015
    Inventors: Masahiko NAKAYAMA, Masatoshi YOSHIKAWA, Tadashi KAI, Yutaka HASHIMOTO, Masaru TOKO, Hiroaki YODA, Jae Geun OH, Keum Bum LEE, Choon Kun RYU, Hyung Suk LEE, Sook Joo KIM
  • Publication number: 20150069546
    Abstract: According to one embodiment, a magnetic memory device includes a semiconductor substrate, a memory cell array area on the semiconductor substrate, the memory cell array area including magnetoresistive elements, each of the magnetoresistive elements having a reference layer with an invariable magnetization, a storage layer with a variable magnetization, and a tunnel barrier layer therebetween, a magnetic field generating area which generates a first magnetic field cancelling a second magnetic field applying from the reference layer to the storage layer, and which is separated from the magnetoresistive elements, and a closed magnetic path area functioning as a closed magnetic path of the first magnetic field, and surrounding the memory cell array area and the magnetic field generating area.
    Type: Application
    Filed: February 11, 2014
    Publication date: March 12, 2015
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Shinya KOBAYASHI, Kenji NOMA, Hisato OYAMATSU
  • Publication number: 20150069542
    Abstract: According to one embodiment, a method of manufacturing a magneto-resistive element, includes forming a first ferromagnetic layer on a substrate, forming a tunnel barrier layer on the first ferromagnetic layer, forming a second ferromagnetic layer containing B on the tunnel barrier layer, exposing a laminate of the first ferromagnetic layer, the tunnel barrier layer, and the second ferromagnetic layer under a pressurized atmosphere, and annealing the laminate while being exposed to the pressurized atmosphere, thereby promoting the orientation of the second magnetic layer.
    Type: Application
    Filed: January 16, 2014
    Publication date: March 12, 2015
    Inventors: Makoto NAGAMINE, Youngmin EEH, Koji UEDA, Daisuke WATANABE, Kazuya SAWADA, Toshihiko NAGASE
  • Publication number: 20150069556
    Abstract: According to one embodiment, a magnetic memory is disclosed. The magnetic memory includes a substrate, a first magnetoresistive element provided on the substrate. A second magnetoresistive element which is provided on the substrate and is arranged next to the first magnetoresistive element. Each of the first and second magnetoresistive elements includes a first magnetic layer, a tunnel barrier layer and a second magnetic layer. The tunnel barrier layer is provided on the first magnetic layer, the second magnetic layer is provided on the tunnel barrier layer. A first stress member having a tensile stress as an internal stress is provided on an area including a side face of the stacked body.
    Type: Application
    Filed: March 10, 2014
    Publication date: March 12, 2015
    Inventors: Koji YAMAKAWA, Sachiyo ITO, Masahiko HASUNUMA, Kenji NOMA, Hiroyuki YANO
  • Publication number: 20150069558
    Abstract: According to one embodiment, a magnetic memory is disclosed. The memory includes a conductive layer containing a first metal material, a stacked body above the conductive layer, and including a first magnetization film containing a second metal material, a second magnetization film, and a tunnel barrier layer between the first magnetization film and the second magnetization film, and an insulating layer on a side face of the stacked body, and containing an oxide of the first metal material. The first magnetization film and/or the second magnetization film includes a first region positioned in a central portion, and a second region positioned in an edge portion and containing As, P, Ge, Ga, Sb, In, N, Ar, He, F, Cl, Br, I, Si, B, C, O, Zr, Tb, S, Se, or Ti.
    Type: Application
    Filed: March 10, 2014
    Publication date: March 12, 2015
    Inventors: Masahiko NAKAYAMA, Tadashi KAI, Masaru TOKO, Hiroaki YODA, Hyung Suk LEE, Jae Geun OH, Choon Kun RYU, Min Suk LEE
  • Publication number: 20150069553
    Abstract: According to one embodiment, a magnetic memory is disclosed. The magnetic memory includes a substrate, and a magnetoresistive element provided on the substrate. The magnetoresistive element includes a first magnetic layer, a tunnel barrier layer on the first magnetic layer, and a second magnetic layer on the tunnel barrier layer. The first magnetic layer or the second magnetic layer includes a first region, second region, and third region whose ratios of crystalline portion are higher in order closer to the tunneling barrier.
    Type: Application
    Filed: March 7, 2014
    Publication date: March 12, 2015
    Inventors: Toshihiko NAGASE, Daisuke WATANABE, Kazuya SAWADA, Koji UEDA, Youngmin EEH, Hiroaki YODA
  • Publication number: 20150069544
    Abstract: According to one embodiment, magneto-resistive element, includes a first ferromagnetic layer formed on an underlying substrate, a tunnel barrier layer formed on the first ferromagnetic layer, a second ferromagnetic formed on the tunnel barrier layer and a cap layer formed on the second ferromagnetic layer, and a surface tension of the cap layer is equal to or less than that of the second ferromagnetic layer.
    Type: Application
    Filed: January 17, 2014
    Publication date: March 12, 2015
    Inventors: Makoto NAGAMINE, Youngmin EEH, Koji UEDA, Daisuke WATANABE, Kazuya SAWADA, Toshihiko NAGASE