Including Dielectric Isolation Means Patents (Class 257/506)
  • Patent number: 8617962
    Abstract: The invention relates to finishing a substrate of the semiconductor-on-insulator (SeOI) type comprising an insulator layer buried between two semiconducting material layers. The method successively comprises routing the annular periphery of the substrate so as to obtain a routed substrate, and encapsulating the routed substrate so as to cover the routed side edge of the buried insulator layer by means of a semiconducting material.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: December 31, 2013
    Assignee: Soitec
    Inventors: Walter Schwarzenbach, Aziz Alami-Idrissi, Alexandre Chibko, Sebastien Kerdiles
  • Patent number: 8618580
    Abstract: An integrated circuit chip includes a semiconductor substrate, a first circuit in or coupled to the semiconductor substrate, a second circuit device in or coupled the semiconductor substrate, a dielectric structure coupled the semiconductor substrate, a first interconnecting structure in the dielectric structure, a first pad connected to the first node of the voltage regulator through the first interconnecting structure, a second interconnecting structure in the dielectric structure, a second pad connected to the first node of the analog circuit through the second interconnecting structure, a passivation layer coupled the dielectric structure, wherein multiple openings in the passivation layer exposes the first and second pads, and a third interconnecting structure coupled the passivation layer and coupled the first and second pads.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: December 31, 2013
    Assignee: Megit Acquisition Corp.
    Inventors: Mou-Shiung Lin, Jin-Yuan Lee, Chien-Kang Chou
  • Publication number: 20130341754
    Abstract: Shallow trench isolation structures are provided for use with UTBB (ultra-thin body and buried oxide) semiconductor substrates, which prevent defect mechanisms from occurring, such as the formation of electrical shorts between exposed portions of silicon layers on the sidewalls of shallow trench of a UTBB substrate, in instances when trench fill material of the shallow trench is subsequently etched away and recessed below an upper surface of the UTBB substrate.
    Type: Application
    Filed: June 25, 2012
    Publication date: December 26, 2013
    Applicant: International Business Machines Corporation
    Inventors: Bruce B. Doris, Kangguo Cheng, Balasubramanian S. Haran, Ali Khakifirooz, Pranita Kulkarni, Arvind Kumar, Shom Ponoth
  • Publication number: 20130341709
    Abstract: In a semiconductor device including a semiconductor substrate, a trench formed on the semiconductor substrate, an insulating film formed on a side wall of the trench, and an electrode formed on the insulating film. The electrode includes a first film made of first metal nitride, an intervention film made of silicon or of second metal silicide, and a second film made of third metal in this order.
    Type: Application
    Filed: June 17, 2013
    Publication date: December 26, 2013
    Inventor: Masanori KIKUCHI
  • Publication number: 20130341755
    Abstract: An insulating portion has a first region, a second region, and a third region in the stated order from the silicon portion side, the nitrogen concentration of the first region is lower than the nitrogen concentration of the second region and the oxygen concentration of the first region, the nitrogen concentration of the third region is lower than the nitrogen concentration of the second region and the oxygen concentration of the third region, and the thickness of the first region is larger than the thickness of the third region.
    Type: Application
    Filed: June 18, 2013
    Publication date: December 26, 2013
    Inventor: Kazuo Kokumai
  • Publication number: 20130341756
    Abstract: A semiconductor-on-glass substrate having a relatively stiff (e.g. relatively high Young's modulus of 125 or higher) stiffening layer or layers placed between the silicon film and the glass in order to eliminate the canyons and pin holes that otherwise form in the surface of the transferred silicon film during the ion implantation thin film transfer process. The new stiffening layer may be formed of a material, such as silicon nitride, that also serves as an efficient barrier against penetration of sodium and other harmful impurities from the glass substrate into the silicon film.
    Type: Application
    Filed: August 22, 2013
    Publication date: December 26, 2013
    Applicants: SOITEC, CORNING INCORPORATED
    Inventors: Nadia Ben Mohamed, Ta-Ko Chuang, Jeffrey Scott Cites, Daniel Delprat, Alexander Usenko
  • Patent number: 8614501
    Abstract: A method of producing a layer of cavities in a structure comprises at least one substrate formed from a material that can be oxidized or nitrided, the method comprising the following steps: implanting ions into the substrate in order to form an implanted ion concentration zone at a predetermined mean depth; heat treating the implanted substrate to form a layer of cavities at the implanted ion concentration zone; and forming an insulating layer in the substrate by thermochemical treatment from one surface of the substrate, the insulating layer that is formed extending at least partially into the layer of cavities.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: December 24, 2013
    Assignee: SOITEC
    Inventor: Didier Landru
  • Publication number: 20130334651
    Abstract: A shallow trench is formed to extend into a handle substrate of a semiconductor-on-insulator (SOI) layer. A dielectric liner stack of a dielectric metal oxide layer and a silicon nitride layer is formed in the shallow trench, followed by deposition of a shallow trench isolation fill portion. The dielectric liner stack is removed from above a top surface of a top semiconductor portion, followed by removal of a silicon nitride pad layer and an upper vertical portion of the dielectric metal oxide layer. A divot laterally surrounding a stack of a top semiconductor portion and a buried insulator portion is filled with a silicon nitride portion. Gate structures and source/drain structures are subsequently formed. The silicon nitride portion or the dielectric metal oxide layer functions as a stopping layer during formation of source/drain contact via holes, thereby preventing electrical shorts between source/drain contact via structures and the handle substrate.
    Type: Application
    Filed: June 18, 2012
    Publication date: December 19, 2013
    Applicants: International Business Machines Corporation, STMicroelectronic, Inc., Commissariat a l'energie atomique et aux energies alternatives
    Inventors: Bruce B. Doris, Shom Ponoth, Prasanna Khare, Qing Liu, Nicolas Loubet, Maud Vinet
  • Publication number: 20130334653
    Abstract: A semiconductor device having a semiconductor die and an edge termination structure is provided. The semiconductor die includes an outer edge and an active area defining a main horizontal surface and being spaced apart from the outer edge. The edge termination structure includes at least one vertical trench having an insulated side wall forming, in a horizontal cross-section, an acute angle with the outer edge. The acute angle is lower than about 20°.
    Type: Application
    Filed: August 21, 2013
    Publication date: December 19, 2013
    Applicant: Infineon Technologies Austria AG
    Inventors: Franz Hirler, Anton Mauder, Hans-Joachim Schulze
  • Publication number: 20130334650
    Abstract: A semiconductor structure is located in a recess of a substrate. The semiconductor structure includes a liner, a silicon rich layer and a filling material. The liner is located on the surface of the recess. The silicon rich layer is located on the liner. The filling material is located on the silicon rich layer and fills the recess. Furthermore, a semiconductor process forming said semiconductor structure is also provided.
    Type: Application
    Filed: June 13, 2012
    Publication date: December 19, 2013
    Inventors: Chih-Chien Liu, Chia-Lung Chang, Jei-Ming Chen, Jui-Min Lee, Yuh-Min Lin
  • Publication number: 20130334652
    Abstract: A shallow trench isolation (STI) structure includes a top surface formed completely of silicon nitride. The top surface of the STI structure is coplanar with a top substrate surface or extends above the top substrate surface. The STI structures include further dielectric materials beneath the silicon nitride and an oxide liner and any portions that extend above the substrate surface are formed of silicon nitride.
    Type: Application
    Filed: August 19, 2013
    Publication date: December 19, 2013
    Applicant: WaferTech, LLC
    Inventors: Daniel Piper, Franklin Chiang, Ganesh Yerubandi
  • Patent number: 8610240
    Abstract: A system and method for forming multi recessed shallow trench isolation structures on substrate of an integrated circuit is provided. An integrated circuit includes a substrate, at least two shallow trench isolation (STI) structures formed in the substrate, an oxide fill disposed in the at least two STI structures, and semiconductor devices disposed on the oxide fill in the at least two STI structures. A first STI structure is formed to a first depth and a second STI structure is formed to a second depth. The oxide fill fills the at least two STI structures, and the first depth and the second depth are based on semiconductor device characteristics of semiconductor devices disposed thereon.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: December 17, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Lin Lee, Chang-Yun Chang
  • Patent number: 8609505
    Abstract: A capacitor structure includes a semiconductor substrate; a first capacitor plate positioned on the semiconductor substrate, the first capacitor plate including a polysilicon structure having a surrounding spacer; a silicide layer formed in a first portion of an upper surface of the first capacitor plate; a capacitor dielectric layer formed over a second portion of the upper surface of the first capacitor plate and extending laterally beyond the spacer to contact the semiconductor substrate; a contact in an interlayer dielectric (ILD), the contact contacting the silicide layer and a first metal layer over the ILD; and a second capacitor plate over the capacitor dielectric layer, wherein a metal-insulator-metal (MIM) capacitor is formed by the first capacitor plate, the capacitor dielectric layer and the second capacitor plate and a metal-insulator-semiconductor (MIS) capacitor is formed by the second capacitor plate, the capacitor dielectric layer and the semiconductor substrate.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: December 17, 2013
    Assignee: International Business Machines Corporation
    Inventors: Douglas D. Coolbaugh, Ebenezer E. Eshun, Robert M. Rassel, Anthony K. Stamper
  • Patent number: 8610238
    Abstract: Structures and methods of forming crack stop trenches are disclosed. The method includes forming active regions disposed in cell regions of a substrate, the cell regions separated by dicing channels, and forming back end of line (BEOL) layers over the substrate, the BEOL layers being formed over the cell regions and the dicing channels. Crack stop trenches are then formed encircling the cell regions by etching a portion of the BEOL layers surrounding the cell regions. The wafer is diced along the dicing channels.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: December 17, 2013
    Assignee: Infineon Technologies AG
    Inventors: Erdem Kaltalioglu, Hermann Wendt
  • Publication number: 20130328160
    Abstract: Semiconductor device comprises a memory cell region, a peripheral region, and first wiring. The memory cell region includes a first isolation region, and a first active region provided so as to be divided off by the first isolation region. The peripheral region includes a second isolation region, and a second active region divided off by the first and second isolation regions and protruding from the upper surface of an insulating film located in the first and second isolation regions. The first wiring is buried in portions of a semiconductor substrate within the memory cell region and the peripheral region, so as to extend over the first and second active regions in a first direction. The first-direction width of the second active region is constant.
    Type: Application
    Filed: May 20, 2013
    Publication date: December 12, 2013
    Applicant: Elpida Memory, Inc.
    Inventor: Yohei OTA
  • Publication number: 20130328157
    Abstract: A method of forming improved spacer isolation in deep trench including recessing a node dielectric, a first conductive layer, and a second conductive layer each deposited within a deep trench formed in a silicon-on-insulator (SOI) substrate, to a level below a buried oxide layer of the SOI substrate, and creating an opening having a bottom surface in the deep trench. Further including depositing a spacer along a sidewall of the deep trench and the bottom surface of the opening, and removing the spacer from the bottom surface of the opening. Performing at least one of an ion implantation and an ion bombardment in one direction at an angle into an upper portion of the spacer. Removing the upper portion of the spacer from the sidewall of the deep trench. Depositing a third conductive layer within the opening.
    Type: Application
    Filed: June 6, 2012
    Publication date: December 12, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Joseph Ervin, Chengwen Pei, Ravi M. Todi, Geng Wang
  • Publication number: 20130328158
    Abstract: A semiconductor structure includes a substrate layer and a conductive layer connected with the substrate layer. An active circuit is connected with the conductive layer. A seal ring is connected with the conductive layer and separated from the active circuit by an assembly isolation region. An electrical isolation region is positioned in the conductive layer and adjacent to the assembly isolation region, where the electrical isolation region extends to the substrate layer.
    Type: Application
    Filed: June 11, 2012
    Publication date: December 12, 2013
    Applicant: BROADCOM CORPORATION
    Inventors: Sumant Ranganathan, Kent Charles Oertle, Yew Hoong Wan
  • Publication number: 20130328159
    Abstract: Methods and structures are provided for implementing independently voltage controlled isolated silicon regions under a buried oxide layer for biasing field effect transistors above the buried oxide layer on Silicon-on-Insulator (SOI) wafers. Using a bonded-wafer technique, a first bulk substrate wafer is bonded with a second wafer providing a buried oxide (BOX) layer under a transistor silicon layer creating an SOI wafer. An independently voltage controlled isolated silicon region is created in the created SOI wafer beneath the BOX layer. The transistor silicon layer is polished to a desired thickness, and normal processing is continued with transistors and desired circuits placed over the isolated silicon region. A contact is formed through the transistor silicon layer and BOX layer to the isolated silicon region for connecting the independently voltage controlled isolated silicon region to a voltage.
    Type: Application
    Filed: June 12, 2012
    Publication date: December 12, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Patent number: 8604562
    Abstract: The embodiments of mechanisms described enables improved planarity of substrates, which is crucial for patterning and device yield improvement. Chemical-mechanical polishing (CMP) is used to remove film to planarize the substrate before the final thickness is reached or before all removal film is polished. The substrate is then measured for its topography and film thickness. The topography and thickness data are used by the gas cluster ion beam (GCIB) etch tool to determine how much film to remove on a particular location. GCIB etch enables removal of final layer to meet the requirements of substrate uniformity and thickness target. The mechanisms enable improved planarity to meet the requirement of advanced processing technologies.
    Type: Grant
    Filed: May 8, 2012
    Date of Patent: December 10, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Shiang-Bau Wang
  • Publication number: 20130320483
    Abstract: Semiconductor-on-insulator (SOI) substrates including a buried oxide (BOX) layer having a thickness of less than 300 ? are provided. The (SOI) substrates having the thin BOX layer are provided using a method including a step in which oxygen ions are implanted at high substrate temperatures (greater than 600° C.), and at a low implant energy (less than 40 keV). An anneal step in an oxidizing atmosphere follows the implant step and is performed at a temperature less than 1250° C. The anneal step in oxygen containing atmosphere converts the region containing implanted oxygen atoms formed by the implant step into a BOX having a thickness of less than 300 ?. In some instances, the top semiconductor layer of the SOI substrate has a thickness of less than 300 ?.
    Type: Application
    Filed: May 30, 2012
    Publication date: December 5, 2013
    Applicant: International Business Machines Corporation
    Inventors: Tze-Chiang Chen, Joel P. de Souza, Devendra K. Sadana, Ghavam G. Shahidi
  • Publication number: 20130320484
    Abstract: An apparatus of and method for making a semiconductor structure having a shallow trench isolation (STI) trench with a substantially v-shaped profile, that is the distance between top portions is greater than the distance between bottom portions of shallow trench isolation (STI) structure sidewalls adjacent to the trench, provides for substantially seamless and substantially void-free gate structures. The semiconductor structures are formed by implanting an implantation species into the sidewalls, which allows for the top portions of the sidewalls to be etched away at a greater rate than that of the bottom portions, resulting in the substantially v-shaped profile. And the substantially v-shaped profile allows for subsequent device layers to more easily and smoothly fill in the v-shaped trenches, due to a wider opening toward the tops of the trenches.
    Type: Application
    Filed: June 5, 2012
    Publication date: December 5, 2013
    Applicant: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: JUNG-YI GUO, CHUN-MIN CHENG
  • Patent number: 8598676
    Abstract: A starting substrate in the form of a semiconductor wafer (1) has a first side and a second side, the sides being plane-parallel with respect to each other, and has a thickness rendering it suitable for processing without significant risk of being damaged, for the fabrication of combined analogue and digital designs, the wafer including at least two partitions (A1, A2; DIGITAL, ANALOGUE) electrically insulated from each other by insulating material (2; 38; 81; L) extending entirely through the wafer. A method for making such substrates including etching trenches in a wafer, and filling trenches with insulating material is also described.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: December 3, 2013
    Assignee: Silex Microsystems AB
    Inventors: Thorbjörn Ebefors, Tomas Bauer
  • Patent number: 8598686
    Abstract: The invention provides an electronic device package structure and method of fabrication thereof. The electronic device package structure includes a chip having an active surface and a bottom surface. A dielectric layer is disposed on the active surface of the chip. At least one trench is formed through the dielectric layer. A first protection layer covers the dielectric layer and sidewalls of the trench. A second protection layer covers the first protection layer, filling the trench.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: December 3, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Tao-Chih Chang, Su-Tsai Lu, Jing-Yao Chang, Chau-Jie Zhan
  • Patent number: 8598675
    Abstract: An trench isolation structure and method for manufacturing the trench isolation structure are disclosed. An exemplary trench isolation structure includes a first portion and a second portion. The first portion extends from a surface of a semiconductor substrate to a first depth in the semiconductor substrate, and has a width that tapers from a first width at the surface of the semiconductor substrate to a second width at the first depth, the first width being greater than the second width. The second portion extends from the first depth to a second depth in the semiconductor substrate, and has substantially the second width from the first depth to the second depth.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: December 3, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Shiang-Bau Wang
  • Patent number: 8598630
    Abstract: A semiconductor device is provided which includes a semiconductor substrate having a first region and a second region, the first and second regions being isolated from each other, a plurality of transistors formed in the first region, an alignment mark formed in the second region, the alignment mark having a plurality of active regions in a first direction, and a dummy gate structure formed over the alignment mark, the dummy gate structure having a plurality of lines in a second direction different from the first direction.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: December 3, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Gary Shen, Ming-Yuan Wu, Chiung-Han Yeh, Kong-Beng Thei, Harry Chuang
  • Patent number: 8592940
    Abstract: A mask having features formed by self-organizing material, such as diblock copolymers, is formed on a partially fabricated integrated circuit. A copolymer template, or seed layer, is formed on the surface of the partially fabricated integrated circuit. To form the seed layer, diblock copolymers, composed of two immiscible blocks, are deposited in the space between copolymer alignment guides. The copolymers self-organize, with the guides guiding the self-organization and with each block aggregating with other blocks of the same type, thereby forming the seed layer. Supplemental diblock copolymers are deposited over the seed layer. The copolymers in the seed layer guide self-organization of the supplemental copolymers, thereby vertically extending the pattern formed by the copolymers in the seed layer. Block species are subsequently selectively removed to form a pattern of voids defined by the remaining block species, which form a mask that can be used to pattern an underlying substrate.
    Type: Grant
    Filed: January 16, 2012
    Date of Patent: November 26, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Steve Kramer
  • Publication number: 20130307043
    Abstract: Capacitors include a first electrical terminal that has fins formed from doped semiconductor on a top layer of doped semiconductor on a semiconductor-on-insulator substrate; a second electrical terminal that has an undoped material having bottom surface shape that is complementary to the first electrical terminal, such that an interface area between the first electrical terminal and the second electrical terminal is larger than a capacitor footprint; and a dielectric layer separating the first and second electrical terminals.
    Type: Application
    Filed: May 21, 2012
    Publication date: November 21, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: KANGGUO CHENG, Balasubramanian S. Haran, Shom Ponoth, Theodorus E. Standaert, Tenko Yamashita
  • Patent number: 8587085
    Abstract: There is provided a technology capable of providing desirable operation characteristics in a field effect transistor formed in an active region surrounded by a trench type element isolation part. An element isolation part includes trench type element isolation films, diffusion preventive films each including a silicon film or a silicon oxide film, and having a thickness of 10 to 20 nm formed over the top surfaces of the trench type element isolation films, and silicon oxide films each with a thickness of 0.5 to 2 nm formed over the top surfaces of the diffusion preventive films. The composition of the diffusion preventive film is SiOx (0?x<2). Each composition of the trench type element isolation films and the silicon oxide films is set to be SiO2.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: November 19, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Katsuyuki Horita
  • Publication number: 20130301975
    Abstract: An optical modulator includes an input port, a first waveguide region comprising silicon and optically coupled to the input port, and a waveguide splitter optically coupled to the first waveguide region and having a first output and a second output. The optical modulator also includes a first phase adjustment section optically coupled to the first output and comprising a first III-V diode and a second phase adjustment section optically coupled to the second output and comprising a second III-V diode. The optical modulator further includes a waveguide coupler optically coupled to the first phase adjustment section and the second phase adjustment section, a second waveguide region comprising silicon and optically coupled to the waveguide coupler, and an output port optically coupled to the second waveguide region.
    Type: Application
    Filed: April 12, 2013
    Publication date: November 14, 2013
    Applicant: Skorpios Technologies, Inc.
    Inventor: Skorpios Technologies, Inc.
  • Publication number: 20130299938
    Abstract: Disclosed is a Zener diode having a scalable reverse-bias breakdown voltage (Vb) as a function of the position of a cathode contact region relative to the interface between adjacent cathode and anode well regions. Specifically, cathode and anode contact regions are positioned adjacent to corresponding cathode and anode well regions and are further separated by an isolation region. However, while the anode contact region is contained entirely within the anode well region, one end of the cathode contact region extends laterally into the anode well region. The length of this end can be predetermined in order to selectively adjust the Vb of the diode (e.g., increasing the length reduces Vb of the diode and vice versa). Also disclosed are an integrated circuit, incorporating multiple instances of the diode with different reverse-bias breakdown voltages, a method of forming the diode and a design structure for the diode.
    Type: Application
    Filed: July 19, 2013
    Publication date: November 14, 2013
    Inventors: Frederick G. Anderson, Natalie B. Feilchenfeld, David L. Harmon, Richard A. Phelps, Yun Shi, Michael J. Zierak
  • Patent number: 8581316
    Abstract: Provided is a semiconductor device including, on the same semiconductor substrate, a transistor element, a capacitor, and a resistor. The capacitor is formed on an active region, and the resistor is formed on an element isolation region, both formed of the same polysilicon film. By CMP or etch-back, the surface is ground down while planarizing the surface until a resistor has a desired thickness. Owing to a difference in height between the active region and the element isolation region, a thin resistor and a thick upper electrode of the capacitor are formed to prevent passing through of a contact.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: November 12, 2013
    Assignee: Seiko Instruments Inc.
    Inventors: Ayako Inoue, Kazuhiro Tsumura
  • Publication number: 20130292791
    Abstract: In order to prevent formation of voids in STI film, after a second buried insulating layer is filled and planarized, a high density cap is formed embedded in the center region of the second buried insulating layer of the STI trench. The high density cap shields and protects the weaker center region of the second buried insulating layer of the STI trench from the subsequent processing steps and prevents formation of voids in the second buried insulating layer.
    Type: Application
    Filed: May 1, 2012
    Publication date: November 7, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Li LIN, Yi-Fang LI, Chun-Sheng WU, Po-Hsiung LEU, Ding-I LIU
  • Publication number: 20130292792
    Abstract: A semiconductor device includes active regions separated by a trench, a separation layer dividing the trench, and buried bit lines buried in the trench with the separation layer interposed between the buried bit lines.
    Type: Application
    Filed: July 10, 2013
    Publication date: November 7, 2013
    Inventor: Ki-Ro HONG
  • Patent number: 8575040
    Abstract: Semiconductor devices, structures and systems that utilize a polysilazane-based silicon oxide layer or fill, and methods of making the oxide layer are disclosed. In one embodiment, a polysilazane solution is deposited on a substrate and processed with ozone in a wet oxidation at low temperature to chemically modify the polysilazane material to a silicon oxide layer.
    Type: Grant
    Filed: July 6, 2009
    Date of Patent: November 5, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Janos Fucsko, John A. Smythe, III, Li Li, Grady S. Waldo
  • Publication number: 20130285194
    Abstract: The present disclosure provides an integrated circuit design method. In an example, a method includes receiving an integrated circuit design layout that includes an active region feature, a contact feature, and an isolation feature, wherein a portion of the active region feature is disposed between the contact feature and the isolation feature; determining whether a thickness of the portion of the active region feature disposed between the contact feature and the isolation feature is less than a threshold value; and modifying the integrated circuit design layout if the thickness is less than the threshold value, wherein the modifying includes adding a supplementary active region feature adjacent to the portion of the active region feature disposed between the contact feature and the isolation feature.
    Type: Application
    Filed: June 25, 2013
    Publication date: October 31, 2013
    Inventors: Mei-Hsuan Lin, Chih-Chan Lu, Chih-Hsun Lin, Chih-Kang Chao, Ling-Sung Wang, Jen-Pan Wang
  • Publication number: 20130285195
    Abstract: A vertically integrated semiconductor device includes multiple continuous single crystal silicon layers vertically separated from one another by a dielectric layer or layers. Semiconductor devices are disposed on an underlying single crystal silicon substrate and the continuous single crystal silicon layers. The individual devices are interconnected to one another using tungsten or doped polysilicon leads that extend through openings formed in the continuous single crystal silicon layers. The method for forming the structure includes forming a dielectric material over the single crystal silicon layer or substrate and forming an opening extending down to the surface of the single crystal silicon material to act as a seed layer. An epitaxial silicon growth process begins at the seed location and laterally overgrows the openings. Growth fronts from the various seed locations meet to form a continuous single crystal silicon layer which is then polished.
    Type: Application
    Filed: July 1, 2013
    Publication date: October 31, 2013
    Inventor: Daniel PIPER
  • Publication number: 20130285193
    Abstract: A structure forming a metal-insulator-metal (MIM) trench capacitor is disclosed. The structure comprises a multi-layer substrate having a metal layer and at least one dielectric layer. A trench is etched into the substrate, passing through the metal layer. The trench is lined with a metal material that is in contact with the metal layer, which comprises a first node of a capacitor. A dielectric material lines the metal material in the trench. The trench is filled with a conductor. The dielectric material that lines the metal material separates the conductor from the metal layer and the metal material lining the trench. The conductor comprises a second node of the capacitor.
    Type: Application
    Filed: April 27, 2012
    Publication date: October 31, 2013
    Applicant: International Business Machines Corporation
    Inventors: John E. Barth, JR., Herbert L. Ho, Babar A. Khan, Kirk D. Peterson
  • Patent number: 8569159
    Abstract: A semiconductor structure and a method for fabricating the semiconductor structure include a hybrid orientation substrate having a first active region having a first crystallographic orientation that is vertically separated from a second active region having a second crystallographic orientation different than the first crystallographic orientation. A first field effect device having a first gate electrode is located and formed within and upon the first active region and a second field effect device having a second gate electrode is located and formed within and upon the second active region. Upper surfaces of the first gate electrode and the second gate electrode are coplanar. The structure and method allow for avoidance of epitaxial defects generally encountered when using hybrid orientation technology substrates that include coplanar active regions.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: October 29, 2013
    Assignee: International Business Machines Corporation
    Inventor: Kangguo Cheng
  • Patent number: 8569859
    Abstract: A display device including: a substrate; a first semiconductor layer disposed on the substrate; a second semiconductor layer disposed on the substrate and adjacent to the first semiconductor layer; a first insulation layer disposed on both the first semiconductor layer and the second semiconductor layer, the first insulation layer including a first opening forming a space between the first semiconductor layer and the second semiconductor layer; and a second insulation layer disposed on the first insulation layer and that fills the first opening.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: October 29, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Byoung-Keon Park, Jin-Wook Seo, Ki-Yong Lee, Yun-Mo Chung, Jong-Ryuk Park, Tak-Young Lee, Dong-Hyun Lee, Kil-Won Lee, Byung-Soo So, Min-Jae Jeong, Yong-Duck Son, Seung-Kyu Park, Jae-Wan Jung
  • Patent number: 8569858
    Abstract: An integrated circuit includes a device including an active region of the device, where the active region of the device includes a channel region having a transverse and a lateral direction. The device further includes an isolation region adjacent to the active region in a traverse direction from the active region, where the isolation region includes a first region located in a transverse direction to the channel region. The isolation region further includes a second region located in a lateral direction from the first region. The first region of the isolation region is under a stress of a first type and the second region of the isolative region is one of under a lesser stress of the first type or of under a stress of a second type being opposite of the first type.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: October 29, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Brian A. Winstead, Vance H. Adams, Paul A. Grudowski
  • Patent number: 8569839
    Abstract: To provide a semiconductor device that can be manufactured using a simple process without ensuring a high embedding property; and a manufacturing method of the device. In the manufacturing method of the semiconductor device according to the invention, a semiconductor substrate having a configuration obtained by stacking a support substrate, a buried insulating film, and a semiconductor layer in order of mention is prepared first. Then, an element having a conductive portion is completed over the main surface of the semiconductor layer. A trench encompassing the element in a planar view and reaching the buried insulating film from the main surface of the semiconductor layer is formed. A first insulating film (interlayer insulating film) is formed over the element and in the trench to cover the element and form an air gap in the trench, respectively. Then, a contact hole reaching the conductive portion of the element is formed in the first insulating film.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: October 29, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Katsumi Morii, Yoshitaka Otsu, Kazuma Onishi, Tetsuya Nitta, Tatsuya Shiromoto, Shigeo Tokumitsu
  • Patent number: 8569860
    Abstract: In a semiconductor device having line type active regions and a method of fabricating the semiconductor device, the semiconductor device includes a device isolation layer which defines the line type active regions in a in a semiconductor substrate. Gate electrodes which are parallel to each other and intersect the line type active regions are disposed over the semiconductor substrate. Here, the gate electrodes include both a device gate electrode and a recessed device isolation gate electrode. Alternatively, each of the gate electrodes is constituted of a device gate electrode and a planar type device isolation gate electrode, and a width of the planar type device isolation gate electrode greater than a width of the device gate electrode.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: October 29, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Kye-Hee Yeom
  • Publication number: 20130277795
    Abstract: Line trenches are formed in a stack of a bulk semiconductor substrate and an oxygen-impermeable layer such that the depth of the trenches in the bulk semiconductor substrate is greater than the lateral spacing between a pair of adjacently located line trenches. Oxygen-impermeable spacers are formed on sidewalls of the line trenches. An isotropic etch, either alone or in combination with oxidation, removes a semiconductor material from below the oxygen-impermeable spacers to expand the lateral extent of expanded-bottom portions of the line trenches, and to reduce the lateral spacing between adjacent expanded-bottom portions. The semiconductor material around the bottom portions is oxidized to form a semiconductor oxide portion that underlies multiple oxygen-impermeable spacers. Semiconductor-on-insulator (SOI) portions are formed above the semiconductor oxide portion and within the bulk semiconductor substrate.
    Type: Application
    Filed: April 19, 2012
    Publication date: October 24, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Solomon Assefa, William M. J. Green, Marwan H. Khater, Yurii A. Vlasov
  • Publication number: 20130277759
    Abstract: A device includes a semiconductor substrate, and a plurality of semiconductor fins parallel to each other, wherein the plurality of semiconductor fins is a portion of the semiconductor substrate. A Shallow Trench Isolation (STI) region is on a side of the plurality of semiconductor fins. The STI region has a top surface and a non-flat bottom surface, wherein the plurality of semiconductor fins is over the top surface of the STI region.
    Type: Application
    Filed: April 20, 2012
    Publication date: October 24, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ryan Chia-Jen Chen, Yih-Ann Lin, Chia Tai Lin, Chao-Cheng Chen
  • Publication number: 20130270579
    Abstract: Methods and structures for semiconductor devices with STI regions in SOI substrates is provided. A semiconductor structure comprises an SOI epitaxy island formed over a substrate. The structure further comprises an STI structure surrounding the SOI island. The STI structure comprises a second epitaxial layer on the substrate, and a second dielectric layer on the second epitaxial layer. A semiconductor fabrication method comprises forming a dielectric layer over a substrate and surrounding a device fabrication region in the substrate with an isolation trench extending through the dielectric layer. The method also includes filling the isolation trench with a first epitaxial layer and forming a second epitaxial layer over the device fabrication region and over the first epitaxial layer. Then a portion of the first epitaxial layer is replaced with an isolation dielectric, and then a device such as a transistor is formed second epitaxial layer within the device fabrication region.
    Type: Application
    Filed: June 7, 2013
    Publication date: October 17, 2013
    Inventors: Ming-Hua Yu, Tze-Liang Lee, Pang-Yen Tsai
  • Patent number: 8558283
    Abstract: A semiconductor device or a memory which includes the same have a line pattern, and a contact plug, the line pattern including a first linear feature to which the contact plug is connected by design, and a second linear feature having a connecting portion and a dummy portion adjacent the location at which the contact plug is electrically connected to the first linear feature. A second contact plug is electrically connected to the connecting portion of the second linear feature of the line pattern. In the case of a misalignment error or the like, the first contact plug may also be electrically connected to the second linear feature of the line pattern but at the dummy portion thereof so as to not create a short circuit in that case. The dummy portion thus allows a sufficiently large process margin to be secured for the contact plug.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: October 15, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-sun Sel, Nam-su Lim, In-wook Oh
  • Patent number: 8552499
    Abstract: It is an object to provide a method for manufacturing a semiconductor substrate in which contamination of a semiconductor layer due to an impurity is prevented and the bonding strength between a support substrate and the semiconductor layer can be increased. An oxide film containing first halogen is formed on a surface of a semiconductor substrate, and the semiconductor substrate is irradiated with ions of second halogen, whereby a separation layer is formed and the second halogen is contained in a semiconductor substrate. Then, heat treatment is performed in a state in which the semiconductor substrate and the support substrate are superposed with an insulating surface containing hydrogen interposed therebetween, whereby part of the semiconductor substrate is separated along the separation layer, so that a semiconductor layer containing the second halogen is provided over the support substrate.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: October 8, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8552522
    Abstract: A method of forming an integrated circuit structure includes providing a semiconductor substrate; forming patterned features over the semiconductor substrate, wherein gaps are formed between the patterned features; filling the gaps with a first filling material, wherein the first filling material has a first top surface higher than top surfaces of the patterned features; and performing a first planarization to lower the top surface of the first filling material, until the top surfaces of the patterned features are exposed. The method further includes depositing a second filling material, wherein the second filling material has a second top surface higher than the top surfaces of the patterned features; and performing a second planarization to lower the top surface of the second filling material, until the top surfaces of the patterned features are exposed.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: October 8, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Yuan Wu, Kong-Beng Thei, Chiung-Han Yeh, Harry Chuang, Mong-Song Liang
  • Patent number: 8551862
    Abstract: To provide a method of manufacturing a laminated wafer by which a strong coupling is achieved between wafers made of different materials having a large difference in thermal expansion coefficient without lowering a maximum heat treatment temperature as well as in which cracks or chips of the wafer does not occur. A method of manufacturing a laminated wafer 7 by forming a silicon film layer on a surface 4 of an insulating substrate 3 comprising the steps in the following order of: applying a surface activation treatment to both a surface 2 of a silicon wafer 1 or a silicon wafer 1 to which an oxide film is layered and a surface 4 of the insulating substrate 3 followed by laminating in an atmosphere of temperature exceeding 50° C. and lower than 300° C., applying a heat treatment to a laminated wafer 5 at a temperature of 200° C. to 350° C., and thinning the silicon wafer 1 by a combination of grinding, etching and polishing to form a silicon film layer.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: October 8, 2013
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Shoji Akiyama, Yoshihiro Kubota, Atsuo Ito, Makoto Kawai, Kouichi Tanaka, Yuji Tobisaka, Yoshihiro Nojima
  • Patent number: 8551858
    Abstract: A method for fabricating a memory device with U-shaped trap layers over rounded active region corners is disclosed. In the present invention, an STI process is performed before the charge-trapping layer is formed. Immediately after the STI process, the sharp corners of the active regions are exposed, making them available for rounding. Rounding the corners improves the performance characteristics of the memory device. Subsequent to the rounding process, a bottom oxide layer, nitride layer, and sacrificial top oxide layer are formed. An organic bottom antireflective coating applied to the charge trapping layer is planarized. Now the organic bottom antireflective coating, sacrificial top oxide layer, and nitride layer are etched, without etching the sacrificial top oxide layer and nitride layer over the active regions. After the etching the charge trapping layer has a cross-sectional U-shape appearance.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: October 8, 2013
    Assignee: Spansion LLC
    Inventors: Shenqing Fang, Angela Hui, Shao-Yu Ting, Inkuk Kang, Gang Xue