With Metallic Conductor Within Isolating Dielectric Or Between Semiconductor And Isolating Dielectric (e.g., Metal Shield Layer Or Internal Connection Layer) Patents (Class 257/508)
  • Patent number: 7576390
    Abstract: A method for providing a high power, low resistance, high efficient vertical DMOS device is disclosed. The method comprises providing a semiconductor substrate with a source body structure thereon. The method further comprises providing a plurality of slots in the source/body structure and providing a metal within the plurality of slots to form a plurality of structures. A slotted PowerFET array is disclosed. This slotted approach results in a dense PowerFET, a low Ron due to the slotted design, an oxide isolated process without any due extra steps other than the slots, lower capacitance, lower leakage, smaller die, improved heat transfer, improved electro-migration, lower ground resistance, less cross talk, drops the isolation diffusion and the sinker diffusion, mostly low temperature processing and provides double metal with single metal processing.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: August 18, 2009
    Assignee: Micrel, Inc.
    Inventor: John Durbin Husher
  • Publication number: 20090194843
    Abstract: An integrated circuit arrangement. In one embodiment, the arrangement includes at least one first semiconductor zone of a first conduction type which is doped more highly than the basic doping of a first semiconductor layer and which is arranged at a distance from a first component zone adjoining the first semiconductor layer. At least one connecting zone extends as far as the at least one first semiconductor zone proceeding from the first side. A second semiconductor zone of the second conduction type, is arranged in the first semiconductor layer and is electrically conductively connected to the at least one connecting zone.
    Type: Application
    Filed: February 1, 2008
    Publication date: August 6, 2009
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Joachim Weyers, Peter Nelle
  • Patent number: 7569915
    Abstract: A shielding arrangement for protecting a circuit containing magnetically sensitive materials from external stray magnetic fields. A shield of a material having a relatively high permeability is formed over the magnetically sensitive materials using thin film deposition techniques. Alternatively, a planar shield is affixed directly to a surface of semiconductor die containing an integrated circuit structure.
    Type: Grant
    Filed: June 26, 2006
    Date of Patent: August 4, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Richard K. Spielberger, Romney R. Katti
  • Publication number: 20090189245
    Abstract: A semiconductor device according to the invention is a semiconductor device which includes a low dielectric constant film of which the relative dielectric constant is less than 3.5, is provided with one or more seal rings that are moisture blocking walls in closed loop form in a plan view, and where at least one of the seal rings includes a seal ring protrusion portion in inward protruding form in the vicinity of a chip corner.
    Type: Application
    Filed: March 24, 2009
    Publication date: July 30, 2009
    Applicant: Renesas Technology Corporation
    Inventors: Takeshi FURUSAWA, Noriko Miura, Kinya Goto, Masazumi Matsuura
  • Publication number: 20090189244
    Abstract: Methods and apparatuses to design an Integrated Circuit (IC) with a shielding of wires. In at least one embodiment, a shielding mesh of at least two reference voltages (e.g., power and ground) is used to reduce both the capacitive coupling and the inductive coupling in routed signal wires in IC chips. In some embodiments, a type of shielding mesh (e.g., a shielding mesh with a window surrounded by a power ring, or a window with a parser set of shielding wires) is selected to make more routing area available in locally congested areas. In other embodiments, the shielding mesh is used to create or add bypass capacitance. Other embodiments are also disclosed.
    Type: Application
    Filed: January 22, 2009
    Publication date: July 30, 2009
    Inventors: Kenneth S. McElvain, William Halpin
  • Patent number: 7566945
    Abstract: Nano semiconductor switch devices are provided that include a semiconductor substrate and a conductive layer on the semiconductor substrate. A first insulating layer is provided on the conductive layer and the semiconductor substrate. The first insulating layer defines a contact hole that exposes at least a portion of the conductive layer. Carbon nano tubes are provided on the exposed portion of the conductive layer in the contact hole. The carbon nano tubes are in a vertical direction with respect to the semiconductor substrate. Related methods of fabrication are also provided herein.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: July 28, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-moon Choi, Sun-woo Lee
  • Patent number: 7564115
    Abstract: An integrated circuit structure includes a substrate; a through-silicon via (TSV) in the substrate, the TSV being tapered; a hard mask region extending from a top surface of the substrate into the substrate, wherein the hard mask encircles a top portion of the TSV; dielectric layers over the substrate; and a metal post extending from a top surface of the dielectric layers to the TSV, wherein the metal post comprises same materials as the TSV.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: July 21, 2009
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Shien Chen, Chen-Cheng Kuo, Kai-Ming Ching, Chih-Hua Chen
  • Publication number: 20090179300
    Abstract: When forming a trench in a porous low-K dielectric (such as an ILD) of a semiconductor device, a carbon-rich layer is formed in the sidewalls of the trench during trench etching. This carbon-rich layer may protect the trench from being excessively etched, which would otherwise form an undesirable hardmask undercut. The carbon-rich layer may be formed simultaneously with and during the etching process, by increasing the amount of carbon available to be absorbed by the ILD during the trench etching process. The existence of the extra available carbon may slow the etching of the carbon-enriched regions of the dielectric.
    Type: Application
    Filed: January 14, 2008
    Publication date: July 16, 2009
    Applicant: Toshiba America Electronic Components, Inc.
    Inventor: Shinya Arai
  • Patent number: 7560800
    Abstract: A die seal structure for sealing integrated circuit devices formed on a semiconductor substrate. The die seal structure includes a die seal and a junction diode. The die seal only connects to the semiconductor substrate through the junction diode, thereby reducing noise coupling through the die seal. In another aspect of the present invention the die seal structure includes a die seal and a bipolar structure. In this embodiment the die seal only connects to the semiconductor substrate through the bipolar structure.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: July 14, 2009
    Assignee: Integrated Device Technology, Inc.
    Inventors: Chuen-Der Lien, Shih-Ked Lee
  • Patent number: 7560793
    Abstract: A method for growing films for use in integrated circuits using atomic layer deposition and a subsequent converting step is described. In an embodiment, the subsequent converting step includes oxidizing a metal atomic layer to form a metal oxide layer. The atomic layer deposition and oxidation step are then repeated to produce a metal oxide layer having sufficient thickness for use as a metal oxide layer in an integrated circuit. The subsequent converting step, in an embodiment, includes converting the atomic deposition layer by exposing it to one of nitrogen to form a nitride layer, carbon to form a carbide layer, boron to form a boride layer, and fluorine to form a fluoride layer. Systems and devices for performing the method, semiconductor devices so produced, and machine readable media containing the method are also described.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: July 14, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Garo J. Derderian, Gurtej Singh Sandhu
  • Publication number: 20090160012
    Abstract: Embodiments relate to a semiconductor device and a method for fabricating the same. According to embodiments, a semiconductor device may include a first device, a silicon epitaxial layer formed on and/or over the first device, a second device formed on and/or over the silicon epitaxial layer, and a connection via formed through the silicon epitaxial layer, which may electrically interconnect the first device and the second device. According to embodiments, a method for fabricating a semiconductor device may include forming a first device, forming a silicon epitaxial layer on and/or over the first device, forming a connection via through the silicon epitaxial layer, and forming a second device on and/or over the silicon epitaxial layer such that the second device may be electrically connected to the connection via.
    Type: Application
    Filed: December 14, 2008
    Publication date: June 25, 2009
    Inventor: Sang-Chul Kim
  • Patent number: 7550850
    Abstract: A semiconductor chip 100 includes a logic unit and an analog unit 153. Furthermore, the semiconductor chip 100 includes a silicon substrate 101; a first insulating film 123 to a sixth insulating film 143 formed on the silicon substrate 101; and an annular seal ring 105 consisting of a first conductive ring 125 to a sixth conductive ring 145 buried in the first insulating film 123 to the sixth insulating film 143, which surrounds the periphery of the logic unit and the analog unit 153. In the seal ring region 106, there is formed a pn junction acting as a nonconducting part 104, which blocks conduction in a path from the logic unit, through the seal ring 105 to the analog unit 153.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: June 23, 2009
    Assignee: NEC Electronics Corporation
    Inventor: Yasutaka Nakashiba
  • Patent number: 7550805
    Abstract: General purpose methods for the fabrication of integrated circuits from flexible membranes formed of very thin low stress dielectric materials, such as silicon dioxide or silicon nitride, and semiconductor layers. Semiconductor devices are formed in a semiconductor layer of the membrane. The semiconductor membrane layer is initially formed from a substrate of standard thickness, and all but a thin surface layer of the substrate is then etched or polished away. In another version, the flexible membrane is used as support and electrical interconnect for conventional integrated circuit die bonded thereto, with the interconnect formed in multiple layers in the membrane. Multiple die can be connected to one such membrane, which is then packaged as a multi-chip module. Other applications are based on (circuit) membrane processing for bipolar and MOSFET transistor fabrication, low impedance conductor interconnecting fabrication, flat panel displays, maskless (direct write) lithography, and 3D IC fabrication.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: June 23, 2009
    Assignee: ELM Technology Corporation
    Inventor: Glenn Joseph Leedy
  • Publication number: 20090146247
    Abstract: A ground shield is disclosed that includes a ‘cheesed’ metal positioned within a dielectric layer and a metal region positioned within a first metal level over the cheesed metal. The ground shield can have different forms depending on the metal used, and provisions are made to prevent diffusion of copper (Cu) when that is used as the metal in the cheese metal of the ground shield. The ground shield provides a low resistance, very thick metal at a first metal (M1) level for passive RF elements in conjunction with the standard back-end-of-line (BEOL) integration. The invention also includes a method of forming the ground shield.
    Type: Application
    Filed: February 16, 2009
    Publication date: June 11, 2009
    Inventors: Mete Erturk, Alvin J. Joseph, Anthony K. Stamper
  • Publication number: 20090146246
    Abstract: The present invention relates to a semiconductor device and a method of manufacture thereof, being capable of improving the high integration by increasing a cell region while securing the reliability of device and the process margin through forming a cell region and a core region with the stacking structure.
    Type: Application
    Filed: June 5, 2008
    Publication date: June 11, 2009
    Applicant: Hynix Semiconductor Inc.
    Inventors: Yun Taek Hwang, Kwan Yong Lim
  • Patent number: 7545019
    Abstract: An integrated circuit includes a logic portion including M conductive layers, a memory portion including N conductive layers, and at least one common top conductive layer over the logic portion and the memory portion. M is greater than N.
    Type: Grant
    Filed: June 7, 2007
    Date of Patent: June 9, 2009
    Assignee: Qimonda North America Corp.
    Inventors: Jan Boris Philipp, Thomas Happ, Thomas Nirschl
  • Publication number: 20090140378
    Abstract: In a method of fabricating a flash memory device, trenches are formed in an isolation area of a semiconductor substrate. A first insulating layer is formed on sidewalls and bottoms of the trenches. Conductive layer patterns are formed on the first insulating layers at the bottoms of the trenches. A second insulating layer is formed on the conductive layer patterns. Gate lines are formed over a semiconductor substrate including the second insulating layer. The gate lines intersect the conductive layer patterns. Junctions are formed on the semiconductor substrate between the gate lines. An interlayer insulating layer is formed over the semiconductor substrate including the gate lines. Contact holes are formed through which the conductive layer patterns and the junctions located on one side of the conductive layer patterns are exposed. The contact holes are gap-filled with a conductive material, thereby forming contact plugs.
    Type: Application
    Filed: June 27, 2008
    Publication date: June 4, 2009
    Applicant: Hynix Semiconductor Inc.
    Inventor: Choong Bae KIM
  • Publication number: 20090127652
    Abstract: A structure includes a substrate comprising a region having a circuit or device which is sensitive to electrical noise. Additionally, the structure includes a first isolation structure extending through an entire thickness of the substrate and surrounding the region and a second isolation structure extending through the entire thickness of the substrate and surrounding the region.
    Type: Application
    Filed: November 20, 2007
    Publication date: May 21, 2009
    Inventors: Hanyi Ding, Kai D. Feng, Zhong-Xiang He, Xuefeng Liu
  • Patent number: 7518218
    Abstract: A total ionizing dose suppression architecture for a transistor and a transistor circuit uses an “end cap” metal structure that is connected to the lowest potential voltage to overcome the tendency of negative charge buildup during exposure to ionizing radiation. The suppression architecture uses the field established by coupling the metal structure to the lowest potential voltage to steer the charge away from the critical field (inter-device) and keeps non-local charge from migrating to the “birds-beak” region of the transistor, preventing further charge buildup. The “end cap” structure seals off the “birds-beak” region and isolates the critical area. The critical area charge is source starved of an outside charge. Outside charge migrating close to the induced field is repelled away from the critical region. The architecture is further extended to suppress leakage current between adjacent wells biased to differential potentials.
    Type: Grant
    Filed: March 3, 2005
    Date of Patent: April 14, 2009
    Assignee: Aeroflex Colorado Springs, Inc.
    Inventor: Harry N. Gardner
  • Patent number: 7504699
    Abstract: A method of forming an air gap or gaps within solid structures and specifically semiconductor structures to reduce capacitive coupling between electrical elements such as metal lines, wherein a norbornene-type polymer is used as a sacrificial material to occupy a closed interior volume in a semiconductor structure. The sacrificial material is caused to decompose into one or more gaseous decomposition products which are removed, preferably by diffusion, through an overcoat layer. The decomposition of the sacrificial material leaves an air gap or gaps at the closed interior volume previously occupied by the norbornene-type polymer. The air gaps may be disposed between electrical leads to minimize capacitive coupling therebetween.
    Type: Grant
    Filed: November 21, 2000
    Date of Patent: March 17, 2009
    Assignee: George Tech Research Corporation
    Inventors: Paul A. Kohl, Qiang Zhao, Sue Ann Bidstrup Allen
  • Patent number: 7501690
    Abstract: A ground shield is disclosed that includes a ‘cheesed’ metal positioned within a dielectric layer and a metal region positioned within a first metal level over the cheesed metal. The ground shield can have different forms depending on the metal used, and provisions are made to prevent diffusion of copper (Cu) when that is used as the metal in the cheese metal of the ground shield. The ground shield provides a low sheet resistance, very thick metal at a first metal (M1) level for passive RF elements in conjunction with the standard back-end-of-line (BEOL) integration. The invention also includes a method of forming the ground shield.
    Type: Grant
    Filed: May 9, 2005
    Date of Patent: March 10, 2009
    Assignee: International Business Machines Corporation
    Inventors: Mete Erturk, Alvin J. Joseph, Anthony K. Stamper
  • Publication number: 20090039457
    Abstract: An integrated circuit laminate with a metal substrate for use with high performance mixed signal integrated circuit applications. The metal substrate provides substantially improved crosstalk isolation, enhanced heat sinking and an easy access to a true low impedance ground. In one embodiment, the metal layer has regions with insulation filled channels or voids and a layer of insulator such as unoxidized porous silicon disposed between the metal substrate and a silicon integrated circuit layer. The laminate also has a plurality of metal walls or trenches mounted to the metal substrate and transacting the silicon and insulation layers thereby isolating noise sensitive elements from noise producing elements on the chip. In another embodiment, the laminate is mounted to a flexible base to limit the flexion of the chip.
    Type: Application
    Filed: July 7, 2008
    Publication date: February 12, 2009
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventor: Ya-Hong Xie
  • Patent number: 7485942
    Abstract: Systems, devices and methods are provided to improve performance of integrated circuits by providing a low-k insulator. One aspect is an integrated circuit insulator structure that includes a vapor-deposited dielectric material. The dielectric material has a predetermined microstructure formed using a glancing angle deposition (GLAD) process. The microstructure includes columnar structures that provide a porous dielectric material. One aspect is a method of forming a low-k insulator structure. In one embodiment, a predetermined vapor flux incidence angle ? is set with respect to a normal vector for a substrate surface so as to promote a dielectric microstructure with individual columnar structures. Vapor deposition and substrate motion are coordinated so as to form columnar structures in a predetermined shape. Other aspects are provided herein.
    Type: Grant
    Filed: April 18, 2006
    Date of Patent: February 3, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Publication number: 20090026572
    Abstract: According to one embodiment of the present invention, a SOI device includes a first composite structure including a substrate layer, a substrate isolation layer being disposed on or above the substrate layer, a buried layer being disposed on or above the substrate isolation layer, and a semiconductor layer being disposed on or above the buried layer; a trench structure being formed within the first composite structure; and a second composite structure provided on the side walls of the trench structure, wherein the second composite structure includes a first isolation layer covering the part of the side walls formed by the semiconductor layer and formed by an upper part of the buried layer; and a contact layer covering the isolation layer and the part of the side walls formed by a lower part of the buried layer.
    Type: Application
    Filed: July 25, 2007
    Publication date: January 29, 2009
    Inventor: Gabriel Dehlinger
  • Publication number: 20090026573
    Abstract: A nonvolatile semiconductor memory device and a method for manufacturing the same that may include forming an isolation pattern in a substrate, and then etching a portion of the isolation pattern to expose a portion of an active region of the substrate, and then forming high-density second-type ion implantation regions spaced apart at both edges of the active region by performing a tilted ion implantation process, and then forming a high-density first-type ion implantation region as a bit line in the active region, and then forming an insulating layer on the substrate including the high-density first-type ion implantation region, the high-density second-type ion implantation regions and the isolation pattern, and then forming a metal interconnection as a word line on the insulating layer pattern and extending in a direction perpendicular to bit line.
    Type: Application
    Filed: July 2, 2008
    Publication date: January 29, 2009
    Inventor: Yong-Ho Oh
  • Patent number: 7479690
    Abstract: Strip metallic thin films each having a width of 180 ?m or so are disposed in parallel at intervals of 10 ?m to 50 ?m on the surface of a protection layer formed on the silicon substrate and at their corresponding spots located on the upper side of an analog circuit formed in a silicon substrate. These strip metallic thin films are connected to one another at their ends or centers to form a comb-like shield section and one end thereof is connected to its corresponding external connecting post. Incidentally, the shield section is formed by copper plating in the same process as redistribution wirings that connect electrode pads at an outer peripheral portion of the silicon substrate to their corresponding external connecting posts.
    Type: Grant
    Filed: July 18, 2006
    Date of Patent: January 20, 2009
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Yasushi Shiraishi
  • Patent number: 7479687
    Abstract: Methods of forming a continuous seed layer in a high aspect via and its associated structures are described. Those methods comprise forming a recess in a substrate, forming a non-continuous metal layer within the recess, activating the non-continuous metal layer and a plurality of non-deposited regions within the recess, electrolessly depositing a seed layer on the activated non-continuous metal layer and the plurality of non-deposited regions within the recess, and electroplating a metal fill layer over the seed layer, to form a substantially void-free metal filled recess.
    Type: Grant
    Filed: November 15, 2005
    Date of Patent: January 20, 2009
    Assignee: Intel Corporation
    Inventors: Thomas S. Dory, Kenneth N. Wong
  • Patent number: 7473976
    Abstract: A semiconductor power transistor includes a drift region of a first conductivity type and a well region of a second conductivity type in the drift region such that the well region and the drift region form a pn junction therebetween. A first highly doped silicon region of the first conductivity type is in the well region, and a second highly doped silicon region is in the drift region. The second highly doped silicon region is laterally spaced from the well region such that upon biasing the transistor in a conducting state, a current flows laterally between first and second highly doped silicon regions through the drift region. Each of a plurality of trenches extending into the drift region perpendicular to the current flow includes a dielectric layer lining at least a portion of the trench sidewalls and at least one conductive electrode.
    Type: Grant
    Filed: April 12, 2006
    Date of Patent: January 6, 2009
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Christopher Boguslaw Kocon
  • Patent number: 7466007
    Abstract: A new method is provided for the creation of interconnect lines. Fine line interconnects are provided in a first layer of dielectric overlying semiconductor circuits that have been created in or on the surface of a substrate. A layer of passivation is deposited over the layer of dielectric, a thick second layer of dielectric is created over the surface of the layer of passivation. Thick and wide interconnect lines are created in the thick second layer of dielectric. The first layer of dielectric may also be eliminated, creating the wide thick interconnect network on the surface of the layer of passivation that has been deposited over the surface of a substrate.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: December 16, 2008
    Assignee: Megica Corporation
    Inventors: Mou-Shiung Lin, Jin-Yuan Lee
  • Publication number: 20080296725
    Abstract: A semiconductor component includes a substrate, two isolation structures, a conductor pattern and a dielectric layer. The isolation structures are disposed in the substrate, and each of the isolation structures has protruding portions protruding from the surface of the substrate. A trench is formed between the protruding portions. The included angle formed by the sidewall of the protruding portion and the surface of the substrate is an obtuse angle. The conductor pattern is disposed in the trench and fills the trench up. The dielectric layer is disposed between the conductor pattern and the substrate.
    Type: Application
    Filed: December 13, 2007
    Publication date: December 4, 2008
    Applicant: NANYA TECHNOLOGY CORPORATION
    Inventors: Ching-Nan Hsiao, Chung-Lin Huang, Chen-Yu Tsai, Chung-Yuan Lee
  • Publication number: 20080283959
    Abstract: An integrated circuit structure includes a substrate; a through-silicon via (TSV) in the substrate, the TSV being tapered; a hard mask region extending from a top surface of the substrate into the substrate, wherein the hard mask encircles a top portion of the TSV; dielectric layers over the substrate; and a metal post extending from a top surface of the dielectric layers to the TSV, wherein the metal post comprises same materials as the TSV.
    Type: Application
    Filed: May 16, 2007
    Publication date: November 20, 2008
    Inventors: Chen-Shien Chen, Chen-Cheng Kuo, Kai-Ming Ching, Chih-Hua Chen
  • Publication number: 20080283960
    Abstract: The invention relates to a method for producing structures which make it possible to form a trench insulation and to bring into contact SOI wafers provided with active thick layers and which are easily processable. For this purpose, a carrier wafer electric contact and the insulation trench are provided with components exhibiting high-blocking capability of insertion into an integrated circuit SOI wafer. A narrow trench for an insulating trench (8) and a large trench for a carrier wafer contact (9) are etched up to an insulating oxide layer (2) and are buried by a masking layer which is thicker than the buried oxide layer (2). In the large trench (9), a polysilicon spacer (12) remains on the sidewalls, respectively, in the form of a predeposited polysilicon layer (11) rest. The adjustment of the polysilicon etching makes it possible to obtain the spacer (12) provided with a desired height.
    Type: Application
    Filed: March 10, 2006
    Publication date: November 20, 2008
    Inventor: Ralf Lerner
  • Patent number: 7439604
    Abstract: A semiconductor device includes a dual gate dielectric layer that increases a performance of a semiconductor device. The semiconductor device includes a first dielectric layer having a predetermined thickness on a semiconductor substrate. The first dielectric layer is formed on a first region. The semiconductor device also includes a second dielectric layer having a dielectric constant higher than that of the first dielectric layer. The second dielectric layer is formed on both the first region and a second region.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: October 21, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Min-Hee Cho, Ji-Young Kim
  • Publication number: 20080246110
    Abstract: Structures for spanning gap in body-bias voltage routing structure. In an embodiment, a structure is comprised of at least one metal wire.
    Type: Application
    Filed: June 16, 2008
    Publication date: October 9, 2008
    Applicant: TRANSMETA CORPORATION
    Inventors: Robert P. Masleid, James B. Burr, Michael Pelham
  • Publication number: 20080237781
    Abstract: The semiconductor device according to the present invention includes a through electrode that penetrates through a silicon substrate, an isolation trench provided to penetrate through the silicon substrate to surround the through electrode, a silicon film in contact with an inner surface of the isolation trench, a silicon film in contact with an outer surface of the isolation trench, and an insulation film provided between the silicon films. According to the present invention, the silicon film within the isolation trench can be substantially regarded as a part of the silicon substrate. Therefore, even when the width of the isolation trench is increased to increase the etching rate, the width of the insulation film becoming a dead space can be made sufficiently small. Consequently, the chip area can be decreased.
    Type: Application
    Filed: March 28, 2008
    Publication date: October 2, 2008
    Applicant: Elpida Memory, Inc.
    Inventor: Shiro UCHIYAMA
  • Publication number: 20080239629
    Abstract: A method and structure for reducing cracks in a dielectric in contact with a metal structure. The metal structure comprises a first metal layer; a second metal layer disposed on, and in contact with the first metal layer, the second metal layer being stiffer than the first metal layer; a third metal layer disposed on, and in contact with the second metal layer, the second metal layer being stiffer than the third metal layer. An additional metal is included wherein the dielectric layer is disposed between the metal structure and the additional metal.
    Type: Application
    Filed: March 29, 2007
    Publication date: October 2, 2008
    Inventors: Barry J. Liles, Colin S. Whelan
  • Publication number: 20080191310
    Abstract: A three-dimensional (3D) integrated circuit structure includes a first wafer and a second wafer, each comprising a substrate having devices formed thereon and an interconnect structure over the substrate; a composite layer comprising a first dielectric layer bonded to a second dielectric layer, wherein the composite layer is bonded to the first and the second wafers; a first plurality of openings extending from an interface of the first and the second dielectric layers into the first dielectric layer, wherein each opening of the first plurality of openings is in scribe lines of the first wafer; and vias connecting devices in the first and the second wafers.
    Type: Application
    Filed: February 12, 2007
    Publication date: August 14, 2008
    Inventors: Weng-Jin Wu, Wen-Chih Chiou, Chen-Hua Yu
  • Publication number: 20080157262
    Abstract: A method of forming a semiconductor device can include forming a trench in a semiconductor substrate to define an active region. The trench is filled with a first device isolation layer. A portion of the first device isolation layer is etched to recess a top surface of the first device isolation layer below an adjacent top surface of the active region of the semiconductor substrate and to partially expose a sidewall of the active region. The exposed sidewall of the active region is epitaxially grown to form an extension portion of the active region that extends partially across the top surface of the first device isolation layer in the trench. A second device isolation layer is formed on the recessed first device isolation layer in the trench. The second device isolation layer is etched to expose a top surface of the extension portion of the active region and leave a portion of the second device isolation layer between extension portions of active regions on opposite sides of the trench.
    Type: Application
    Filed: January 2, 2008
    Publication date: July 3, 2008
    Inventors: Dong-Chan Lim, Byeong-Yun Nam, Soo-Ik Jang, In-Soo Jung
  • Patent number: 7382015
    Abstract: A non-volatile semiconductor memory device, which is intended to prevent data destruction by movements of electric charges between floating gates and thereby improve the reliability, includes element isolation/insulation films buried into a silicon substrate to isolate stripe-shaped element-forming regions. Formed on the substrate are a floating gate via a first gate insulating film and further a control gate via a second gate insulating film. Source and drain diffusion layers are formed in self-alignment with control gates. The second gate insulating film on the floating gate is divided and separated together with the floating gate by slits above the element isolation/insulation films into discrete portions of individual memory cells.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: June 3, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tadashi Iguchi, Yoshiaki Himeno, Hiroaki Tsunoda
  • Patent number: 7375411
    Abstract: A region of high metal density may be placed in metal layers proximate to an area of low metal density below an inductor on an integrated circuit without violating manufacturing design rules for reducing manufacturing defects and without substantially impacting performance of the inductor. These results are achieved by including a transitional region that includes conductive structures electrically isolated from each other between the region of high metal density and the region of low metal density. The transitional region has a structure that allows a negligible amount of current flow to be induced in the structure.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: May 20, 2008
    Assignee: Silicon Laboratories Inc.
    Inventor: Ligang Zhang
  • Publication number: 20080111208
    Abstract: An integrated circuit device includes an integrated circuit substrate and a first gate pattern on the substrate. A non-conductive barrier layer pattern is on the first gate pattern. The barrier layer pattern has openings at selected locations therein extending to the first gate pattern. A second gate pattern is on the barrier layer pattern and extends into the opening in the barrier layer pattern to electrically connect the second gate pattern to the first gate pattern.
    Type: Application
    Filed: November 15, 2007
    Publication date: May 15, 2008
    Inventor: Dae-Ik Kim
  • Patent number: 7358560
    Abstract: A non-volatile memory device includes a semiconductor substrate having an active region defined by isolation films that extend along a first direction. A control gate line extends along in a second direction perpendicular to the first direction. First and second floating gates are formed on the active region and below the control gate line. An island conductive line is formed between the first and second floating gates and within the isolation films. The island conductive line extends along the first direction and is configured to receive a voltage in order to prevent interference between the first and second floating gates.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: April 15, 2008
    Assignee: Hynix Semiconductor Inc.
    Inventor: Keun Woo Lee
  • Patent number: 7358587
    Abstract: In one aspect, the invention includes a method of forming a material within an opening, comprising: a) forming an etch-stop layer over a substrate, the etch-stop layer having an opening extending therethrough to expose a portion of the underlying substrate and comprising an upper corner at a periphery of the opening, the upper corner having a corner angle with a first degree of sharpness; b) reducing the sharpness of the corner angle to a second degree; c) after reducing the sharpness, forming a layer of material within the opening and over the etch-stop layer; and d) planarizing the material with a method selective for the material relative to the etch-stop layer to remove the material from over the etch-stop layer while leaving the material within the opening.
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: April 15, 2008
    Assignee: Micron Technology, Inc.
    Inventors: John T. Moore, Guy T. Blalock
  • Patent number: 7352048
    Abstract: The present invention generally relates to filling of a feature by depositing a barrier layer, depositing a seed layer over the barrier layer, and depositing a conductive layer over the seed layer. In one embodiment, the seed layer comprises a copper alloy seed layer deposited over the barrier layer. For example, the copper alloy seed layer may comprise copper and a metal, such as aluminum, magnesium, titanium, zirconium, tin, and combinations thereof. In another embodiment, the seed layer comprises a copper alloy seed layer deposited over the barrier layer and a second seed layer deposited over the copper alloy seed layer. The copper alloy seed layer may comprise copper and a metal, such as aluminum, magnesium, titanium, zirconium, tin, and combinations thereof. The second seed layer may comprise a metal, such as undoped copper. In still another embodiment, the seed layer comprises a first seed layer and a second seed layer.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: April 1, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Hua Chung, Ling Chen, Jick Yu, Mei Chang
  • Patent number: 7345339
    Abstract: A semiconductor device includes a body region, a drift region having a first part and a second part, and a trench gate electrode. The body region is disposed on the drift region. The first and second parts extend in an extending direction so that the second part is adjacent to the first part. The trench gate electrode penetrates the body region and reaches the drift region so that the trench gate electrode faces the body region and the drift region through an insulation layer. The trench gate electrode extends in a direction crossing with the extending direction of the first and second parts. The first part includes a portion near the trench gate electrode, which has an impurity concentration equal to or lower than that of the body region.
    Type: Grant
    Filed: June 22, 2004
    Date of Patent: March 18, 2008
    Assignee: DENSO CORPORATION
    Inventors: Hitoshi Yamaguchi, Mikimasa Suzuki, Yoshiyuki Hattori
  • Publication number: 20080061397
    Abstract: A semiconductor device that can suppress noise transmission through a seal ring provided between two device regions. The semiconductor device includes a logic unit and an analog unit. The semiconductor device further includes a silicon substrate, an insulating interlayer, a seal ring surrounding the outer periphery of the logic unit composed of a conductive film buried in the insulating interlayer, a well provided on the silicon substrate, and an N well guard ring that blocks conduction of a path from the logic unit, through the seal ring to the analog unit. The N well guard ring is disposed between the seal ring region 106 and the logic unit or the analog unit.
    Type: Application
    Filed: September 11, 2007
    Publication date: March 13, 2008
    Applicant: NEC ELECTRONICS CORPORATION
    Inventor: Shinichi UCHIDA
  • Patent number: 7339250
    Abstract: A semiconductor integrated circuit includes a shielded wire line and a shielding wire line provided for the shielded wire line and divided into a plurality of segments in a longitudinal direction of the shielded wire line.
    Type: Grant
    Filed: August 10, 2004
    Date of Patent: March 4, 2008
    Assignee: Fujitsu Limited
    Inventors: Kenichi Ushiyama, Shigenori Ichinose
  • Patent number: 7335964
    Abstract: In one aspect, the invention encompasses a semiconductor processing method of forming a material over an uneven surface topology. A substrate having an uneven surface topology is provided. The uneven surface topology comprises a valley between a pair of outwardly projecting features. A layer of material is formed over the uneven surface topology. The layer comprises outwardly projecting portions over the outwardly projecting features of the surface topology and has a gap over the valley. The layer is etched, and the etching forms protective material within the gap while removing an outermost surface of the layer. The etching substantially does not remove the material from the bottom of the gap. In another aspect, the invention encompasses a semiconductor processing method of forming a material over metal-comprising lines. A first insulative material substrate is provided. A pair of spaced metal-comprising lines are formed over the substrate.
    Type: Grant
    Filed: May 6, 2005
    Date of Patent: February 26, 2008
    Inventors: Werner Juengling, Kevin G. Donohoe
  • Patent number: 7329620
    Abstract: A system and method is disclosed for providing an integrated circuit that has increased radiation hardness and reliability. A device active area of an integrated circuit is provided and a layer of radiation resistant material is applied to the device active area of the integrated circuit. In one advantageous embodiment the radiation resistant material is silicon carbide. In another advantageous embodiment a passivation layer is placed between the device active area and the layer of radiation resistant material. The integrated circuit of the present invention exhibits minimal sensitivity to (1) enhanced low dose rate sensitivity (ELDRS) effects of radiation, and (2) pre-irradiation elevated temperature stress (PETS) effects of radiation.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: February 12, 2008
    Assignee: National Semiconductor Corporation
    Inventor: Michael C. Maher
  • Patent number: 7309908
    Abstract: To prevent the potential inversion of a dynamic node attributed to the fact that any wiring line among standard cells as is made of a wiring layer at the same level as that of the dynamic node within a standard cell is laid in adjacency to the dynamic node. In adjacency to a dynamic node 101 within a standard cell, shield wiring lines 102a and 102b which are made of wiring layers at the same level as that of the dynamic node are laid so as to prevent any wiring line among standard cells from passing in adjacency to the dynamic node. The shield wiring lines can be replaced with a shield region or a wiring inhibition region.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: December 18, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mitsushi Nozoe, Noriyuki Kimura, Mika Nakata