Vertical Walled Groove Patents (Class 257/513)
  • Patent number: 7772671
    Abstract: A semiconductor device including a semiconductor substrate having on its surface a recess and at least one projection formed in the recess. The projection has a channel region and an element isolating insulating film is formed in the recess. A MIS type semiconductor element is formed on the semiconductor substrate and includes a gate electrode formed on the channel region of the projection via a gate insulating film. Source and drain regions are formed to pinch the channel region of the projection therebetween. A channel region of the MIS type semiconductor element is formed to reach the at least one projection located adjacent to the MIS type semiconductor element in its channel width direction via the recess. A top surface of the at least one projection is located higher than the top surface of the element isolating insulating film by 20 nm or more.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: August 10, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kyoichi Suguro, Kiyotaka Miyano, Ichiro Mizushima, Yoshitaka Tsunashima, Takayuki Hiraoka, Yasushi Akasaka, Tsunetoshi Arikado
  • Patent number: 7750429
    Abstract: A pedestal is formed out of the pad layer such that two edges of the pedestal coincide with a border of the wells as implanted. An extended pedestal is formed over the pedestal by depositing a conformal dielectric layer. The area of the extended pedestal is exposed the semiconductor surface below is recessed to a recess depth. Other trenches including at least one intra-well isolation trench are lithographically patterned. After a reactive ion etch, both an inter-well isolation trench and at least one intra-well isolation trench are formed. The width of the inter-well isolation trench may be reduced due to the deeper bottom surface compared to the prior art structures. The boundary between the p-well and the n-well below the inter-well isolation structure is self-aligned to the middle of the inter-well isolation structure.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: July 6, 2010
    Assignee: International Business Machines Corporation
    Inventors: Thomas W. Dyer, Zhijiong Luo, Haining S. Yang
  • Patent number: 7750413
    Abstract: An object of the present invention is to mount both a RF circuit including an inductor formed therein and a digital circuit on a single chip. MOSFETs are formed on a semiconductor substrate 1 in regions isolated by an element isolation film 2. A plurality of low-permittivity insulator rods including a low-permittivity insulator embedded therein and penetrating a first interlevel dielectric film 4 to reach the internal of the silicon substrate are disposed in the RF circuit area 100. An inductor 40 is formed on the interlevel dielectric film in the RF circuit area by using multi-layered interconnects. A high-permeability isolation region in which a composite material including a mixture of high-permeability material and a low-permittivity material is formed in the region of the core of the inductor and periphery thereof.
    Type: Grant
    Filed: June 16, 2004
    Date of Patent: July 6, 2010
    Assignee: NEC Corporation
    Inventors: Yoshihiro Hayashi, Naoya Inoue, Kenichiro Hijioka
  • Patent number: 7745904
    Abstract: A semiconductor device provides a transistor adjacent an isolation trench. The device may be formed by producing isolation trenches in a semiconductor substrate, filling the trenches with a filler material, creating voids near top edges of the trenches and annealing by a gaseous ambient to reflow the edges of the trenches causing the edges to become rounded and overhang the trench. The filler material may be a dielectric. The transistors which are then formed in close proximity to the trenches may include source/drain regions formed in the rounded portion of the semiconductor substrate that overhangs the trench.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: June 29, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Chih-Hsin Ko, Chung-Hu Ke, Chien-Chao Huang
  • Patent number: 7741226
    Abstract: A method of optimally filling a through via within a through wafer via structure with a conductive metal such as, for example, W is provided. The inventive method includes providing a structure including a substrate having at least one aperture at least partially formed through the substrate. The at least one aperture of the structure has an aspect ratio of at least 20:1 or greater. Next, a refractory metal-containing liner such as, for example, Ti/TiN, is formed on bare sidewalls of the substrate within the at least one aperture. A conductive metal seed layer is then formed on the refractory metal-containing liner. In the invention, the conductive metal seed layer formed is enriched with silicon and has a grain size of about 5 nm or less. Next, a conductive metal nucleation layer is formed on the conductive metal seed layer. The conductive metal nucleation layer is also enriched with silicon and has a grain size of about 20 nm or greater.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: June 22, 2010
    Assignee: International Business Machines Corporation
    Inventors: Paul S. Andry, Edward C. Cooney, III, Peter J. Lindgren, Dorreen J. Ossenkop, Cornelia K. Tsang
  • Patent number: 7723817
    Abstract: The shape of a tip of an insulating material of an insulating isolation region is provided as being a concave one recessed below the back surface of an n-semiconductor substrate. This reduces the electric field strength at the corner at which the bottom of the n-semiconductor substrate is in contact with the insulating isolation region to allow an excellent breakdown voltage to be obtained. Moreover, by forming a high impurity concentration region such as a field-stop layer on the back surface of the n-semiconductor substrate, a depletion layer extending from the top surface is prevented from reaching the back surface. This eliminates an influence of a surface state introduced in the interface between the insulator film formed on the back surface and the n-semiconductor substrate, by which an excellent breakdown voltage can be obtained.
    Type: Grant
    Filed: May 29, 2006
    Date of Patent: May 25, 2010
    Assignee: Fuji Electric Device Technology Co., Ltd.
    Inventors: Hiroshi Kanemaru, Naoki Kumagai, Yuichi Harada, Yoshihiro Ikura, Yoshiaki Minoya
  • Patent number: 7723800
    Abstract: An integrated power semiconductor device has an isolation structure having two or more isolation trenches, and one or more regions in between the isolation trenches, and a bias arrangement coupled to the regions to divide a voltage across the isolation structure between the isolation trenches. By dividing the voltage, the reverse breakdown voltage characteristics such as voltage level, reliability and stability can be improved for a given area of device, or for a given complexity of device, and avalanche breakdown at weaknesses in isolation structures can be reduced or avoided.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: May 25, 2010
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Peter Moens, Bart Desoete
  • Patent number: 7719078
    Abstract: In a semiconductor device having element isolation made of a trench-type isolating oxide film 13, large and small dummy patterns 11 of two types, being an active region of a dummy, are located in an isolating region 10, the large dummy patterns 11b are arranged at a position apart from actual patterns 9, and the small dummy patterns 11a are regularly arranged in a gap at around a periphery of the actual patterns 9, whereby uniformity of an abrading rate is improved at a time of abrading an isolating oxide film 13a is improved, and surface flatness of the semiconductor device becomes preferable.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: May 18, 2010
    Assignee: Renesas Technology Corp.
    Inventor: Kazuo Tomita
  • Patent number: 7709926
    Abstract: Device structure for active devices fabricated in a semiconductor-on-insulator (SOI) substrate and design structures for a radiofrequency integrated circuit. The device structure includes a first isolation region in the semiconductor layer that extends from a top surface of a semiconductor layer to a first depth, a second isolation region in the semiconductor layer that extends from the top surface of the semiconductor layer to a second depth greater than the first depth, and a first doped region in the semiconductor layer. The first doped region is disposed vertically between the first isolation region and an insulating layer disposed between the semiconductor layer and a handle wafer of the SOI substrate. The device structure may be included in a design structure embodied in a machine readable medium for designing, manufacturing, or testing an integrated circuit.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: May 4, 2010
    Assignee: International Business Machines Corporation
    Inventors: Wagdi W. Abadeer, Kiran V. Chatty, Robert J. Gauthier, Jed H. Rankin, Robert R. Robison, William R. Tonti
  • Patent number: 7709079
    Abstract: A method for forming self-assembled patterns on a substrate surface is provided. First, a block copolymer layer, which comprises a block copolymer having two or more immiscible polymeric block components, is applied onto a substrate that comprises a substrate surface with a trench therein. The trench specifically includes at least one narrow region flanked by two wide regions, and wherein the trench has a width variation of more than 50%. Annealing is subsequently carried out to effectuate phase separation between the two or more immiscible polymeric block components in the block copolymer layer, thereby forming periodic patterns that are defined by repeating structural units. Specifically, the periodic patterns at the narrow region of the trench are aligned in a predetermined direction and are essentially free of defects. Block copolymer films formed by the above-described method as well as semiconductor structures comprising such block copolymer films are also described.
    Type: Grant
    Filed: January 4, 2008
    Date of Patent: May 4, 2010
    Assignee: International Business Machines Corporation
    Inventors: Charles T. Black, Ricardo Ruiz, Robert L. Sandstrom
  • Patent number: 7709897
    Abstract: A method of fabricating a semiconductor-on-insulator device including: providing a first semiconductor wafer having an about 200 angstrom thick oxide layer thereover; etching the first semiconductor wafer to raise a pattern therein; doping the raised pattern of the first semiconductor wafer through the about 200 angstrom thick oxide layer; providing a second semiconductor wafer having an oxide thereover; and, bonding the first semiconductor wafer oxide to the second semiconductor wafer oxide at an elevated temperature.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: May 4, 2010
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Anthony D. Kurtz, Alexander A. Ned
  • Patent number: 7679138
    Abstract: A MOS transistor including a source region, a drain region, and a gate electrode has first and second partial isolation regions in one-end gate region and the other-end gate region, respectively, with a first tap region provided adjacent to the first partial isolation region, and a second tap region provided adjacent to the second partial isolation region. A full isolation region is provided in the whole area around the first and second partial isolation regions, first and second tap regions, and source and drain regions.
    Type: Grant
    Filed: April 10, 2007
    Date of Patent: March 16, 2010
    Assignee: Renesas Technology Corp.
    Inventor: Mikio Tsujiuchi
  • Patent number: 7671441
    Abstract: A semiconductor power device includes a semiconductor body with a plurality of gate trenches formed therein. Disposed within each gate trench is a spacer gate that extends along at least a portion of the sidewalls of the gate trench but not along at least a portion of the bottom surface of the trench. The spacer gate of each gate trench may also include a layer of silicide along outer surfaces thereof. The semiconductor body may include a channel region and each gate trench may extend through the channel region and into the semiconductor body. Formed at the bottom of each gate trench within the semiconductor body may be a tip implant of the same conductivity as the semiconductor body. In addition, a deep body implant of the same conductivity as the channel region may be formed at the base of the channel region.
    Type: Grant
    Filed: April 3, 2006
    Date of Patent: March 2, 2010
    Assignee: International Rectifier Corporation
    Inventor: Timothy Henson
  • Publication number: 20100038746
    Abstract: A method for an isolation structure is provided. First, a substrate with a shallow trench isolation is provided. Second, a patterned mask is formed on the substrate. Then, the substrate is etched using the patterned mask to respectively form a first deep trench and a second deep trench as well as a first undercut and a second undercut on opposite sides of the shallow trench isolation. Later, the first deep trench and the second deep trench are partially filled with Si. Afterwards, the first deep trench and the second deep trench are filled with an isolation material to form the isolation structure.
    Type: Application
    Filed: August 12, 2008
    Publication date: February 18, 2010
    Inventor: Yi-Nan Su
  • Publication number: 20100025807
    Abstract: A discrete semiconductor device has a substrate with a first conductivity type of semiconductor material. A first semiconductor layer is formed over the substrate. The first semiconductor layer having the first conductivity type of semiconductor material. A second semiconductor layer over the first semiconductor layer. The second semiconductor layer has a second conductivity type of semiconductor material. A trench is formed through the second semiconductor layer and extends into the second semiconductor layer. The trench has a rounded or polygonal shape and vertical sidewalls. The trench is lined with an insulating layer and filled with an insulating material. A boundary between the first and second semiconductor layers forms a p-n junction. The trench surrounds the p-n junction to terminate the electric field of a voltage imposed on the second semiconductor layer. The discrete semiconductor device can also be a transistor, thyristor, triac, or transient voltage suppressor.
    Type: Application
    Filed: July 30, 2008
    Publication date: February 4, 2010
    Applicant: TRION TECHNOLOGY, INC.
    Inventor: Ronald R. Bowman
  • Patent number: 7638853
    Abstract: A solid state imaging device includes: an imaging region formed in an upper part of a substrate made of silicon to have a photoelectric conversion portion, a charge accumulation region of the photoelectric conversion portion being of a first conductivity type; a device isolation region formed in at least a part of the substrate to surround the photoelectric conversion portion; and a MOS transistor formed on a part of the imaging region electrically isolated from the photoelectric conversion region by the device isolation region. The width of the device isolation region is smaller in its lower part than in its upper part, and the solid state imaging device further includes a dark current suppression region surrounding the device isolation region and being of a second conductivity type opposite to the first conductivity type.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: December 29, 2009
    Assignee: Panasonic Corporation
    Inventors: Mitsuyoshi Mori, Takumi Yamaguchi, Toru Okino
  • Patent number: 7626269
    Abstract: The invention includes semiconductor assemblies having two or more dies. An exemplary assembly has circuitry associated with a first die front side electrically connected to circuitry associated with a second die front side. The front side of the second die is adjacent a back side of the first die, and a through wafer interconnect extends through the first die. The through wafer interconnect includes a conductive liner within a via extending through the first die. The conductive liner narrows the via, and the narrowed via is filled with insulative material. The invention also includes methods of forming semiconductor assemblies having two or more dies; and includes electronic systems containing assemblies with two or more dies.
    Type: Grant
    Filed: July 6, 2006
    Date of Patent: December 1, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Steve Oliver, Warren M. Farnworth
  • Publication number: 20090278227
    Abstract: Among structures, methods, devices, and systems for isolation trenches, a semiconductor device is provided that includes a substrate and an isolation trench structure. One such isolation trench structure includes a first isolation trench portion associated with a surface of the substrate and having a first pair of opposing sidewalls that are each substantially perpendicular to the surface of the substrate. A second isolation trench portion includes a second pair of sidewalls within the substrate that are each angled obliquely with respect to the surface of the substrate, where the second isolation trench portion has a separation between the second pair of sidewalls that decreases as a distance from the first isolation trench portion increases. A third isolation trench portion includes a third pair of sidewalls within the substrate that are each substantially perpendicular to the surface of the substrate.
    Type: Application
    Filed: May 8, 2008
    Publication date: November 12, 2009
    Applicant: Micron Technology, Inc.
    Inventors: Michael A. Smith, Xiaolong Fang
  • Publication number: 20090273030
    Abstract: A low cost integration method for a plurality of deep isolation trenches on the same chip is provided. The trenches have an additional n-type or p-type doped region surrounding the trench—silicon interface. Providing such variations of doping the trench interface is achieved by using implantation masking layers or doped glass films structured by a simple resist mask. By simple layout variation of the top dimension of the trench various trench depths at the same time can be ensured. Using this method, wider trenches will be deeper and smaller trenches will be shallower.
    Type: Application
    Filed: May 15, 2007
    Publication date: November 5, 2009
    Applicant: AUSTRIAMICROSYSTEMS AG
    Inventors: Martin Schrems, Jong Mun Park
  • Publication number: 20090256129
    Abstract: A method of making a memory device includes forming a first conductive electrode, forming an insulating structure over the first conductive electrode, forming a resistivity switching element on a sidewall of the insulating structure, forming a second conductive electrode over the resistivity switching element, and forming a steering element in series with the resistivity switching element between the first conductive electrode and the second conductive electrode, wherein a height of the resistivity switching element in a first direction from the first conductive electrode to the second conductive electrode is greater than a thickness of the resistivity switching element in second direction perpendicular to the first direction.
    Type: Application
    Filed: June 30, 2008
    Publication date: October 15, 2009
    Inventor: Roy E. Scheuerlein
  • Patent number: 7573116
    Abstract: A method used to fabricate a semiconductor device comprises etching a dielectric layer, resulting in an undesirable charge buildup along a sidewall formed in the dielectric layer during the etch. The charge buildup along a top and a bottom of the sidewall may reduce the etch rate thereby resulting in excessive etch times and undesirable etch opening profiles. To remove the charge, a sacrificial conductive layer may be formed to electrically short the upper and lower portions of the sidewall and eliminate the charge. In another embodiment, a gas is used to remove the charge. After removing the charge, the dielectric etch may continue. Various embodiments of the inventive process and structures are described.
    Type: Grant
    Filed: August 18, 2006
    Date of Patent: August 11, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Bradley J. Howard, Dinesh Chopra
  • Patent number: 7566945
    Abstract: Nano semiconductor switch devices are provided that include a semiconductor substrate and a conductive layer on the semiconductor substrate. A first insulating layer is provided on the conductive layer and the semiconductor substrate. The first insulating layer defines a contact hole that exposes at least a portion of the conductive layer. Carbon nano tubes are provided on the exposed portion of the conductive layer in the contact hole. The carbon nano tubes are in a vertical direction with respect to the semiconductor substrate. Related methods of fabrication are also provided herein.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: July 28, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-moon Choi, Sun-woo Lee
  • Publication number: 20090174027
    Abstract: An integrated circuit including a substrate and trench isolation regions. The substrate supports a device. The trench isolation regions are configured to laterally isolate the device. The trench isolation regions extend substantially through the substrate.
    Type: Application
    Filed: January 9, 2008
    Publication date: July 9, 2009
    Applicant: Infineon Technologies AG
    Inventor: Armin Tilke
  • Patent number: 7550815
    Abstract: In a semiconductor device having element isolation made of a trench-type isolating oxide film 13, large and small dummy patterns 11 of two types, being an active region of a dummy, are located in an isolating region 10, the large dummy patterns 11b are arranged at a position apart from actual patterns 9, and the small dummy patterns 11a are regularly arranged in a gap at around a periphery of the actual patterns 9, whereby uniformity of an abrading rate is improved at a time of abrading an isolating oxide film 13a is improved, and surface flatness of the semiconductor device becomes preferable.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: June 23, 2009
    Assignee: Renesas Technology Corp.
    Inventor: Kazuo Tomita
  • Patent number: 7538407
    Abstract: A semiconductor apparatus (100) comprises a low potential reference circuit region (1) and a high potential reference circuit region (2), and the high potential reference circuit region (2) is surrounded by a high withstand voltage separating region (3). By a trench (4) formed in the outer periphery of the high withstand voltage separating region (3), the low potential reference circuit region (1) and high potential reference circuit region (2) are separated from each other. Further, the trench (4) is filled up with an insulating material, and insulates the low potential reference circuit region (1) and high potential reference circuit region (2). The high withstand voltage separating region (3) is partitioned by the trench (4), high withstand voltage NMOS (5) or high withstand voltage PMOS (6) is provided in the partitioned position.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: May 26, 2009
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masato Taki, Hideki Tojima
  • Patent number: 7514761
    Abstract: A triple operation voltage device including a first type substrate, a high voltage (HV) first type well, a second type well, a low voltage (LV) device well, and a middle voltage (MV) device well is provided. The HV first type well is disposed inside the first type substrate. The second type well is disposed inside the first type substrate to separate the HV first type well from the first type substrate. The LV device well and the MV device well are separately disposed inside the HV first type well by the separation of the HV first type well. The triple operation voltage device assists in reducing the space between the LV device well and the MV device well and improving the integration of integrated circuits.
    Type: Grant
    Filed: November 8, 2005
    Date of Patent: April 7, 2009
    Assignee: Himax Technologies, Inc.
    Inventors: Tz-Ian Hung, Ming-Cheng Chiu, Chan-Liang Wu
  • Publication number: 20090065893
    Abstract: A semiconductor device and fabrication method thereof is disclosed. The method includes the steps of providing a substrate with a trench and a stacked layer thereon, performing an epitaxy process to form an epitaxial layer in the trench, conformably depositing an oxide layer on the epitaxial layer, and removing a portion of the oxide layer and the epitaxial layer on the bottom of the trench.
    Type: Application
    Filed: October 22, 2007
    Publication date: March 12, 2009
    Applicant: NANYA TECHNOLOGY CORPORATION
    Inventors: Chi-Huang Wu, Chien-Jung Yang
  • Patent number: 7495308
    Abstract: A semiconductor device includes a semiconductor substrate including a plurality of trenches formed along a first direction and a plurality of first upper surfaces divided by the trenches, a plurality of element isolation insulating films embedded in the respective trenches and including a plurality of second upper surfaces continuous with the first upper surfaces in a second direction which is perpendicular to the first direction, respectively, a plurality of interlayer insulating films formed above the first and the second upper surfaces, and a plurality of contact plugs defined in the interlayer insulating films so as to connect with the first upper surfaces of the semiconductor substrate. Each first upper surface is inclined in the second direction so as to be lowered from a central part toward interfaces between each first upper surface and the second upper surfaces adjacent to each first upper surface.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: February 24, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Ryuichi Kamo
  • Publication number: 20090045483
    Abstract: A semiconductor device may include a semiconductor substrate, trench region, buffer pattern, gap fill layer, and transistor. The trench region may be provided in the semiconductor substrate to define an active region. The buffer pattern and gap fill layer may be provided in the trench region. The buffer pattern and gap fill layer may fill the trench region. The gap fill layer may be densified by the buffer pattern. The transistor may be provided in the active region. A method of manufacturing a semiconductor device may include: forming a trench region in a semiconductor substrate; forming a buffer layer on an inner wall of the first trench region; forming a gap fill layer, filling the trench region; performing a thermal process to react the impurity with the oxygen, forming a buffer pattern; and forming a transistor in the active region.
    Type: Application
    Filed: August 13, 2008
    Publication date: February 19, 2009
    Inventors: Sang-Ho Rha, Eun-Kee Hong, Kyung-Mun Byun, Jong-Wan Choi, Eun-Kyung Baek
  • Patent number: 7479688
    Abstract: A method for modulating the stress caused by bird beak formation of small width devices by a nitrogen plasma treatment. The nitrogen plasma process forms a nitride liner about the trench walls that serves to prevent the formation of bird beaks in the isolation region during a subsequent oxidation step. In one embodiment, the plasma nitridation process occurs after trench etching, but prior to trench fill. In yet another embodiment, the plasma nitridation process occurs after trench fill. In yet another embodiment, a block mask is formed over predetermined active areas of the etched substrate prior to the plasma nitridation process. This embodiment is used in protecting the PFET device area from the plasma nitridation process thereby providing a means to form a PFET device area in which stress caused by bird beak formation increases the device performance of the PFET.
    Type: Grant
    Filed: January 5, 2004
    Date of Patent: January 20, 2009
    Assignee: International Business Machines Corporation
    Inventors: Sadanand V. Deshpande, Bruce B. Doris, Werner A. Rausch, James A. Slinkman
  • Patent number: 7473976
    Abstract: A semiconductor power transistor includes a drift region of a first conductivity type and a well region of a second conductivity type in the drift region such that the well region and the drift region form a pn junction therebetween. A first highly doped silicon region of the first conductivity type is in the well region, and a second highly doped silicon region is in the drift region. The second highly doped silicon region is laterally spaced from the well region such that upon biasing the transistor in a conducting state, a current flows laterally between first and second highly doped silicon regions through the drift region. Each of a plurality of trenches extending into the drift region perpendicular to the current flow includes a dielectric layer lining at least a portion of the trench sidewalls and at least one conductive electrode.
    Type: Grant
    Filed: April 12, 2006
    Date of Patent: January 6, 2009
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Christopher Boguslaw Kocon
  • Publication number: 20080303075
    Abstract: A method for forming an element isolation structure of a semiconductor device, includes: a trench forming step of forming a trench on a semiconductor substrate; and a laminating step of forming alternately multilayered film in the trench by sequentially and alternately laminating a plurality of first insulating films that apply tensile stress to the semiconductor substrate and a plurality of second insulating films that apply compression stress to the semiconductor substrate so that the trench is filled with the alternately multilayered film.
    Type: Application
    Filed: June 9, 2008
    Publication date: December 11, 2008
    Applicant: ELPIDA MEMORY, INC.
    Inventor: Tsuyoshi SETOKUBO
  • Publication number: 20080290451
    Abstract: A variety of isolation structures for semiconductor substrates include a trench formed in the substrate that is filled with a dielectric material or filled with a conductive material and lined with a dielectric layer along the walls of the trench. The trench may be used in combination with doped sidewall isolation regions. Both the trench and the sidewall isolation regions may be annular and enclose an isolated pocket of the substrate. The isolation structures are formed by modular implant and etch processes that do not include significant thermal processing or diffusion of dopants so that the resulting structures are compact and may be tightly packed in the surface of the substrate.
    Type: Application
    Filed: July 30, 2008
    Publication date: November 27, 2008
    Applicant: Advanced Analogic Technologies, Inc.
    Inventors: Richard K. Williams, Donald Ray Disney, Jun-Wei Chen, Wal Tien Chan, HyungSik Ryu
  • Publication number: 20080290366
    Abstract: An SOI device comprises an isolation trench defining a vertical drift zone, a buried insulating layer to which the isolation trench extends, and an electrode region for emitting charge carriers that is formed adjacent to the insulating layer and that is in contact with the drift zone. The electrode region comprises first strip-shaped portions having a first type of doping and second strip-shaped portions having a second type of doping that is inverse to the first type of doping. A first sidewall doping of the first type of doping is provided at a first sidewall of the isolation trench and a second sidewall doping of the second type of doping is provided at a second sidewall of the isolation trench. The first strip-shaped portions are in contact with the first sidewall doping and the second strip-shaped portions are in contact with the second sidewall doping.
    Type: Application
    Filed: June 10, 2005
    Publication date: November 27, 2008
    Inventor: Ralf Lerner
  • Publication number: 20080290449
    Abstract: A variety of isolation structures for semiconductor substrates include a trench formed in the substrate that is filled with a dielectric material or filled with a conductive material and lined with a dielectric layer along the walls of the trench. The trench may be used in combination with doped sidewall isolation regions. Both the trench and the sidewall isolation regions may be annular and enclose an isolated pocket of the substrate. The isolation structures are formed by modular implant and etch processes that do not include significant thermal processing or diffusion of dopants so that the resulting structures are compact and may be tightly packed in the surface of the substrate.
    Type: Application
    Filed: July 30, 2008
    Publication date: November 27, 2008
    Applicant: Advanced Analogic Technologies, Inc.
    Inventors: Richard K. Williams, Donald Ray Disney, Wai Tien Chan
  • Publication number: 20080290452
    Abstract: A semiconductor substrate includes a pair of trenches filled with a dielectric material. Dopant introduced into the mesa between the trenches is limited from diffusing laterally when the substrate is subjected to thermal processing. Therefore, semiconductor devices can be spaced more closely together on the substrate, and the packing density of the devices can be increased. Also trench constrained doped region diffuse faster and deeper than unconstrained diffusions, thereby reducing the time and temperature needed to complete a desired depth diffusion. The technique may be used for semiconductor devices such as bipolar transistors as well as isolation regions that electrically isolate the devices from each other. In one group of embodiments, a buried layer is formed at an interface between an epitaxial layer and a substrate, at a location generally below the dopant in the mesa.
    Type: Application
    Filed: July 31, 2008
    Publication date: November 27, 2008
    Applicants: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Michael E. Cornell, Wai Tien Chan
  • Publication number: 20080290450
    Abstract: A variety of isolation structures for semiconductor substrates include a trench formed in the substrate that is filled with a dielectric material or filled with a conductive material and lined with a dielectric layer along the walls of the trench. The trench may be used in combination with doped sidewall isolation regions. Both the trench and the sidewall isolation regions may be annular and enclose an isolated pocket of the substrate. The isolation structures are formed by modular implant and etch processes that do not include significant thermal processing or diffusion of dopants so that the resulting structures are compact and may be tightly packed in the surface of the substrate.
    Type: Application
    Filed: July 30, 2008
    Publication date: November 27, 2008
    Applicants: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Donald Ray Disney, Wai Tien Chan
  • Publication number: 20080290448
    Abstract: Semiconductor devices and methods of manufacture thereof are disclosed. In a preferred embodiment, a semiconductor device includes a workpiece and a trench formed within the workpiece. The trench has an upper portion and a lower portion, the upper portion having a first width and the lower portion having a second width, the second width being greater than the first width. A first material is disposed in the lower portion of the trench at least partially in regions where the second width of the lower portion is greater than the first width of the upper portion. A second material is disposed in the upper portion of the trench and at least in the lower portion of the trench beneath the upper portion.
    Type: Application
    Filed: May 22, 2007
    Publication date: November 27, 2008
    Inventors: Armin Tilke, Frank Huebinger, Hermann Wendt
  • Publication number: 20080283962
    Abstract: A pedestal is formed out of the pad layer such that two edges of the pedestal coincide with a border of the wells as implanted. An extended pedestal is formed over the pedestal by depositing a conformal dielectric layer. The area of the extended pedestal is exposed the semiconductor surface below is recessed to a recess depth. Other trenches including at least one intra-well isolation trench are lithographically patterned. After a reactive ion etch, both an inter-well isolation trench and at least one intra-well isolation trench are formed. The width of the inter-well isolation trench may be reduced due to the deeper bottom surface compared to the prior art structures. The boundary between the p-well and the n-well below the inter-well isolation structure is self-aligned to the middle of the inter-well isolation structure.
    Type: Application
    Filed: May 15, 2007
    Publication date: November 20, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Thomas W. Dyer, Zhijiong Luo, Haining S. Yang
  • Publication number: 20080272394
    Abstract: Junction field effect transistors (JFET) formed in substrates containing germanium. JFETs having polycrystalline semiconductor surface contacts with self-aligned silicide formed thereon and self-aligned source, drain and gate regions formed by thermal drive-in of impurities from surface contacts into the substrate, and implanted link regions. Others have a polycrystalline semiconductor gate surface contact and metal back gate, source and drain contacts and a metal surface contact to the gate surface contact with implanted source and drains and a self-aligned gate region. JFETs having a polycrystalline semiconductor gate surface contact and metal back gate, source and drain contacts and a metal surface contact to the gate surface contact with implanted source and drains and a self-aligned gate region and silicide formed on the top of the source, drain and back gate contacts and on top of the gate polycrystalline semiconductor gate contact to which the metal surface contacts make electrical contact.
    Type: Application
    Filed: October 10, 2007
    Publication date: November 6, 2008
    Inventors: Ashok Kumar Kapoor, Madhukar B. Vora, Weimin Zhang, Sachin R. Sonkusale, Yujie Liu
  • Publication number: 20080265365
    Abstract: Densely spaced gates of field effect transistors usually lead to voids in a contact interlayer dielectric. If such a void is opened by a contact via and filled with conductive material, an electrical short between neighboring contact regions of neighboring transistors may occur. By forming a recess between two neighboring contact regions, the void forms at a lower level. Thus, opening of the void by contact vias is prevented.
    Type: Application
    Filed: December 5, 2007
    Publication date: October 30, 2008
    Inventors: Kai Frohberg, Sven Mueller, Frank Feustel
  • Publication number: 20080265364
    Abstract: The aim of the invention is to integrate low-voltage logic elements and high-voltage power elements in one and the same silicon circuit. Said aim is achieved by dielectrically chip regions having different potentials from each other with the aid of isolation trenches (10). In order to prevent voltage rises at sharp edges on the bottom of the isolation trenches, said edges are rounded in a simple process, part of the insulating layer (2) being isotropically etched.
    Type: Application
    Filed: April 7, 2005
    Publication date: October 30, 2008
    Applicant: X-FAB SEMICONDUCTOR FOUNDRIES AG
    Inventors: Ralf Lerner, Uwe Eckoldt, Thomas Oetzel
  • Publication number: 20080251883
    Abstract: A semiconductor device includes a semiconductor substrate formed with a plurality of first element isolation trenches having respective first opening widths and a plurality of second element isolation trenches having larger opening widths than the first opening widths, element isolation insulating films buried in the first element isolation trenches so that upper parts of the trenches have partial openings, respectively and buried in the second element isolation trenches respectively, and coating type oxide films formed so as to fill the openings of the first element isolation trenches, respectively.
    Type: Application
    Filed: June 20, 2008
    Publication date: October 16, 2008
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yoshinori KITAMURA, Koichi Matsuno, Kazunori Nishikawa
  • Publication number: 20080251846
    Abstract: A diode having a capacitance below 0.1 pF and a breakdown voltage of at least 500V. The diode has an anode of a first conductivity type and a cathode of a second conductivity type disposed below the anode. At least one of the cathode and anode have multiple, vertically abutting diffusion regions. The cathode and anode are disposed between and bounded by adjacent isolation regions.
    Type: Application
    Filed: May 12, 2008
    Publication date: October 16, 2008
    Inventor: Steven H. Voldman
  • Publication number: 20080237783
    Abstract: A bipolar transistor is formed in an isolation structure comprising a floor isolation region, a dielectric filled trench above the floor isolation region and a sidewall isolation region extending downward from the bottom of the trench to the floor isolation region. This structure provides a relatively deep isolated pocket in a semiconductor substrate while limiting the depth of the trench that must be etched in the substrate.
    Type: Application
    Filed: December 17, 2007
    Publication date: October 2, 2008
    Applicants: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Donald Ray Disney, Wai Tien Chan
  • Publication number: 20080237784
    Abstract: A semiconductor device formed in a semiconductor substrate wherein the semiconductor substrate has a trench for isolating elements from each other, the trench has unevenness at the bottom thereof, and an insulator is buried in the trench.
    Type: Application
    Filed: April 2, 2008
    Publication date: October 2, 2008
    Applicant: FUJITSU LIMITED
    Inventors: Masato MIYAMOTO, Masanori TERAHARA
  • Publication number: 20080237782
    Abstract: An isolated diode comprises a floor isolation region, a dielectric-filled trench and a sidewall region extending from a bottom of the trench at least to the floor isolation region. The floor isolation region, dielectric-filled trench and a sidewall region are comprised in one terminal (anode or cathode) of the diode and together form an isolated pocket in which the other terminal of the diode is formed. In one embodiment the terminals of the diode are separated by a second dielectric-filled trench and sidewall region.
    Type: Application
    Filed: December 17, 2007
    Publication date: October 2, 2008
    Applicants: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Donald Ray Disney, Wai Tien Chan
  • Patent number: 7425751
    Abstract: A MOSFET device in strained silicon-on-SiGe and a method of forming the device are described. The said device achieves reduced junction leakage due to the lower band-gap values of SiGe. The method consists of forming isolation trenches in a composite strained-Si/SiGe substrate and growing a liner oxide by wet oxidation such that oxidation is selective to SiGe only, with negligible oxidation of silicon surfaces. Selective oxidation results in oxide encroachment under strained-Si, thereby reducing the junction area after device fabrication is completed. Reduced junction area leads to reduced n+/p or p+/n junction leakage current.
    Type: Grant
    Filed: January 14, 2005
    Date of Patent: September 16, 2008
    Assignee: Agency for Science, Technology and Research
    Inventors: Narayanan Balasubramanian, Richard Hammond
  • Publication number: 20080217703
    Abstract: A method for manufacturing an isolation structure is disclosed that protects the isolation structure during etching of a dichlorosilane (DCS) nitride layer. The method involves the formation of a bis-(t-butylamino)silane-based nitride liner layer within the isolation trench, which exhibits a five-fold greater resistance to nitride etching solutions as compared with DCS nitride, thereby allowing protection against damage from unintended over-etching. The bis-(t-butylamino)silane-based nitride layer also exerts a greater tensile strain on moat regions that results in heightened carrier mobility of active regions, thereby increasing the performance of NMOS transistors embedded therein.
    Type: Application
    Filed: December 27, 2007
    Publication date: September 11, 2008
    Inventors: Narendra Singh Mehta, Wayne Anthony Bather, Ajith Varghese
  • Publication number: 20080217729
    Abstract: An isolated CMOS pair of transistors formed in a P-type semiconductor substrate includes an N-type submerged floor isolation region and a filled trench extending downward from the surface of the substrate to the floor isolation region. Together the floor isolation region and the filled trench form an isolated pocket of the substrate which contains a P-channel MOSFET in an N-well and an N-channel MOSFET in a P-well. The substrate does not contain an epitaxial layer, thereby overcoming the many problems associated with fabricating the same.
    Type: Application
    Filed: February 14, 2008
    Publication date: September 11, 2008
    Applicant: Advanced Analogic Technologies, Inc.
    Inventors: Donald R. Disney, Richard K. Williams