With Passive Component (e.g., Resistor, Capacitor, Etc.) Patents (Class 257/516)
  • Patent number: 8143952
    Abstract: A three dimensional on-chip inductor, transformer and radio frequency amplifier are disclosed. The radio frequency amplifier includes a pair of transformers and a transistor. The transformers include at least two inductively coupled inductors. The inductors include a plurality of segments of a first metal layer, a plurality of segments of a second metal layer, a first inductor input, a second inductor input, and a plurality of through silicon vias coupling the plurality of segments of the first metal layer and the plurality of segments of the second metal layer to form a continuous, non-intersecting path between the first inductor input and the second inductor input. The inductors can have a symmetric or asymmetric geometry. The first metal layer can be a metal layer in the back-end-of-line section of the chip. The second metal layer can be located in the redistributed design layer of the chip.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: March 27, 2012
    Assignee: QUALCOMM Incorporated
    Inventors: Jonghae Kim, Shiqun Gu, Brian Matthew Henderson, Thomas R. Toms, Lew G. Chua-Eoan, Seyfollah S. Bazarjani, Matthew Nowak
  • Publication number: 20120061795
    Abstract: A device includes a semiconductor substrate of a first conductivity type, wherein the semiconductor substrate comprises a first surface and a second surface opposite the first surface. A through-substrate via (TSV) extends from the first surface to the second surface of the semiconductor substrate. A well region of a second conductivity type opposite the first conductivity type encircles the TSV, and extends from the first surface to the second surface of the semiconductor substrate.
    Type: Application
    Filed: September 9, 2010
    Publication date: March 15, 2012
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiao-Tsung Yen, Hsien-Pin Hu, Chin-Wei Kuo, Sally Liu
  • Patent number: 8129772
    Abstract: Disclosed are integrated circuit structures each having a silicon germanium film incorporated as a local interconnect and/or an electrical contact. These integrated circuit structures provide improved local interconnects between devices and/or increased capacitance to devices without significantly increasing structure surface area or power requirements. Specifically, disclosed are integrated circuit structures that incorporate a silicon germanium film as one or more of the following features: as a local interconnect between devices; as an electrical contact to a device (e.g., a deep trench capacitor, a source/drain region of a transistor, etc.); as both an electrical contact to a deep trench capacitor and a local interconnect between the deep trench capacitor and another device; and as both an electrical contact to a deep trench capacitor and as a local interconnect between the deep trench capacitor and other devices.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: March 6, 2012
    Assignee: International Business Machines Corporation
    Inventor: Steven H. Voldman
  • Patent number: 8115272
    Abstract: An apparatus includes a semiconductor layer (2) having therein a cavity (4). A dielectric layer (3) is formed on the semiconductor layer. A plurality of etchant openings (24) extend through the dielectric layer for passage of etchant for etching the cavity. An SiO2 pillar (25) extends from a bottom of the cavity to engage and support a portion of the dielectric layer extending over the cavity. In one embodiment, a cap layer (34) on the dielectric layer covers the etchant openings.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: February 14, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Walter B. Meinel, Kalin V. Lazarov, Brian E. Goodlin
  • Patent number: 8093923
    Abstract: An RESURF region is formed so as to surround a high-potential logic region with an isolation region interposed therebetween, in which a sense resistance and a first logic circuit which are applied with a high potential are formed in high-potential logic region. On the outside of RESURF region, a second logic circuit region is formed, which is applied with the driving voltage level required for driving a second logic circuit with respect to the ground potential. In RESURF region, a drain electrode of a field-effect transistor is formed along the inner periphery, and a source electrode is formed along the outer periphery. Furthermore, a polysilicon resistance connected to sense resistance is formed in the shape of a spiral from the inner peripheral side toward the outer peripheral side.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: January 10, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventor: Kazuhiro Shimizu
  • Patent number: 8093679
    Abstract: In the course of forming a resistor in the back end of an integrated circuit, an intermediate dielectric layer is deposited and a trench etched through it and into a lower dielectric layer by a controllable amount, so that the top of a resistor layer deposited in the trench is close in height to the top of the lower dielectric layer; the trench is filled and the resistor layer outside the trench is removed, after which a second dielectric layer is deposited. Vias passing through the second dielectric layer to contact the resistor then have the same depth as vias contacting metal interconnects in the lower dielectric layer. A tri-layer resistor structure is employed in which the resistive film is sandwiched between two protective layers that block diffusion between the resistor and BEOL ILD layers.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: January 10, 2012
    Assignee: International Business Machines Corporation
    Inventors: Anil K. Chinthakindi, Douglas D. Coolbaugh, John M. Cotte, Ebenezer E. Eshun, Zhong-Xiang He, Anthony K. Stamper, Eric J. White
  • Patent number: 8084829
    Abstract: The invention relates to a semiconductor device (10) comprising a semiconductor body (1) with a high-ohmic semi-conductor substrate (2) which is covered with a dielectric layer (3, 4) containing charges, on which dielectric layer one or more passive electronic components (20) comprising conductor tracks (20) are provided, wherein, at the location of the passive elements (20), a region (5) is present at the interface between the semiconductor substrate (2) and the dielectric layer (3, 4), as a result of which the conductivity of an electrically conducting channel induced in the device (10) by the charges is limited at the location of the region (5). According to the invention, the region (5) is formed by deposition and comprises a semi-insulating material. As a result, the device (10) has a very low high-frequency power loss because the inversion channel is formed in the semi-insulating region (5).
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: December 27, 2011
    Assignee: NXP B.V.
    Inventors: Wibo D. Van Noort, Petrus H. C. Magnee, Lis K. Nanver, Celine J. Detcheverry, Ramon J. Havens
  • Patent number: 8084803
    Abstract: A capacitor with a mixed structure of a Metal Oxide Semiconductor (MOS) capacitor and a Poly-silicon Insulator Poly-silicon (PIP) capacitor includes a substrate and a diffusion junction region formed over the substrate. A high concentration diffusion junction region may be formed in a portion of the diffusion junction region. An oxide layer may be formed over the substrate, the oxide layer having an opening that exposes a portion of the high concentration diffusion junction region. A first polysilicon plate may be formed over a portion of the oxide layer and spaced from the opening, and a nitride layer may be formed over a portion of the first polysilicon plate. A sidewall may be formed over a side of the first polysilicon layer, over a side of the nitride layer, and over a portion of the oxide layer between the side of the polysilicon layer and the opening. A second polysilicon plate may be formed over the nitride layer, over the sidewall, and over the high concentration diffusion junction region.
    Type: Grant
    Filed: December 27, 2008
    Date of Patent: December 27, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Nam-Joo Kim
  • Publication number: 20110298085
    Abstract: A semiconductor chip includes a substrate including a surface, an active transistor region and a substrate contact region formed on the substrate, a shallow trench isolation (STI) area formed in the surface and disposed at least partially between the active transistor region and the substrate contact region, and at least one capacitor at least partially buried in the STI area.
    Type: Application
    Filed: June 2, 2010
    Publication date: December 8, 2011
    Applicant: Infineon Technologies AG
    Inventor: Hartmud Terletzki
  • Patent number: 8071457
    Abstract: A precision low capacitance resistor is formed, e.g., in a bulk substrate. An embodiment includes forming a source/drain region on a substrate, patterning a portion of the source/drain region to form segments, etching the segments to substantially separate an upper section of each segment from a lower section of each segment, and filling the space between the segments with an insulating material. The resulting structure maintains electrical connection between the segments at end pads, but separates the resistor segments from the bottom substrate, thereby avoiding capacitive coupling with the substrate.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: December 6, 2011
    Assignee: GLOBALFOUNDRIES Inc.
    Inventor: Steven R. Soss
  • Patent number: 8049300
    Abstract: An inductive device including an inductor coil located over a substrate, at least one electrically insulating layer interposing the inductor coil and the substrate, and a plurality of current interrupters each extending into the substrate, wherein a first aggregate outer boundary of the plurality of current interrupters substantially encompasses a second aggregate outer boundary of the inductor coil.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: November 1, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Andrew Yeh, Alex Chang, Sung-Pi Tseng, Chang-Yun Chang, Hao-Yu Chen, Fu-Liang Yang
  • Publication number: 20110233678
    Abstract: An ESD protection device includes a first well of a first semiconductor type disposed in a substrate of a second semiconductor type forming a first diode. A second well of the second semiconductor type is formed in the substrate to form a second diode with the first well. A first plurality of doped regions of the first semiconductor type are formed in an upper surface of the first well. A second plurality of doped regions of the second semiconductor type are formed in the upper surface of the first well forming a third diode with the first well. A plurality of STI regions are formed in the upper surface of the first well. Each STI region is disposed between a doped region of the first and second semiconductor types. The third diode provides a current bypass when an ESD voltage spike is received at one of the first or second plurality of doped regions.
    Type: Application
    Filed: March 25, 2010
    Publication date: September 29, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ming-Hsien TSAI, Tzu-Jin YEH, Chewn-Pu JOU, Fu-Lung HSUEH
  • Patent number: 8026572
    Abstract: A semiconductor device having plural active and passive elements on one semiconductor substrate is manufactured in the following cost effective manner even when the active and passive elements include double sided electrode elements. When the semiconductor substrate is divided into plural field areas, an insulation separation trench that penetrates the semiconductor substrate surrounds each of the field areas, and each of the either of the plural active elements or the plural passive elements. Further, each of the plural elements has a pair of power electrodes for power supply respectively disposed on each of both sides of the semiconductor substrate to serve as the double sided electrode elements.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: September 27, 2011
    Assignee: DENSO CORPORATION
    Inventors: Yoshihiko Ozeki, Kenji Kouno, Tetsuo Fujii
  • Patent number: 8018027
    Abstract: A flip-bonded dual-substrate inductor includes a base substrate, a first inductor body portion provided on a surface of the base substrate, a cover substrate, a second inductor body portion provided on a surface of a cover substrate, and a nanoparticle bonding material provided between the base substrate surface and the cover substrate surface to electrically connect the first inductor body portion and the second inductor body portion. A method for fabricating a flip-bonded dual-substrate inductor including forming a first inductor body portion on a surface of a base substrate, forming a second inductor body portion on a surface of a cover substrate, and attaching the base substrate surface to the cover substrate surface using a nanoparticle bonding material that electrically connects the first inductor body portion and the second inductor body portion.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: September 13, 2011
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Tatsuo Rao Bizen, Yinon Degani, Kunquan Sun
  • Patent number: 7986007
    Abstract: The structure of the MOS transistor provided in this invention has LDD (lightly doped drain) and halo doped regions removed from the source, the drain or both regions in the substrate for improved linearity range when operated as a voltage-controlled resistor. The removal of the LDD and halo doped regions is performed by simply modifying the standard mask of the MOS process using a logic operation layer with no extra mask required.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: July 26, 2011
    Assignee: Realtek Semiconductor Corp.
    Inventors: Kai-Yi Huang, Ta-Hsun Yeh, Yuh-Sheng Jean
  • Patent number: 7977763
    Abstract: A thin film semiconductor die circuit package is provided utilizing low dielectric constant (k) polymer material for the insulating layers of the metal interconnect structure. Five embodiments include utilizing glass, glass-metal composite, and glass/glass sandwiched substrates. The substrates form the base for mounting semiconductor dies and fabricating the thin film interconnect structure.
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: July 12, 2011
    Assignee: Megica Corporation
    Inventors: Mou-Shiung Lin, Jin-Yuan Lee, Ching-Cheng Huang
  • Patent number: 7973383
    Abstract: The bottom side of an N type silicon substrate is connected to a power supply terminal, a second P type epitaxial layer is formed on all sides of the N type silicon substrate, and a device forming portion is provided on the second P type epitaxial layer. A first P type epitaxial layer and an interlayer insulating film are provided on the device forming portion and an N well and a P well are formed on the top surface of the first P type epitaxial layer. The second P type epitaxial layer is connected to a ground terminal via the first P type epitaxial layer, the P well, a p+ diffusion region, a via and a wire. Accordingly, a pn junction is formed at the interface between the second P type epitaxial layer and the N type silicon substrate.
    Type: Grant
    Filed: September 24, 2007
    Date of Patent: July 5, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Masayuki Furumiya, Hiroaki Ohkubo, Yasutaka Nakashiba
  • Patent number: 7973385
    Abstract: A semiconductor device including a doped substrate of a first doping polarity and a doped semiconductor material of a second doping polarity. The semiconductor material is on, or in, the substrate, and the second doping polarity is opposite the first doping polarity such that the semiconductor material and the substrate form a diode. The semiconductor device further includes an inductor on or above the semiconductor material, and a pattern in the semiconductor material for reducing eddy currents. The pattern includes a doped semiconductor material of the first doping polarity and a least one trench within the doped semiconductor material of the first doping polarity, wherein, at least at a depth at which the trench is closest to the inductor, the doped semiconductor material of the first doping polarity fully surrounds the trench so that, at least at the depth, the trench does not touch the doped semiconductor material of the second doping polarity.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: July 5, 2011
    Assignee: X-Fab Semiconductor Foundries AG
    Inventors: Paul Stribley, Christopher Lee, John Ellis
  • Patent number: 7960226
    Abstract: On-chip decoupling capacitor structures, and methods of fabricating such decoupling capacitors are disclosed. On-chip decoupling capacitors help to reduce or prevent L di/dt voltage droop on the power grid for high surge current conditions. The inclusion of one or more decoupling capacitors on a chip, in close proximity to the power grid conductors reduces parasitic inductance and thereby provides improved decoupling performance with respect to high frequency noise. In one embodiment of the present invention, a capacitor stack structure is inserted between metal interconnect layers. Such a capacitor stack may consist of a bottom electrode/barrier; a thin dielectric material having a high dielectric constant; and a top electrode/barrier. In an alternative embodiment, the bottom electrode and/or bottom metal interconnect layer have three dimensional texture to increase the surface area of the capacitor.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: June 14, 2011
    Assignee: Intel Corporation
    Inventors: Bruce A. Block, Richard Scott List, Ruitao Zhang
  • Patent number: 7956438
    Abstract: A capacitor in an integrated circuit (“IC”) has a first node conductor formed in a first metal layer of the IC with a first spine extending along a first direction, a first vertical element extending from the first spine along a second direction perpendicular to the first direction. A first capital element extends along the first direction, and a first serif element extends from the capital element. The capacitor also has a second node conductor having a second spine, a second vertical element extending from the second spine toward the first spine, a second capital element, and a second serif element extending from the second capital between the first vertical element and the first serif element.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: June 7, 2011
    Assignee: Xilinx, Inc.
    Inventor: Patrick J. Quinn
  • Publication number: 20110127635
    Abstract: In the course of forming a resistor in the back end of an integrated circuit, an intermediate dielectric layer is deposited and a trench etched through it and into a lower dielectric layer by a controllable amount, so that the top of a resistor layer deposited in the trench is close in height to the top of the lower dielectric layer; the trench is filled and the resistor layer outside the trench is removed, after which a second dielectric layer is deposited. Vias passing through the second dielectric layer to contact the resistor then have the same depth as vias contacting metal interconnects in the lower dielectric layer. A tri-layer resistor structure is employed in which the resistive film is sandwiched between two protective layers that block diffusion between the resistor and BEOL ILD layers.
    Type: Application
    Filed: February 9, 2011
    Publication date: June 2, 2011
    Applicant: International Business Machines Corporation
    Inventors: Anil K. Chinthakindi, Douglas D. Coolbaugh, John M. Cotte, Ebenezer E. Eshun, Zhong-Xiang He, Anthony K. Stamper, Eric J. White
  • Patent number: 7951663
    Abstract: A semiconductor device is made by forming a smooth conductive layer over a substrate. A first insulating layer is formed over a first surface of the smooth conductive layer. A first conductive layer is formed over the first insulating layer. A second insulating layer is formed over the first insulating layer and first conductive layer. The substrate is removed. A second conductive layer is formed over a second surface of the smooth conductive layer opposite the first surface of the smooth conductive layer. A third insulating layer is formed over the second conductive layer. The second conductive layer, smooth conductive layer, first insulating layer, and first conductive layer constitute a MIM capacitor. A portion of the second conductive layer includes an inductor. The smooth conductive layer has a smooth surface to reduce particles and hill-locks which decreases ESR, increases Q factor, and increases ESD of the MIM capacitor.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: May 31, 2011
    Assignee: STATS ChipPAC, Ltd.
    Inventor: Yaojian Lin
  • Publication number: 20110121425
    Abstract: The present invention relates to a semiconductor device, comprising a semiconductor substrate (102) with a thickness of less than 100 micrometer and with a first substrate side and an opposite second substrate side. A plurality of at least four monolithically integrated Zener or avalanche diodes (164,166,168,170) with a reverse breakdown voltage of less than 20 V are defined in the semiconductor substrate and connected with each other in a series connection. The diodes are defined in a plurality of mutually isolated substrate islands (120,122,124,126) in the semiconductor substrate, at least one diode per substrate island. The substrate islands are laterally surrounded by through-substrate isolations extending from the first to the second substrate side and comprising a filling (128) that electrically isolates a respective substrate island from a respective laterally surrounding area of the semiconductor substrate.
    Type: Application
    Filed: October 22, 2008
    Publication date: May 26, 2011
    Applicant: NXP B.V.
    Inventors: Jean-Marc Yannou, Johannes Van Zwol, Emmanuel Savin
  • Patent number: 7948053
    Abstract: A semiconductor device includes a first insulating film, paired resistance elements each of which includes a first conductive film formed on the first insulating film, a second insulating film formed on the first conductive film and a second conductive film formed on the second insulating film, paired first contact plugs formed on one of the resistance elements and arranged along a first direction, and paired second contact plugs formed on the other resistance. One of the resistance elements has a first width in a second direction perpendicular to the first direction, and a semiconductor region surrounded by an element isolation region has a second width. The first width is smaller than half of the second width. The second insulating films are spaced from each other by a first distance. The second conductive films are spaced from each other by a second distance. The second distance is longer than the first distance.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: May 24, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yugo Ide, Minori Kajimoto
  • Patent number: 7923783
    Abstract: A semiconductor memory device according to an embodiment of the present invention includes a resistance element which is constructed with a first conductor which extends in a first direction and is connected to a first contact; a second conductor which extends in said first direction and is connected to a second contact; and a first insulation film which exists between said first conductor and said second conductor, said first insulation film also having an opening in which a third conductor which connects said first conductor and said second conductor is arranged.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: April 12, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Takumi Abe
  • Patent number: 7902629
    Abstract: In the course of forming a resistor in the back end of an integrated circuit, an intermediate dielectric layer is deposited and a trench etched through it and into a lower dielectric layer by a controllable amount, so that the top of a resistor layer deposited in the trench is close in height to the top of the lower dielectric layer; the trench is filled and the resistor layer outside the trench is removed, after which a second dielectric layer is deposited. Vias passing through the second dielectric layer to contact the resistor then have the same depth as vias contacting metal interconnects in the lower dielectric layer. A tri-layer resistor structure is employed in which the resistive film is sandwiched between two protective layers that block diffusion between the resistor and BEOL ILD layers.
    Type: Grant
    Filed: November 17, 2008
    Date of Patent: March 8, 2011
    Assignee: International Business Machines Corporation
    Inventors: Anil K. Chinthakindi, Douglas D. Coolbaugh, John M. Cotte, Ebenezer E. Eshun, Zhong-Xiang He, Anthony K. Stamper, Eric J. White
  • Patent number: 7902632
    Abstract: A pumping MOS capacitor includes a substrate which is conductive and includes an irregular surface, a dielectric film formed along the irregular surface of the substrate and a gate formed on the dielectric film.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: March 8, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jun-Ki Choi
  • Patent number: 7902582
    Abstract: Electronic apparatus and methods of forming the electronic apparatus include a tantalum lanthanide oxynitride film on a substrate for use in a variety of electronic systems. The tantalum lanthanide oxynitride film may be structured as one or more monolayers. Metal electrodes may be disposed on a dielectric containing a tantalum lanthanide oxynitride film.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: March 8, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Leonard Forbes, Kie Y. Ahn, Arup Bhattacharyya
  • Patent number: 7884442
    Abstract: An integrated circuit resistor is provided that comprises a mesa 14 between electrical contacts 16 and 18. The electrical resistance between electrical contacts 16 and 18 is selectively increased through the formation of recesses 20 and 22 in the mesa 14. The size of recesses 20and 22 can be used to tune the value of the electrical resistance between contacts 16 and 18.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: February 8, 2011
    Assignee: Raytheon Company
    Inventors: David D. Heston, Jon E. Mooney
  • Patent number: 7880270
    Abstract: A vertical heterobipolar transistor comprising a substrate of semiconductor material of a first conductivity type and an insulation region provided therein, a first semiconductor electrode arranged in an opening of the insulation region and comprising monocrystalline semiconductor material of a second conductivity type, which is either in the form of a collector or an emitter, and which has a first heightwise portion and an adjoining second heightwise portion which is further away from the substrate interior in a heightwise direction, wherein only the first heightwise portion is enclosed by the insulation region in lateral directions perpendicular to the heightwise direction, a second semiconductor electrode of semiconductor material of the second conductivity type, which is in the form of the other type of semiconductor electrode, a base of monocrystalline semiconductor material of the first conductivity type, and a base connection region having a monocrystalline portion which in a lateral direction laterall
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: February 1, 2011
    Assignee: IHP GmbH—Innovations for High Performance Microelectronics/Leibniz-Institut fur innovative Mikroelektronik
    Inventors: Bernd Heinemann, Holger Rücker, Jürgen Drews, Steffen Marschmeyer
  • Patent number: 7875955
    Abstract: An on-chip inductor structure for a DC-DC power regulator circuit merges the switching transistor metallization with the inductor. Thick top level conductor metal that is used to strap the transistor array and to lower its on-state resistance is also used to extend the power inductor into the transistor array. Thus, the structure includes three basic components: a power inductor that spirals around the transistor array, the transistor array itself, and the transistor array metallization that is used to form a distributed inductance situated over the transistor array.
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: January 25, 2011
    Assignee: National Semiconductor Corporation
    Inventors: Peter J. Hopper, Peter Johnson, Kyuwoon Hwang, Philipp Lindorfer
  • Patent number: 7872329
    Abstract: Effective area of a capacitor is to be increased while suppressing increase in number of manufacturing steps. In a semiconductor device, a silicon substrate includes a plurality of first recessed portions having a first depth from the main surface thereof, a second recessed portion provided in a region other than the first recessed portion and having a second depth from the main surface, and a third recessed portion provided in at least one of the plurality of first recessed portions and having a third depth from the bottom portion of the first recessed portion. The second recessed portion and the third recessed portion have the same depth, and a decoupling condenser is provided so as to fill the at least one of the first recessed portion and the third recessed portion provided therein, and an isolation insulating layer is provided so as to fill the remaining first recessed portions, and the second recessed portion is filled with a gate electrode.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: January 18, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Kazuhiko Sanada
  • Patent number: 7821069
    Abstract: A semiconductor device includes: n transistor elements; n resistive elements; and n capacitive elements, each kind of elements coupled in series between the first and second terminals. The gate of each transistor element has a gate pad, and each transistor element includes transistor pads disposed on both sides. Each resistive element includes resistive pads disposed on both sides. Each capacitive element includes capacitive pads disposed on both sides. The gate pad other than the first stage transistor element, a corresponding resistive pad, and a corresponding capacitive pad are electrically coupled. One transistor pad, one resistive pad, and one capacitive pad in the first stage are electrically coupled. One transistor pad, one resistive pad, and one capacitive pad in the n-th stage are electrically coupled.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: October 26, 2010
    Assignee: DENSO CORPORATION
    Inventors: Satoshi Shiraki, Hiroyuki Ban, Akira Yamada
  • Patent number: 7821099
    Abstract: A diode having a capacitance below 0.1 pF and a breakdown voltage of at least 500V. The diode has an anode of a first conductivity type and a cathode of a second conductivity type disposed below the anode. At least one of the cathode and anode have multiple, vertically abutting diffusion regions. The cathode and anode are disposed between and bounded by adjacent isolation regions.
    Type: Grant
    Filed: May 12, 2008
    Date of Patent: October 26, 2010
    Assignee: International Business Machines Corporation
    Inventor: Steven H. Voldman
  • Patent number: 7816264
    Abstract: A wafer processing method having a step of reducing the thickness of a wafer in only a device forming area where semiconductor chips are formed by grinding and etching the back side of the wafer to thereby form a recess on the back side of the wafer. At the same time, an annular projection is formed around the recess to thereby ensure the rigidity of the wafer. Accordingly, handling in shifting the wafer from the back side recess forming step to a subsequent step of forming a back side rewiring layer can be performed safely and easily.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: October 19, 2010
    Assignee: Disco Corporation
    Inventors: Keiichi Kajiyama, Kazuhisa Arai
  • Patent number: 7804178
    Abstract: A semiconductor component including: a substrate, at least one semiconductor chip arranged on the substrate and at least one passive device likewise arranged on the substrate. The passive device is mounted with its underside on the substrate. The semiconductor component further includes an interspace disposed between the underside of the passive device and the substrate. The interspace is filled with an underfilling material. In order to avoid the solder pumping effect, the upper side and the lateral sides of the passive device are also embedded in a plastic compound.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: September 28, 2010
    Assignee: Infineon Technologies AG
    Inventors: Erich Syri, Gerold Gruendler, Juergen Hoegerl, Thomas Killer, Volker Strutz
  • Publication number: 20100230779
    Abstract: Trench-generated device structures fabricated using a semiconductor-on-insulator (SOI) wafer, design structures embodied in a machine readable medium for designing, manufacturing, or testing an integrated circuit, as well as methods for fabricating trench-generated device structures. The device structure includes a trench extending through the semiconductor and insulator layers of the SOI wafer and into the underlying semiconductor substrate, and a first doped region in the semiconductor substrate. The doped region, which extends about the trench, has a second conductivity type opposite to the first conductivity type. The device structure further includes a first contact extending from the top surface through the semiconductor and insulator layers to a portion of the semiconductor substrate outside of the doped region, and a second contact extending from the top surface through the semiconductor and insulator layers to the doped region in the semiconductor substrate.
    Type: Application
    Filed: September 2, 2009
    Publication date: September 16, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brent A. Anderson, Edward J. Nowak
  • Patent number: 7763953
    Abstract: A semiconductor device including a capacitor which includes a first electrode, a second electrode, and a dielectric layer disposed between the first electrode and the second electrode, the dielectric layer including: a first paraelectric film formed of a material containing a first metal element and at least one kind of second metal element; a second paraelectric film disposed between the first electrode and the first paraelectric film; and a third paraelectric film disposed between the second electrode and the first paraelectric film, wherein the second paraelectric film is formed of a material containing the first metal element but substantially not containing the second metal element, and the third paraelectric film is formed of a material containing the first metal element but substantially not containing the second metal element.
    Type: Grant
    Filed: March 4, 2008
    Date of Patent: July 27, 2010
    Assignee: Elpida Memory, Inc.
    Inventor: Masami Tanioku
  • Patent number: 7763950
    Abstract: A semiconductor device is configured that a high-withstand voltage semiconductor device and logic circuits are integrated on a single chip and that a high-withstand voltage high-potential island including the high-potential-side logic circuit is separated using multiple partition walls enclosing therearound. The semiconductor device is provided with a multi-trench separation region having a level shift wire region that is used to connect the high-potential-side logic circuit to the high-potential-side electrode of the high-withstand voltage semiconductor device.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: July 27, 2010
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Kazuhiro Shimizu
  • Patent number: 7750413
    Abstract: An object of the present invention is to mount both a RF circuit including an inductor formed therein and a digital circuit on a single chip. MOSFETs are formed on a semiconductor substrate 1 in regions isolated by an element isolation film 2. A plurality of low-permittivity insulator rods including a low-permittivity insulator embedded therein and penetrating a first interlevel dielectric film 4 to reach the internal of the silicon substrate are disposed in the RF circuit area 100. An inductor 40 is formed on the interlevel dielectric film in the RF circuit area by using multi-layered interconnects. A high-permeability isolation region in which a composite material including a mixture of high-permeability material and a low-permittivity material is formed in the region of the core of the inductor and periphery thereof.
    Type: Grant
    Filed: June 16, 2004
    Date of Patent: July 6, 2010
    Assignee: NEC Corporation
    Inventors: Yoshihiro Hayashi, Naoya Inoue, Kenichiro Hijioka
  • Patent number: 7745279
    Abstract: A decoupling capacitor is formed on a semiconductor substrate that includes a silicon surface layer. A substantially flat bottom electrode is formed in a portion of the semiconductor surface layer. A capacitor dielectric overlies the bottom electrode. The capacitor dielectric is formed from a high permittivity dielectric with a relative permittivity, preferably greater than about 5. The capacitor also includes a substantially flat top electrode that overlies the capacitor dielectric. In the preferred application, the top electrode is connected to a first reference voltage line and the bottom electrode is connected to a second reference voltage line.
    Type: Grant
    Filed: January 13, 2006
    Date of Patent: June 29, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yee-Chia Yeo, Chenming Hu
  • Patent number: 7719079
    Abstract: A chip carrier substrate includes a capacitor aperture and a laterally separated via aperture, each located within a substrate. The capacitor aperture is formed with a narrower linewidth and shallower depth than the via aperture incident to a microloading effect within a plasma etch method that is used for simultaneously etching the capacitor aperture and the via aperture within the substrate. Subsequently a capacitor is formed and located within the capacitor aperture and a via is formed and located within the via apertures. Various combinations of a first capacitor plate layer, a capacitor dielectric layer and a second capacitor plate layer may be contiguous with respect to the capacitor aperture and the via aperture.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: May 18, 2010
    Assignee: International Business Machines Corporation
    Inventors: Paul S. Andry, Chirag S. Patel
  • Patent number: 7714411
    Abstract: An electro-optical device includes: a substrate; a plurality of wiring lines which is formed on the substrate; and an IC which is mounted on the substrate so as to be electrically connected to the plurality of wiring lines. At least a pair of wiring lines among the plurality of wiring lines include a first conductive layer formed on the substrate and a second conductive layer formed on at least the first conductive layer. The first conductive layer and the second conductive layer have different resistance values. The first conductive layer of one of the pair of wiring lines has a plurality of first resistors each extending toward the other wiring line, and the second conductive layer of the other wiring line has a second resistor extending toward the one wiring line. The plurality of first resistors is connected to the second resistor.
    Type: Grant
    Filed: May 22, 2006
    Date of Patent: May 11, 2010
    Assignee: Epson Imaging Devices Corporation
    Inventors: Fusashi Kimura, Shinichi Kobayashi, Yuki Okuhara, Kenichi Tajiri
  • Patent number: 7691717
    Abstract: A polysilicon containing resistor includes: (1) a p dopant selected from the group consisting of boron and boron difluoride; and (2) an n dopant selected from the group consisting of arsenic and phosphorus. Each of the p dopant and the n dopant has a dopant concentration from about 1e18 to about 1e21 dopant atoms per cubic centimeter. A method for forming the polysilicon resistor uses corresponding implant doses from about 1e14 to about 1e16 dopant ions per square centimeter. The p dopant and the n dopant may be provided simultaneously or sequentially. The method provides certain polysilicon resistors with a sheet resistance percentage standard deviation of less than about 1.5%, for a polysilicon resistor having a sheet resistance from about 100 to about 5000 ohms per square.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: April 6, 2010
    Assignee: International Business Machines Corporation
    Inventors: Anil K. Chinthakindi, Douglas D. Coolbaugh, Ebenezer E. Eshun, John E. Florkey, Robert M. Rassel, Kunal Vaed
  • Publication number: 20100059815
    Abstract: In one embodiment, a semiconductor device is formed having a trench structure. The trench structure includes a single crystalline semiconductor plug formed along exposed upper surfaces of the trench. In one embodiment, the single crystalline semiconductor plug seals the trench to form a sealed core.
    Type: Application
    Filed: September 8, 2008
    Publication date: March 11, 2010
    Inventors: Gordon M. Grivna, Gary H. Loechelt, John Michael Parsey, JR., Mohammed Tanvir Quddus
  • Patent number: 7675139
    Abstract: A thin film capacitor including a substrate, a capacitor portion having an upper conductor, a lower conductor, and a dielectric thin film, and a resin protective layer for protecting the capacitor portion. A barrier layer is interposed between the capacitor portion and the resin protective layer. The barrier layer includes a crystalline dielectric barrier layer formed in contact with the capacitor portion and having the same composition system as the dielectric thin film, and an amorphous inorganic barrier layer formed on the surface of the crystalline dielectric barrier layer and composed of silicon nitride having non-conductivity. The inorganic barrier layer prevents deterioration in the properties of the dielectric thin film by blocking diffusion of the constituent elements of the inorganic barrier layer toward the capacitor portion.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: March 9, 2010
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Masanobu Nomura, Yutaka Takeshima, Atsushi Sakurai
  • Patent number: 7670918
    Abstract: Resistor elements are formed by doping impurity into a single crystal film formed on a substrate such as a silicon-on-insulator substrate. A semiconductor device having such resistor elements is used as a detector for detecting an amount of airflow, for example. The impurity density in the single crystal silicon is made lower than 1×1020/cm3 to suppress a resistance change by aging especially at a temperature higher than 310° C. To obtain a high temperature coefficient of the resistor element as well as a low resistance change by aging, the impurity density is set in a range from 4×1019/cm3 to 1×1020/cm3, and more preferably in a range from 7×1019/cm3 to 1×1020/cm3. As the impurity, N-type impurity such as phosphorus or P-type impurity such as boron may be used. It is preferable to use the impurity having a low diffusion coefficient to attain a low resistance change by aging.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: March 2, 2010
    Assignee: DENSO CORPORATION
    Inventors: Yuko Fukami, Ryuichiro Abe
  • Patent number: 7669313
    Abstract: A method is provided of fabricating a thin film resistor semiconductor structure. In one aspect of the invention, the method includes forming a dielectric layer over a semiconductor substrate, forming a thin film resistor on the dielectric layer, and annealing the thin film resistor at a substantially high temperature for a predetermined time period to set the thermal coefficient of resistance of the thin film resistor. A passivation layer is formed over the semiconductor structure.
    Type: Grant
    Filed: July 11, 2005
    Date of Patent: March 2, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Joseph D. Fivas, Georgina Shah, Dianna L. Chandler
  • Patent number: 7659568
    Abstract: An external electrode structure for a monolithic ceramic capacitor provided with a function as a resistance element is capable of preventing a reduction of the external electrode due to baking in a reducing atmosphere, so that Ni or a Ni alloy can be used in an internal electrode and a good electrical connection between the internal electrode and the external electrode is achieved. The external electrodes disposed on an outer surface of a capacitor main body include an electrically conductive layer and a metal plating layer disposed thereon, and the electrically conductive layer includes a compound oxide, e.g., an In—Sn compound oxide, which reacts with Ni or the Ni alloy, and a glass component.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: February 9, 2010
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Mitsuhiro Kusano, Shizuharu Watanabe
  • Patent number: 7659159
    Abstract: In a method of fabricating a flash memory device, a semiconductor substrate includes a tunnel insulating layer and a charge storage layer formed in an active region and a trench formed in an isolation region. A first insulating layer is formed to fill a part of the trench. A second insulating layer is formed on the first insulating layer so that the trench is filled. The first and second insulating layers are removed such that the first and second insulating layers remain on sidewalls of the charge storage layer and on a part of the trench. A third insulating layer is formed on the first and second insulating layers so that a space defined by the charge storage layer is filled. The third insulating layer is removed so that a height of the third insulating layer is lowered.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: February 9, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Sung Hoon Lee