Responsive To Nonelectrical External Signals (e.g., Light) Patents (Class 257/53)
-
Patent number: 12199204Abstract: A superlattice structure for a thin film solar cell includes superimposed layers of nanocrystals and is configured to generate a flow of electrons across the layers when it is irradiated by a solar radiation. Each of the layers includes an array of nanocrystals which have substantially the same size and shape and the nanocrystals of each of the layers have different size and/or different shape with respect to the nanocrystals of the other layers. The layers are sorted in such an order that the superlattice structure is anisotropic. A thin film solar cell having the superlattice structure and a method for making the superlattice structure is related.Type: GrantFiled: August 17, 2020Date of Patent: January 14, 2025Assignee: ARBELL ENERGY LTDInventor: Matan Arbell
-
Patent number: 12068341Abstract: A unit pixel arranged along with a display pixel in each pixel of a display panel is provided. The unit pixel may include a thin-film transistor (TFT) photodetector including an active layer formed of amorphous silicon or polycrystalline silicon on an amorphous transparent substrate, and at least one transistor electrically coupled to the TFT photodetector and configured to generate a voltage output from photocurrent generated from the active layer.Type: GrantFiled: May 2, 2023Date of Patent: August 20, 2024Inventor: Hoon Kim
-
Patent number: 12051264Abstract: The present application provides a light sensor and a display device. A light sensing transistor and a switching transistor in the light sensor are configured to form a light sensor circuit. In a structural design, amorphous silicon is configured as a first active pattern of the light sensing transistor, so that a thickness of a channel region of the first active pattern is greater than or equal to 5000 angstroms. Therefore, a number of photo-generated carriers of the light sensing transistor is increased, which makes the light sensor have higher responses and increases fingerprint or palmprint recognition success rates.Type: GrantFiled: December 23, 2020Date of Patent: July 30, 2024Assignee: TCL China Star Optoelectronics Technology Co., Ltd.Inventor: Guangshuo Cai
-
Patent number: 12009812Abstract: A switching device includes an insulated gate bipolar transistor (IGBT) or MOSFET having a gate, an emitter, and a collector configured to allow current to pass between the emitter and the collector based on voltage applied to the gate. A stack of alternating layers of photo-sensitive p-n junction layers and insulating layers stacked on the gate for optical switching control of voltage through the IGBT or MOSFET.Type: GrantFiled: September 14, 2021Date of Patent: June 11, 2024Assignee: Simmonds Precision Products, Inc.Inventors: David H. Crowne, Richard A. Poisson, Scott R. Durkee
-
Patent number: 11955499Abstract: An image sensor package includes a glass substrate configured to focus incident light, a first redistribution layer and a second redistribution layer both disposed under the glass substrate while being horizontally spaced apart from each other by a first distance, an image sensor disposed such that an upper surface thereof is vertically spaced apart from both a lower surface of the first redistribution layer and a lower surface of the second redistribution layer by a second distance, and a first connector that connects both the first redistribution layer and the second redistribution layer to the image sensor. The thickness of the glass substrate is 0.6 to 0.8 mm. The first distance is smaller than the horizontal length of the image sensor by 50 ?m to 1 mm. The second distance is equal to or less than 0.1 mm.Type: GrantFiled: June 30, 2021Date of Patent: April 9, 2024Assignee: SAMSUNG ELECTRONICS CO., LTD.Inventors: Minjung Kim, Dongkyu Kim, Kyounglim Suk, Jaegwon Jang, Hyeonjeong Hwang
-
Patent number: 11888079Abstract: An electrical device includes a counterdoped heterojunction selected from a group consisting of a pn junction or a p-i-n junction. The counterdoped junction includes a first semiconductor doped with one or more n-type primary dopant species and a second semiconductor doped with one or more p-type primary dopant species. The device also includes a first counterdoped component selected from a group consisting of the first semiconductor and the second semiconductor. The first counterdoped component is counterdoped with one or more counterdopant species that have a polarity opposite to the polarity of the primary dopant included in the first counterdoped component. Additionally, a level of the n-type primary dopant, p-type primary dopant, and the one or more counterdopant is selected to the counterdoped heterojunction provides amplification by a phonon assisted mechanism and the amplification has an onset voltage less than 1 V.Type: GrantFiled: July 30, 2022Date of Patent: January 30, 2024Assignee: Quantum Semiconductor LLCInventor: Carlos Jorge R. P. Augusto
-
Patent number: 11856814Abstract: The present disclosure provides a display panel and a manufacturing method for the display panel. The display panel includes a substrate, a switch assembly disposed on the substrate, and a light-sensing assembly disposed on a side of the switch assembly. The switch assembly comprises an indium gallium zinc oxide (IGZO) layer.Type: GrantFiled: April 1, 2022Date of Patent: December 26, 2023Assignees: HKC CORPORATION LIMITED, CHONGQING HKC OPTOELECTRONICS TECHNOLOGY CO., LTDInventor: En-Tsung Cho
-
Patent number: 11844256Abstract: A display device includes a base substrate, a buffer layer disposed on the base substrate, an active layer disposed on the buffer layer, a first gate insulation layer disposed on the active layer, a first conductive layer disposed on the first gate insulation layer and which is a single-layer including an aluminum alloy, a second gate insulation layer disposed on the first conductive layer, a second conductive layer disposed on the second gate insulation layer and which is a single-layer including an aluminum alloy, an insulation interlayer disposed on the second conductive layer, and a third conductive layer disposed on the insulation interlayer, directly contacting the first conductive layer through a first gate contact hole defined in the insulation interlayer and the second gate insulation layer, and directly contacting the second conductive layer through a second gate contact hole defined in the insulation interlayer.Type: GrantFiled: June 30, 2021Date of Patent: December 12, 2023Assignee: SAMSUNG DISPLAY CO., LTD.Inventors: Dongmin Lee, Taewook Kang, Hyunah Sung, Sukyoung Yang, Dokeun Song, Hyuneok Shin
-
Patent number: 11830904Abstract: A light sensing device includes a substrate, a gate electrode, a semiconductor layer, a dielectric layer, a first source/drain electrode, a second source/drain electrode, and a reset electrode. The gate electrode is over the substrate. The semiconductor layer is over the substrate and at least partially overlapping the gate electrode. The dielectric layer spaces the gate electrode from the semiconductor layer. The first source/drain electrode and the second source/drain electrode are respectively connected to the semiconductor layer. The semiconductor layer has a first region and a second region between the first source/drain electrode and the second source/drain electrode, the first region overlaps the gate electrode, and the second region does not overlap the gate electrode. The reset electrode is in contact with the semiconductor layer.Type: GrantFiled: July 8, 2020Date of Patent: November 28, 2023Assignee: HANNSTOUCH SOLUTION INCORPORATEDInventor: Sheng-Chia Lin
-
Patent number: 11810942Abstract: An X-ray detection device includes a substrate, a first transistor disposed on the substrate and including a silicon semiconductor, a second transistor disposed on the substrate and including a metal oxide semiconductor, a sensor disposed on the first transistor and the second transistor and electrically connected to the first transistor and the second transistor, a first barrier layer disposed between the first transistor and the second transistor, and a second barrier layer disposed between the second transistor and the sensor. The X-ray detection device may further include a scintillator disposed on the sensor.Type: GrantFiled: June 30, 2022Date of Patent: November 7, 2023Assignee: InnoLux CorporationInventors: Chandra Lius, Kuan-Feng Lee
-
Patent number: 11804253Abstract: A continuous thin film comprises a metal chalcogenide, wherein the metal is selected from the periodic groups 13 or 14 and the chalcogen is: sulphur (S), selenide (Se), or tellurium (Te), and wherein the thin film has a thickness of less than 20 mm. Methods of forming the continuous thin film involve thermally evaporating precursors to form a thin film on the surface of a substrate. In a particular embodiment, molecular beam epitaxy (MBE) is used to grow indium selenide (In2Se3) thin film from two precursors (In2Se3 and Se) and the thin film is used to fabricate a ferroelectric resistive memory device.Type: GrantFiled: September 6, 2019Date of Patent: October 31, 2023Assignee: NATIONAL UNIVERSITY OF SINGAPOREInventors: Kian Ping Loh, Sock Mui Poh
-
Patent number: 11733154Abstract: An apparatus for thermal interface material detection includes a heatsink stack up with a heatsink, a thermal interface material, a heat generating component, and a printed circuit board. The heatsink is disposed on the thermal interface material, the thermal interface material is disposed on the heat generating component, and the heat generating component is disposed on the printed circuit board. A channel in a body of the heatsink is configured for insertion of a compression probe, where a first end of the channel leads to a lower surface of the body of the heatsink and a second end of the channels leads to an upper surface of the body of the heatsink.Type: GrantFiled: August 16, 2021Date of Patent: August 22, 2023Assignee: International Business Machines CorporationInventors: Theron Lee Lewis, John R. Dangler, David J. Braun
-
Patent number: 11720191Abstract: A display device includes: a first substrate including a display area and a non-display area; a second substrate facing the first substrate; a sealing member disposed in the non-display area and coupling the first substrate to the second substrate; a sensing contact area disposed at an inner side of the sealing member; a sensing signal line disposed in the sensing contact area; a sensing contact pattern disposed in the sensing contact area and electrically connected to the sensing signal line; a control signal line disposed between the first substrate and the sensing signal line; and a shielding pattern disposed between the control signal line and the sensing signal line, the shielding pattern overlapping the control signal line or the sensing signal line.Type: GrantFiled: January 13, 2021Date of Patent: August 8, 2023Assignee: SAMSUNG DISPLAY CO., LTD.Inventors: Yong Jun Jo, Kwang Chui Jung, Dong Soo Kim, Mi Na Kim
-
Patent number: 11673796Abstract: A device includes a first stage having a first optical switch, a first transistor connected to the first optical switch, and a second transistor connected to the first optical switch and the first transistor. The device also includes a second stage having a second optical switch, a third transistor connected to the second transistor and the second optical switch, and a fourth transistor connected to the second transistor, the second optical switch, and the third transistor.Type: GrantFiled: March 9, 2021Date of Patent: June 13, 2023Assignee: PALO ALTO RESEARCH CENTER INCORPORATEDInventor: Jengping Lu
-
Patent number: 11670650Abstract: A semiconductor device includes a first semiconductor structure and a second semiconductor structure. The first semiconductor structure includes silicon. The second semiconductor structure is embedded in the first semiconductor structure, in which the second semiconductor structure has at least one convex portion and at least one concave portion. The convex portion and the concave portion are on at least one edge of the second semiconductor structure, and a shape of the concave portion includes rectangle, trapezoid, inverted trapezoid, or parallelogram. The second semiconductor structure includes germanium, elements of group III or group V, or combinations thereof.Type: GrantFiled: June 5, 2020Date of Patent: June 6, 2023Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Zong-Jie Wu, Chiao-Chi Wang, Chung-Chuan Tseng, Chia-Ping Lai
-
Patent number: 11579480Abstract: According to one embodiment, a display device includes a first substrate, a second substrate and a liquid crystal layer. The first substrate includes a base, a sensor and a sensor circuit. The sensor is interposed between the base and the liquid crystal layer in a display area including pixels. The sensor outputs a sensing signal corresponding to light incident from alongside the liquid crystal layer. The sensor circuit includes a plurality of switching elements. The pixels include first to third sub-pixels. At least some of elements of the switching elements are arranged in each of areas where the first to third sub-pixels are arranged. A signal line for the sensor, which outputs the sensing signal, is placed on a same layer as a feeding line connected to the sensor.Type: GrantFiled: March 18, 2022Date of Patent: February 14, 2023Assignee: Japan Display Inc.Inventors: Hiroyuki Abe, Masateru Morimoto, Akihiko Saitoh
-
Patent number: 11581374Abstract: A display substrate includes a base, a plurality of light-emitting devices disposed on the base, an encapsulation layer disposed on a light-emitting side of the plurality of light-emitting devices away from the base, and at least one photosensitive sensor disposed on a surface of the encapsulation layer away from the base. Each of the at least one photosensitive sensor is configured to collect optical signals for texture recognition.Type: GrantFiled: August 6, 2019Date of Patent: February 14, 2023Assignee: BOE TECHNOLOGY GROUP CO. LTD.Inventors: Shi Shu, Chuanxiang Xu, Qi Yao, Haitao Huang, Xue Jiang
-
Patent number: 11514710Abstract: Provided are a display panel and a terminal device. The display panel includes: a display array including a plurality of display portions, the display portion including at least one display subportion; and a plurality of image detectors configured to detect photo signals to obtain a target detection image, the plurality of image detectors being adjacent to the plurality of display portions and having first distribution positions and second distribution positions, the first distribution positions being different from the second distribution positions. The plurality of image detectors are distributed at different distribution positions at the adjacent positions of the plurality of display portions of the display array in different distribution manners.Type: GrantFiled: June 30, 2020Date of Patent: November 29, 2022Assignee: Beijing Xiaomi Mobile Software Co., Ltd.Inventor: Chih-jen Cheng
-
Patent number: 11508182Abstract: An electronic circuit adapted to drive a panel including a plurality of fingerprint sensing zones is provided. The electronic circuit includes a fingerprint sensing circuit. The fingerprint sensing circuit is configured to determine at least two fingerprint sensing zones to perform a fingerprint sensing operation according to a touch area and receive a fingerprint sensing signal corresponding to fingerprint sensing data from the at least two fingerprint sensing zones. The fingerprint sensing circuit rearranges the fingerprint sensing data from the at least two fingerprint sensing zones. In addition, an electronic device and a method for sensing a fingerprint image are also provided.Type: GrantFiled: January 5, 2022Date of Patent: November 22, 2022Assignee: Novatek Microelectronics Corp.Inventor: Wu-Wei Lin
-
Patent number: 11372281Abstract: A display panel includes: a substrate, a pixel layer and a sensing layer. The pixel layer is disposed on the substrate. The pixel layer includes pixel units arranged in an array. The sensing layer is disposed on one side of the substrate away from the pixel layer or disposed on one side of the substrate close to the pixel layer and is configured to convert a received optical signal into an electrical signal.Type: GrantFiled: November 29, 2019Date of Patent: June 28, 2022Assignee: BEIJING XIAOMI MOBILE SOFTWARE CO., LTD.Inventor: Quanhua He
-
Patent number: 11367494Abstract: The present disclosure provides semiconductor device and methods of forming the same. A semiconductor device according to the present disclosure includes a gate structure, a source/drain feature adjacent the gate structure, a dielectric layer disclosed over the gate structure and the source/drain feature, a gate contact disposed in the dielectric layer and over the gate structure, and a source/drain contact disposed in the dielectric layer and over the source/drain feature. The dielectric layer is doped with a dopant and the dopant includes germanium or tin.Type: GrantFiled: August 31, 2020Date of Patent: June 21, 2022Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.Inventors: Hsin-Wen Su, Shih-Hao Lin, Jui-Lin Chen, Lien Jung Hung, Ping-Wei Wang
-
Patent number: 11344873Abstract: Disclosed herein is a multi-layered composite thin film material formed from graphene quantum dots (GQDs) and metal nanocrystals in a layer-by-layer design, wherein the metal nanocrystals can be selected from the group consisting of Ru, Rh, Os, Ir, Pd, Au, Ag and Pt. In a preferred embodiment, the multi-layered composite thin film material is prepared via a facile, green, and easily accessible layer-by-layer (LbL) self-assembly strategy. In this strategy, positively charged GOQDs and negatively charged metal nanocrystals are alternately and uniformly integrated with each other in a “face-to-face” stacked fashion under substantial electrostatic attractive interaction, and then the obtained GOQDs/metal composite thin film is calcined into GQDs/metal composite thin film. The composite thin film material disclosed herein may be used to catalyse a wide range or reactions, including selective reduction of aromatic nitro compounds in water and electrocatalytic oxidation of methanol at ambient conditions.Type: GrantFiled: November 29, 2017Date of Patent: May 31, 2022Assignee: Nanyang Technological UniversityInventors: Thatt Yang Timothy Tan, Zhiping Zeng
-
Patent number: 11278893Abstract: A microfluidic substrate and the driving method for the microfluidic substrate are provided. The microfluidic substrate may include a base substrate (10) and a plurality of detecting modules (100) on the base substrate (10). Each of the detecting modules (100) may include a switching unit (1), a driving electrode (3), and a photosensor (2). The photosensor (2) may have a first terminal (21) and a second terminal (23). A signal output terminal (13) of the switching unit (1) may be connected to both the driving electrode (3) and the second terminal (23) of the photosensor (2).Type: GrantFiled: September 14, 2018Date of Patent: March 22, 2022Assignee: BOE TECHNOLOGY GROUP CO., LTD.Inventors: Yingming Liu, Haisheng Wang, Xue Dong, Xiaoliang Ding, Chuncheng Che, Peizhi Cai, Pinchao Gu, Changfeng Li, Lei Wang
-
Patent number: 11257868Abstract: A display substrate includes: a base substrate including a photosensitive region, the photosensitive region including a plurality of display regions spaced apart and a gap region between the plurality of display regions; a first electrode layer on the base substrate; a light-emitting layer on a side of the first electrode layer away from the base substrate; and a second electrode layer on a side of the light-emitting layer away from the base substrate. Each display region corresponds to at least one first luminescent material region of the light-emitting layer; the gap region corresponds to the plurality of second luminescent material regions of the light-emitting layer; a part of the second electrode layer in the photosensitive region includes a plurality of second electrodes spaced apart, and an orthographic projection of each second electrode on the base substrate overlaps with each display region.Type: GrantFiled: June 25, 2019Date of Patent: February 22, 2022Assignee: BOE TECHNOLOGY GROUP CO., LTD.Inventors: Zhihui Xiao, Yu Feng, Ge Zhang
-
Patent number: 11211519Abstract: The method for manufacturing a solar cell includes: forming a first semiconductor layer of first conductivity type on a surface of a semiconductor substrate; forming a lift-off layer containing a silicon-based material on the first semiconductor layer; selectively removing the lift-off layer and first semiconductor layer; forming a second semiconductor layer of second conductivity type on a surface having the lift-off layer and first semiconductor layer; and removing the second semiconductor layer covering the lift-off layer by removing the lift-off layer using an etching solution.Type: GrantFiled: August 21, 2020Date of Patent: December 28, 2021Assignee: KANEKA CORPORATIONInventors: Ryota Mishima, Kunihiro Nakano, Katsunori Konishi, Daisuke Adachi, Takashi Kuchiyama, Kenji Yamamoto
-
Patent number: 11139357Abstract: An OLED display substrate, a manufacturing method thereof, and a display device are provided. The manufacturing method includes forming a PIN photodiode on a base substrate, forming an insulative protection layer covering the PIN photodiode, and forming an oxide TFT. The PIN photodiode is formed prior to the formation of an active layer of the oxide TFT, and the insulative protection layer covering the PIN photodiode is formed prior to the formation of a source electrode and a drain electrode of the oxide TFT.Type: GrantFiled: April 1, 2019Date of Patent: October 5, 2021Assignee: BOE TECHNOLOGY GROUP CO., LTD.Inventors: Pan Xu, Yicheng Lin, Cuili Gai, Ling Wang, Yongqian Li
-
Patent number: 11127591Abstract: Methods of direct growth of high quality group III-V and group III-N based materials and semiconductor device structures in the form of nanowires, planar thin film, and nanowires-based devices on metal substrates are presented. The present compound semiconductor all-metal scheme greatly simplifies the fabrication process of high power light emitters overcoming limited thermal and electrical conductivity of nanowires grown on silicon substrates and metal thin film in prior art. In an embodiment the methods include: (i) providing a metal substrate; (ii) forming a transition metal dichalcogenide (TMDC) layer on a surface of the metal substrate; and (iii) growing a semiconductor epilayer on the transition metal dichalcogenide layer using a semiconductor epitaxy growth system. In an embodiment, the semiconductor device structures can be compound semiconductors in contact with a layer of metal dichalcogenide, wherein the layer of metal dichalcogenide is in contact with a metal substrate.Type: GrantFiled: May 9, 2017Date of Patent: September 21, 2021Assignee: KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGYInventors: Chao Zhao, Tien Khee Ng, Lain-Jong Li, Boon Siew Ooi, Ahmed Y. Alyameni, Munir M. Eldesouki
-
Patent number: 11121270Abstract: There is provided a photoelectric conversion element which can prevent the contact resistance between a non-crystalline semiconductor layer containing impurities and an electrode formed on the non-crystalline semiconductor layer from increasing, and can improve the element characteristics. A photoelectric conversion element (10) includes a semiconductor substrate (12), a first semiconductor layer (20n), a second semiconductor layer (20p), a first electrode (22n), and a second electrode (22p). The first semiconductor layer (20n) has a first conductive type. The second semiconductor layer (20p) has a second conductive type opposite to the first conductive type. The first electrode (22n) is formed on the first semiconductor layer (20n). The second electrode (22p) is formed on the second semiconductor layer (20p). At least one electrode of the first electrode (22n) and the second electrode (22p) includes a plurality of metal crystal grains.Type: GrantFiled: October 24, 2014Date of Patent: September 14, 2021Assignee: SHARP KABUSHIKI KAISHAInventors: Kenji Kimoto, Naoki Koide, Takeshi Hieda, Junichi Nakamura
-
Patent number: 11101617Abstract: A wafer includes a number of die, with each die including electronic integrated circuits and optical devices. The wafer has a top surface and a bottom surface and a base layer. The bottom surface of the wafer corresponds to a bottom surface of the base layer. A wafer support system is attached to the top surface of the wafer. A thickness of the base layer is removed to expose a target layer within the wafer and to give the wafer a new bottom surface. A replacement handle structure is attached to the new bottom surface of the wafer. The replacement handle structure includes a first thickness region and a second thickness region. The first thickness region is positioned closest to the new bottom surface. The first thickness region is formed of an optical cladding material that mitigates optical coupling between optical devices within the die and the replacement handle structure.Type: GrantFiled: July 16, 2019Date of Patent: August 24, 2021Assignee: Ayar Labs, Inc.Inventor: Roy Edward Meade
-
Patent number: 11101212Abstract: A device including a thin film resistor (TFR) structure. The TFR structure is accessible by one or more conductive vias that extend vertically from an upper metal layer to completely penetrate a TFR layer positioned thereunder. The conductive vias are coupled to one or more sidewalls of the TFR layer at or near the sites of penetration. The TFR structure can be manufactured by a method that includes etching a via trench completely through the TFR layer and a dielectric layer above the TFR layer, and filling the via trench with a conductor coupled to a sidewall of the TFR layer.Type: GrantFiled: May 28, 2019Date of Patent: August 24, 2021Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Dhishan Kande, Qi-Zhong Hong, Abbas Ali, Gregory B. Shinn
-
Patent number: 11076078Abstract: The present disclosure relates to a solid-state imaging device, a method for manufacturing the same, and an electronic apparatus capable of improving sensitivity while suppressing degradation of color mixture. The solid-state imaging device includes an anti-reflection portion having a moth-eye structure provided on a boundary surface on a light-receiving surface side of a photoelectric conversion region of each pixel arranged two-dimensionally, and an inter-pixel light-blocking portion provided below the boundary surface of the anti-reflection portion to block incident light. In addition, the photoelectric conversion region is a semiconductor region, and the inter-pixel light-blocking portion has a trench structure obtained by digging the semiconductor region in a depth direction at a pixel boundary. The techniques according to the present disclosure can be applied to, for example, a solid-state imaging device of a rear surface irradiation type.Type: GrantFiled: May 28, 2020Date of Patent: July 27, 2021Assignee: SONY CORPORATIONInventors: Yoshiaki Masuda, Yuki Miyanami, Hideshi Abe, Tomoyuki Hirano, Masanari Yamaguchi, Yoshiki Ebiko, Kazufumi Watanabe, Tomoharu Ogita
-
Patent number: 11069816Abstract: A semiconductor device that can be highly integrated is provided. The semiconductor device includes a first semiconductor layer, a second semiconductor layer, a third semiconductor layer, a first insulating layer, a second insulating layer, a third insulating layer, a fourth insulating layer, a first conductive layer, and a second conductive layer. The second semiconductor layer is positioned over the first semiconductor layer, the second conductive layer is positioned on the second semiconductor layer, and the second insulating layer is provided so as to cover a top surface and a side surface of the second conductive layer. The second conductive layer and the second insulating layer include a first opening, and the third semiconductor layer is provided in contact with a top surface of the second insulating layer, a side surface of the first opening, and the second semiconductor layer.Type: GrantFiled: August 22, 2018Date of Patent: July 20, 2021Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Yukinori Shima, Masataka Nakada, Masayoshi Dobashi, Kenichi Okazaki
-
Patent number: 11031516Abstract: There is provided a photoelectric conversion element which can prevent the contact resistance between a non-crystalline semiconductor layer containing impurities and an electrode formed on the non-crystalline semiconductor layer from increasing, and can improve the element characteristics. A photoelectric conversion element (10) includes a semiconductor substrate (12), a first semiconductor layer (20n), a second semiconductor layer (20p), a first electrode (22n), and a second electrode (22p). The first semiconductor layer has a first conductive type. The second semiconductor layer has a second conductive type. The first electrode is formed on the first semiconductor layer. The second electrode is formed on the second semiconductor layer. The first electrode includes a first transparent conductive layer (26n) formed on the first semiconductor layer, and a first metal layer (28n) formed on the first transparent conductive layer.Type: GrantFiled: October 24, 2014Date of Patent: June 8, 2021Assignee: SHARP KABUSHIKI KAISHAInventors: Kenji Kimoto, Naoki Koide, Yuta Matsumoto, Junichi Nakamura
-
Patent number: 11024664Abstract: An imaging panel includes an active matrix substrate that has a plurality of pixels each provided with a photoelectric conversion element, and the pixels each include a first electrode provided at a first surface of the photoelectric conversion element, a first flattening film provided above the photoelectric conversion element and the first electrode, and a bias conductive part provided below the first flattening film. The bias conductive part is connected to the first electrode and applies bias voltage to the first electrode. The first flattening film has no opening in a region overlapped with a pixel region.Type: GrantFiled: July 25, 2019Date of Patent: June 1, 2021Assignee: SHARP KABUSHIKI KAISHAInventors: Rikiya Takita, Fumiki Nakano, Makoto Nakazawa
-
Patent number: 10991902Abstract: There provide an organic light emitting diode substrate and preparation method thereof and a display panel. The preparation method includes: forming a pixel defining layer which defines a pixel region and has a via hole on a base; forming an auxiliary electrode in the via hole; forming a capsule structure encapsulating a conductive liquid on the auxiliary electrode; expanding the capsule structure to be broken so as to enable the conductive liquid to form a connection electrode; and forming a first electrode covering the base, the first electrode being connected to the auxiliary electrode through the connection electrode. In the present disclosure, the connection electrode is formed through the capsule structure encapsulating the conductive liquid, so that the first electrode is connected to the auxiliary electrode through the connection electrode. The preparation process is simpler and the production cost is lower.Type: GrantFiled: December 29, 2019Date of Patent: April 27, 2021Assignee: BOE Technology Group Co., Ltd.Inventor: Donghui Yu
-
Patent number: 10903379Abstract: A photovoltaic device includes: a semiconductor substrate stretching in a first direction and a second direction that intersects the first direction; and a first amorphous semiconductor film and a second amorphous semiconductor film both provided on the semiconductor substrate. The second amorphous semiconductor film has a differ conductivity type from the first amorphous semiconductor film. The first amorphous semiconductor film and the second amorphous semiconductor film are divided into a plurality of sections in the first direction and the second direction. Therefore, the photovoltaic device has an improved heat resistance.Type: GrantFiled: March 7, 2016Date of Patent: January 26, 2021Assignee: SHARP KABUSHIKI KAISHAInventors: Teruaki Higo, Chikao Okamoto, Naoki Asano, Masamichi Kobayashi, Natsuko Fujiwara, Rihito Suganuma, Toshihiko Sakai, Kazuya Tsujino, Liumin Zou
-
Patent number: 10879284Abstract: An imaging device includes a pixel, the pixel including a photoelectric converter which converts light into a signal charge and a charge detection circuit which detects the signal charge. The photoelectric converter includes a photoelectric conversion layer having a first surface and a second surface opposite to the first surface, a pixel electrode on the first surface, a first electrode adjacent to the pixel electrode on the first surface, the first electrode being electrically conductive to the photoelectric conversion layer, and a counter electrode on the second surface, the counter electrode facing the pixel electrode and the first electrode. A shortest distance between the pixel electrode and the first electrode in a plan view is smaller than a shortest distance between the pixel electrode and the first electrode.Type: GrantFiled: May 29, 2018Date of Patent: December 29, 2020Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.Inventors: Akio Nakajun, Sanshiro Shishido, Shunsuke Isono
-
Patent number: 10847568Abstract: An image sensor: includes a pixel matrix in which pixels are disposed in a matrix, each pixel including a photoelectric conversion element and a switching element connected to the photoelectric conversion element; performs selection processing, on each pixel row of the pixel matrix, including selecting a pixel row and outputting a signal to the selected pixel row to make switching elements conductive; performs detection processing of detecting signals from the photoelectric conversion elements in the selected pixel row; and performs the selection processing based on received control signals, wherein the control signals include first control signals having a cycle shorter than a first period in which the selection processing and the detection processing are performed on all pixel rows, and wherein the cycle is equal to or shorter than a second period in which the selection processing and the detection processing are performed on one pixel row.Type: GrantFiled: February 14, 2019Date of Patent: November 24, 2020Assignee: TIANMA JAPAN, LTD.Inventor: Hiroyuki Sekine
-
Patent number: 10804301Abstract: A pixel cell for differential light sensing includes a plurality of photodiodes and a corresponding plurality of storage diodes. Each storage diode is disposed between a first adjacent photodiode and a second adjacent photodiode, and each storage diode is configured to receive photo charges from either or both of the first adjacent photodiode and the second adjacent photodiode. Each photodiode is disposed between a first adjacent storage diode and a second adjacent storage diode, and each photodiode is configured to transfer photo charges to either or both of the first adjacent storage diode and the second adjacent storage diode.Type: GrantFiled: December 13, 2018Date of Patent: October 13, 2020Assignee: Magic Leap, Inc.Inventors: Erez Tadmor, David Cohen, Giora Yahav
-
Patent number: 10777744Abstract: A resistive switching memory cell comprising a switchable solid electrolyte (E). The electrolyte (E) consists of a composition comprising a matrix comprising a metal oxide, metal sulphide and/or metal selenide as the matrix material, the metal oxide, metal sulphide and/or metal selenide comprising at least two metals M1 and M2, and a metal M3 which is mobile in the matrix. The atomic ratio of M1 to M2 is within the range of 75:25 to 99.99:0.01, preferably 90:10 to 99.99:0.01; the valence states of M1, M2 and M3 are all positive; the valence state of M1 is larger than the valence state of M2; the valence state of M2 is equal to or larger than the valence state of M3; and the metals M1, M2 and M3 are different.Type: GrantFiled: February 14, 2017Date of Patent: September 15, 2020Assignee: Heraeus Deutschland GmbH & Co. KGInventor: Christian Neumann
-
Patent number: 10698359Abstract: An image forming apparatus includes an image bearing member and a static elimination device. The static elimination device irradiates static elimination light onto a circumferential surface of the image bearing member. The image bearing member includes a conductive substrate and a single-layer photosensitive layer. The photosensitive layer contains a charge generating material, a hole transport material, an electron transport material, and a binder resin. The static elimination light has a wavelength of at least 600 nm and no greater than 800 nm. The photosensitive layer has an optical absorption coefficient of at least 600 cm?1 and no greater than 1,500 cm?1 with respect to light having a wavelength of 660 nm.Type: GrantFiled: July 9, 2019Date of Patent: June 30, 2020Assignee: KYOCERA Document Solutions Inc.Inventors: Toshiki Fujita, Ikuo Makie, Masahito Ishino, Nariaki Tanaka, Kiyotaka Kobayashi
-
Patent number: 10534951Abstract: A fingerprint identification unit and a manufacturing method thereof, an array substrate, a display device and a fingerprint identification method are disclosed, which can realize fingerprint identification without increasing the thickness of the display device. The fingerprint identification unit can include a photosensitive device, a data read-out signal line and a thin film transistor for controlling the switching of the photosensitive device. On the photosensitive device is formed a first insulating layer for insulating the photosensitive device from an OLED luminescent layer, and the part of the OLED luminescent layer corresponding to the photosensitive device does not illuminate. The data read-out signal line can be configured to read out a photocurrent generated by the photosensitive device, and identify fingerprints according to the amount of each photocurrent. The array substrate includes the fingerprint identification unit mentioned in the above technical solution.Type: GrantFiled: May 26, 2017Date of Patent: January 14, 2020Assignee: BOE TECHNOLOGY GROUP CO., LTD.Inventors: Rui Xu, Haisheng Wang
-
Patent number: 10527852Abstract: Examples are disclosed that relate to the use of diffractive filtering in a waveguide display system. One example provides a display system including a light source, a first waveguide configured to conduct light of a first wavelength band from the light source, the first waveguide comprising a first input coupler, a second waveguide configured to conduct light of a second wavelength band from the light source, the second waveguide comprising a second input coupler, and a diffractive filter positioned optically between the first waveguide and the second waveguide, the diffractive filter being configured to diffract light of the first wavelength band and transmit light of the second wavelength band.Type: GrantFiled: May 24, 2017Date of Patent: January 7, 2020Assignee: MICROSOFT TECHNOLOGY LICENSING, LLCInventors: Lasse Pekka Karvonen, Andreas Langner
-
Patent number: 10488560Abstract: An optical element is provided. The optical element includes an array structure having an implant area and a non-implant area. The non-implant area is adjacent to the implant area. The implant area has an implant concentration ranging from 1×1013 cm?2 to 6.7×1013 cm?2. The array structure is a color filter array including a plurality of color filters. At least one of the color filters has the implant area. The implant area has a first refractive index. The non-implant area has a second refractive index. The first refractive index is greater than the second refractive index.Type: GrantFiled: February 13, 2018Date of Patent: November 26, 2019Assignee: VISERA TECHNOLOGIES COMPANY LIMITEDInventors: Chung-Jung Hsu, Chin-Chuan Hsieh, Kuo-Feng Lin
-
Patent number: 10468543Abstract: Microstructure enhanced photodiodes and avalanche photodiodes are monolithically integrated with CMOS/BiCMOS circuitry such as transimpedance amplifiers. Microstructures, such as holes, can improve quantum efficiency in silicon and III-V materials and can also reduce avalanche voltages for avalanche photodiodes. Applications include optical communications within and between datacenters, telecommunications, LIDAR, and free space data communication.Type: GrantFiled: March 8, 2019Date of Patent: November 5, 2019Assignee: W&Wsens Devices, Inc.Inventors: Shih-Yuan Wang, Shih-Ping Wang, M. Saif Islam
-
Patent number: 10449573Abstract: A sorting apparatus is described and which includes a selectively heated avalanche photodiode (APD) which is maintained at a predetermined temperature and which further demonstrates a higher gain and signal-to-noise ratio with greater stability at a predetermined temperature for enhancing sorting efficiency.Type: GrantFiled: June 27, 2017Date of Patent: October 22, 2019Assignee: Key Technology, Inc.Inventors: Johan Calcoen, Peter Stulens
-
Patent number: 10439069Abstract: Two gate electrodes are provided on upper and lower sides of an oxide semiconductor active layer through respective insulating films. In addition, a first read-out electrode and a second read-out electrode are provided on right and left sides of the oxide semiconductor active layer. In the optical sensor element, in a case where a voltage is applied to each gate electrode, a potential difference occurs between the first read-out electrode and the second read-out electrode, and intensity of irradiation light is detected based on a current that flows between the read-out electrodes.Type: GrantFiled: August 3, 2016Date of Patent: October 8, 2019Assignee: NLT TECHNOLOGIES, LTD.Inventor: Kazushige Takechi
-
Patent number: 10347776Abstract: Disclosed are a back-surface bridge type contact electrode of a crystalline silicon solar battery and a preparation method therefor. The back-surface bridge type contact electrode of a crystalline silicon solar battery includes a local electrode connected to a local back surface field and a back surface electrode which is covered with a back surface passivation film on a contact surface with a silicon wafer substrate, at least one bridge electrode is provided between the local electrode and the back surface electrode, the contact surface of the bridge electrode and the silicon wafer substrate is also covered with the back surface passivation film, the local electrode is connected to the back surface electrode via the bridge electrode, and the back surface passivation film is also provided, besides at the connection region of the bridge electrode, between the local electrode and the back surface electrode.Type: GrantFiled: July 31, 2014Date of Patent: July 9, 2019Assignee: Trina Solar Co., Ltd.Inventors: Yifeng Chen, Pierre J. Verlinden, Zhiqiang Feng, Hui Shen, Pietro P. Altermatt
-
Patent number: 10330800Abstract: An X-ray detector includes a direct-conversion converter element and an evaluating unit in a stacked arrangement. In an embodiment, the X-ray detector includes a voltage source, configured to provide a first potential and a second potential different from the first potential; a pulse generating unit for generating voltage pulses; and a connecting unit, for applying the voltage pulses onto the first potential, configured at the output to provide a pulsed potential. In an embodiment, through the application of the pulsed potential to a first surface of the direct-conversion converter element and through the application of the second potential to a second surface of the converter element opposed to the first surface, a pulsed potential difference is formed in the direct-conversion converter element.Type: GrantFiled: March 7, 2018Date of Patent: June 25, 2019Assignee: SIEMENS HEALTHCARE GMBHInventors: Shameem Kabir Chaudhury, Alfons Eismann, Thorsten Ergler, Thomas Hilderscheid
-
Patent number: 10320627Abstract: This invention provides a cooperative coverage method for distribution network information perception. The cooperative coverage method includes the following steps: construction of connected cooperative coverage sets, which can cover all target nodes with as few information perception nodes as possible, and maintain the connectivity of each cooperative coverage set with connected sets construction methods based on of hierarchical clustering; Cooperative coverage set scheduling, introducing the concept of energy ratio threshold, dividing the life cycle of the system into multiple time slices, calculating the energy ratio of perception device set in each time slice to realize the set scheduling. The invention realizes the efficient utilization of the energy of the perception device through the construction and scheduling of the connected coverage set in different time slices, and improves the use efficiency of the information perception network.Type: GrantFiled: April 29, 2016Date of Patent: June 11, 2019Assignees: STATE GRID JIANGSU ELECTRIC POWER COMPANY NANJING POWER SUPPLY COMPANY, STATE GRID JIANGSU ELECTRIC POWER COMPANY, STATE GRID COMPANY CORPORATION OF CHINA, STATE GRID INFORMATION & TELECOMMUNICATION GROUP CO., LTDInventors: Lei Wei, Min Lu, Qinghai Ou, Zhu Liu, Shaoyong Guo, Wei Xu, Dong Yan, Shaojun Liu, Xinjian Zhao, Wei Li, Lisha Gao