With Means To Increase Surface Area (e.g., Grooves, Ridges, Etc.) Patents (Class 257/534)
  • Publication number: 20130134556
    Abstract: This semiconductor device according to the present invention includes a plurality of cylindrical lower electrodes aligned densely in a memory array region; a plate-like support which is contacted on the side surface of the cylindrical lower electrodes, and links to support the plurality of the cylindrical lower electrodes; a pore portion provided in the plate-like support; a dielectric film covering the entire surface of the cylindrical lower electrodes and the plate-like support in which the pore portion is formed; and an upper electrode formed on the surface of the dielectric film, wherein the boundary length of the part on the side surface of the cylindrical lower electrode which is exposed on the pore portion is shorter than the boundary length of the part on the side surface of the cylindrical lower electrode which is not exposed on the pore portion.
    Type: Application
    Filed: January 23, 2013
    Publication date: May 30, 2013
    Applicant: ELPIDA MEMORY, INC.
    Inventor: Elpida Memory, Inc.
  • Patent number: 8445991
    Abstract: A semiconductor device and a method of manufacturing the semiconductor device are provided. The semiconductor device includes a lower electrode formed on a substrate, a dielectric layer including an etched dielectric region and an as-grown dielectric region formed on the lower electrode, an upper electrode formed on the as-grown dielectric region, a hardmask formed on the upper electrode, a spacer formed at a side surface of the hardmask and the upper electrode and over a surface of the etched dielectric region, and a buffer insulation layer formed on the hardmask and the spacer.
    Type: Grant
    Filed: January 6, 2011
    Date of Patent: May 21, 2013
    Assignee: Magnachip Semiconductor, Ltd.
    Inventors: Jin-Youn Cho, Young-soo Kang, Sang-Geun Koo
  • Patent number: 8441103
    Abstract: Trench capacitors and methods of manufacturing the trench capacitors are provided. The trench capacitors are very dense series capacitor structures with independent electrode contacts. In the method, a series of capacitors are formed by forming a plurality of insulator layers and a plurality of electrodes in a trench structure, where each electrode is formed in an alternating manner with each insulator layer. The method further includes planarizing the electrodes to form contact regions for a plurality of capacitors.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: May 14, 2013
    Assignee: International Business Machines Corporation
    Inventors: Timothy W. Kemerer, James S. Nakos, Steven M. Shank
  • Patent number: 8441774
    Abstract: A capacitive element that can efficiently reduce high-frequency noise generated in a circuit is provided. A capacitive element 1 includes a capacitive formation portion 100, which is formed in the shape of a loop to separate the inside from the outside. The capacitive formation portion 100 includes an electrode 110, an opposite electrode 111, and a dielectric layer 120. One or more outgoing terminals (one or more outer circumference outgoing terminals 140, and one or more internal circumference outgoing terminals 130) are provided at the outer and inner circumferences of the electrode 110, respectively. A printed wiring board is made by mounting the capacitive element inside the board or on the surface of the board. A semiconductor package is made by putting the capacitive element 1 on a target semiconductor circuit portion. Moreover, a semiconductor circuit is made by placing the capacitive element on a target functional circuit portion 301.
    Type: Grant
    Filed: March 4, 2008
    Date of Patent: May 14, 2013
    Assignee: NEC Corporation
    Inventor: Koichiro Masuda
  • Patent number: 8441057
    Abstract: A method of patterning a metal (141, 341, 841) on a vertical sidewall (132, 332, 832) of an excavated feature (130, 330, 830) includes placing a material (350) in the excavated feature such that a portion (435) of the metal is exposed in the excavated feature above the material, etching the exposed portion of the metal away from the vertical sidewall using a first wet etch chemistry, and removing the material from the excavated feature by etching it away using a second wet etch chemistry. The described method may be used to produce a MIM capacitor (800) suitable for an eDRAM device.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: May 14, 2013
    Assignee: Intel Corporation
    Inventors: Steven J. Keating, Nick Lindert, Nadia Rahhal-Orabi, Brian Doyle, Satyarth Suri, Swaminathan Sivakumar, Lana Jong, Lin Sha
  • Patent number: 8410534
    Abstract: Disclosed are integrated circuit structures each having a silicon germanium film incorporated as a local interconnect and/or an electrical contact. These integrated circuit structures provide improved local interconnects between devices and/or increased capacitance to devices without significantly increasing structure surface area or power requirements. Specifically, disclosed are integrated circuit structures that incorporate a silicon germanium film as one or more of the following features: as a local interconnect between devices; as an electrical contact to a device (e.g., a deep trench capacitor, a source/drain region of a transistor, etc.); as both an electrical contact to a deep trench capacitor and a local interconnect between the deep trench capacitor and another device; and as both an electrical contact to a deep trench capacitor and as a local interconnect between the deep trench capacitor and other devices.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: April 2, 2013
    Assignee: International Business Machines Corporation
    Inventor: Steven H. Voldman
  • Patent number: 8405189
    Abstract: An example of a carbon nanotube capacitor may include (i) a carbon nanotube film having carbon nanotubes and voids with dielectric material, (ii) conductive contacts and (iii) a dielectric layer. The carbon nanotube film may switch from a conductive state to a non-conductive state when a voltage is applied by creating an electrical break within the carbon nanotube film and providing a first conductive region and a second conductive region within the carbon nanotube film. The electrical break may separate the first conductive region from the second conductive region. The first and second conductive regions may store charge. An integrated device may include one or more transistors and one or more carbon nanotube capacitors. A method of making a carbon nanotube capacitor is also disclosed.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: March 26, 2013
    Assignee: Lockheed Martin Corporation
    Inventors: Jonathan W. Ward, Quoc X. Ngo
  • Publication number: 20130056853
    Abstract: The present disclosure provides a semiconductor device. The semiconductor device includes a substrate having a surface that is defined by a first axis and a second axis perpendicular to the first axis; and a capacitor disposed on the substrate, the capacitor having an anode component that includes a plurality of first conductive features and a cathode component that includes a plurality of second conductive features. The first conductive features and the second conductive features each include two metal lines extending along the first axis. At least one metal via extending along a third axis that is perpendicular to the surface of the substrate and interconnecting the two metal lines. The first conductive features are interdigitated with the second conductive features along both the second axis and the third axis.
    Type: Application
    Filed: September 7, 2011
    Publication date: March 7, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Hsiu-Ying Cho
  • Patent number: 8384192
    Abstract: The present disclosure provides small scale capacitors (e.g., DRAM capacitors) and methods of forming such capacitors. One exemplary implementation provides a method of fabricating a capacitor that includes sequentially forming a first electrode, a dielectric layer, and a second electrode. At least one of the electrodes may be formed by a) reacting two precursors to deposit a first conductive layer at a first deposition rate, and b) depositing a second conductive layer at a second, lower deposition rate by depositing a precursor layer of one precursor at least one monolayer thick and exposing that precursor layer to another precursor to form a nanolayer reaction product. The second conductive layer may be in contact with the dielectric layer and have a thickness of no greater than about 50 ?.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: February 26, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Lingyi A. Zheng, Trung T. Doan, Lyle D. Breiner, Er-Xuan Ping, Kevin L. Beaman, Ronald A. Weimer, Cem Basceri, David J. Kubista
  • Patent number: 8378453
    Abstract: Embodiments of the present disclosure include devices or systems that include a composite thermal capacitor disposed in thermal communication with a hot spot of the device, methods of dissipating thermal energy in a device or system, and the like.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: February 19, 2013
    Assignee: Georgia Tech Research Corporation
    Inventors: Andrei G. Fedorov, Craig Green, Yogendra Joshi
  • Patent number: 8372698
    Abstract: A semiconductor device having a modified recess channel gate includes active regions defined by a device isolation layer and arranged at regular intervals on a semiconductor substrate, each active region extending in a major axis and a minor axis direction, a trench formed in each active region, the trench including a stepped bottom surface in the minor axis direction of the active region, and a recess gate formed in the trench.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: February 12, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventor: Tae Kyun Kim
  • Patent number: 8362590
    Abstract: A power semiconductor component including a semiconductor body and two load terminals is provided. Provided furthermore is a potential probe positioned to tap an electric intermediate potential of the semiconductor body at a tap location of the semiconductor body for an electric voltage applied across the two load terminals, the intermediate potential being intermediate to the electric potentials of the two load terminals, but differing from each of the two electric potentials of the two load terminals.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: January 29, 2013
    Assignee: Infineon Technologies AG
    Inventor: Peter Kanschat
  • Patent number: 8354703
    Abstract: A semiconductor capacitor and its method of fabrication are disclosed. A non-linear nitride layer is used to increase the surface area of a capacitor plate, resulting in increased capacitance without increase in chip area used for the capacitor.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: January 15, 2013
    Assignee: International Business Machines Corporation
    Inventors: David Vaclav Horak, Shom Ponoth, Hosadurga Shobha, Chih-Chao Yang
  • Publication number: 20130001746
    Abstract: An electronic die includes a multi-finger capacitor including a first electrically conductive plate including a plurality of first metal fingers joined together by a first metal base, and a second electrically conductive plate including a plurality of second metal fingers joined together by a second metal base. A dielectric layer is between the first electrically conductive plate and the second electrically conductive plate for electrically isolation. The plurality of first metal fingers and plurality of second metal fingers are interleaved with one another. The die can include a first portion that includes the multi-finger capacitor and a second portion that includes active circuitry configured to provide at least one circuit function, wherein the first and second electrically conductive plates are coupled to the active circuitry.
    Type: Application
    Filed: July 1, 2011
    Publication date: January 3, 2013
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: DARVIN RENNE EDWARDS
  • Publication number: 20120326274
    Abstract: Semiconductor structures having integrated quadruple-wall capacitors for eDRAM and methods to form the same are described. For example, an embedded quadruple-wall capacitor includes a trench disposed in a first dielectric layer disposed above a substrate. The trench has a bottom and sidewalls. A quadruple arrangement of metal plates is disposed at the bottom of the trench, spaced apart from the sidewalls. A second dielectric layer is disposed on and conformal with the sidewalls of the trench and the quadruple arrangement of metal plates. A top metal plate layer is disposed on and conformal with the second dielectric layer.
    Type: Application
    Filed: June 21, 2011
    Publication date: December 27, 2012
    Inventors: Brian S. Doyle, Uday Shah, Satyarth Suri, Ramanan V. Chebiam
  • Publication number: 20120326275
    Abstract: Some embodiments include capacitors. The capacitors may include container-shaped storage node structures that have, along a cross-section, a pair of upwardly-extending sidewalls. Individual sidewalls may have a narrower segment over a wider segment. Capacitor dielectric material and capacitor electrode material may be along the narrower and wider segments of the sidewalls. Some embodiments include methods of forming capacitors in which an initial container-shaped storage node structure is formed to have a pair of upwardly-extending sidewalls along a cross-section, with the sidewalls being of thickness that is substantially constant or increasing from a base to a top of the initial structure. The initial structure is then converted into a modified storage node structure by reducing thicknesses of upper segments of the sidewalls while leaving thicknesses of lower segments of the sidewalls substantially unchanged.
    Type: Application
    Filed: September 7, 2012
    Publication date: December 27, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Duane M. Goodner, Sanjeev Sapra, Darwin Franseda Fan
  • Patent number: 8310010
    Abstract: A semiconductor device capable of dissipating heat, which has been produced in an ESD protection element, to the exterior of the device rapidly and efficiently includes an ESD protection element having a drain region, a source region and a gate electrode, and a thermal diffusion portion. The thermal diffusion portion, which has been formed on the drain region, has a metal layer electrically connected to a pad, and contacts connecting the drain region and metal layer. The metal layer has a first wiring trace extending along the gate electrode, and second wiring traces intersecting the first wiring trace perpendicularly. The contacts are connected to intersections between the first wiring trace and the second wiring traces. Heat that has been produced at a pn-junction of the ESD protection element and transferred through a contact is diffused simultaneously in three directions through the first wiring trace and second wiring trace in the metal layer and is released into the pad.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: November 13, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Mototsugu Okushima
  • Publication number: 20120280359
    Abstract: Provided is a semiconductor capacitor including: a capacitor device forming region having a trapezoidal trench which is formed on a surface of a first conductivity type semiconductor substrate; a second conductivity type lower electrode layer provided along the trapezoidal trenches of the capacitor device forming region; a capacitor insulating film formed at least on a surface of the second conductivity type lower electrode layer; and a second conductivity type upper electrode formed on a surface of the capacitor insulating film.
    Type: Application
    Filed: July 18, 2012
    Publication date: November 8, 2012
    Inventors: Ayako INOUE, Naoto SAITOH
  • Patent number: 8304855
    Abstract: Semiconductor devices (100) and methods of making the same. Each of the semiconductor devices includes a substrate (102) having a first surface (118) and an opposing second surface. A vertical capacitive element (104) is disposed on the first surface of the substrate. The vertical capacitive element comprises a plurality of parallel conductive plates (120b, 120d, 120f, 120h, 120j, 120l, 120n) extending transverse to the first surface of the substrate. Adjacent conductive plates are spaced a distance D from each other. A dielectric material (104) can be disposed in a space separating the adjacent conductive plates. Each of the conductive plates has a height-to-width (h/w) ratio greater than or equal to one.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: November 6, 2012
    Assignee: Harris Corporation
    Inventor: David M. Smith
  • Publication number: 20120267763
    Abstract: An integrated circuit having a place-efficient capacitor includes a lower capacitor electrode having a surface area comprised of an inner surface area of a partial opening and a via opening formed in a patterned dielectric layer on a semiconductor substrate, a capacitor insulating layer overlying the lower capacitor electrode, and an upper capacitor electrode including a metal fill material filling the partial opening and the via opening and having a surface area that includes the inner surface area of the partial opening and via opening.
    Type: Application
    Filed: July 5, 2012
    Publication date: October 25, 2012
    Applicant: GLOBALFOUNDRIES INC.
    Inventor: Dmytro CHUMAKOV
  • Patent number: 8294241
    Abstract: A method of manufacturing a semiconductor device includes forming a wiring layer in a first insulating layer, forming a second insulating layer over the first insulating layer, forming a first conductive layer over the second insulating layer, forming a dielectric layer on the first conductive layer, forming a second conductive layer on the dielectric layer, selectively removing the second conductive layer to form an upper electrode on the dielectric layer, forming a first layer over the upper electrode and the dielectric layer, selectively removing the first layer, the dielectric layer, and the first conductive layer to form a lower electrode over which the dielectric layer and the first layer is entirely left, the upper electrode remaining partially over the lower electrode.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: October 23, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Tatsuro Osada, Kaoru Saigoh
  • Patent number: 8294240
    Abstract: A semiconductor die, having a substrate, includes a through silicon via. The through silicon via includes a decoupling capacitor having a first co-axial conductor, a second co-axial conductor, and a co-axial dielectric separating the first co-axial conductor from the second co-axial conductor. The decoupling capacitor is configured to provide local charge storage for components on the semiconductor die.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: October 23, 2012
    Assignee: QUALCOMM Incorporated
    Inventors: Matthew Michael Nowak, Shiqun Gu
  • Patent number: 8283753
    Abstract: A semiconductor device, which exhibits an increased design flexibility for a capacitor element, and can be manufactured with simple method, is provided. A semiconductor device 100 includes: a silicon substrate 101; an interlayer film 103 provided on the silicon substrate 101; a multiple-layered interconnect embedded in the interlayer film 103; a flip-chip pad 111, provided so as to be opposite to an upper surface of an uppermost layer interconnect 105 in the multiple-layered interconnect and having a solder ball 113 for an external coupling mounted thereon; and a capacitance film 109 provided between said uppermost layer interconnect 105 and the flip-chip pad 111. Such semiconductor device 100 includes the flip-chip pad 111 composed of an uppermost layer interconnect 105, a capacitive film 109 and a capacitor element 110.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: October 9, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Ryuichi Okamura
  • Patent number: 8283750
    Abstract: The invention relates to an electric device including an electric element, the electric element comprising a first electrode (104) having a first surface (106) and a pillar (108), the pillar extending from the first surface in a first direction (110), the pillar having a length measured from the first surface parallel to the first direction, the pillar having a cross section (116) perpendicular to the first direction and the pillar having a sidewall surface (120) enclosing the pillar and extending in the first direction, characterized in—that, the pillar comprises any one of a score (124) and protrusion (122) extending along at least part of the length of the pillar for giving the pillar (108) improved mechanical stability. The electrode allows electrical elements such as capacitors, energy storage devices or diodes to be made with improved properties in a cost effective way.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: October 9, 2012
    Assignee: IPDIA
    Inventors: Lionel Guiraud, Francois Lecornec, Johan H. Klootwijk, Freddy Roozeboom, David D. R. Chevrie
  • Publication number: 20120241909
    Abstract: A process and device structure is provided for increasing capacitance density of a capacitor structure. A sandwich capacitor is provided in which a bottom silicon-containing conductor plate is formed with holes or cavities, upon which an oxide layer and a top silicon-containing layer conductor is formed. The holes or cavities provide additional capacitive area, thereby increasing capacitance per footprint area of the capacitor structure. The holes can form, for example, a line structure or a waffle-like structure in the bottom conductor plate. Etching techniques used to form the holes in the bottom conductor plate can also result in side wall tapering of the holes, thereby increasing the surface area of the silicon-containing layer defined by the holes. In addition, depth of holes can be adjusted through timed etching to further adjust capacitive area.
    Type: Application
    Filed: March 23, 2011
    Publication date: September 27, 2012
    Inventors: Tushar P. Merchant, Michael A. Sadd
  • Patent number: 8269311
    Abstract: An integrated circuit device having a capacitor structure and methods of manufacture are disclosed. The device has a substrate, e.g., silicon wafer, silicon on insulator, epitaxial wafer. The device has a dielectric layer overlying the substrate and a polysilicon layer overlying the dielectric layer. The device has a tungsten silicide layer overlying the polysilicon layer and a first oxide layer overlying the tungsten silicide layer. A nitride layer overlies the oxide layer. A second oxide layer is overlying the nitride layer to form a sandwiched oxide on nitride on oxide structure to form a capacitor dielectric. The device also has an upper capacitor plate formed overlying the second oxide layer.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: September 18, 2012
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Chia-Ming Hsu, Wong Cheng Shih
  • Patent number: 8258574
    Abstract: A semiconductor device including a plurality of decoupling capacitors formed on a semiconductor substrate, and a plurality of decoupling capacitor contact plugs disposed between the semiconductor substrate and the plurality of decoupling capacitors, the plurality of decoupling capacitor contact plugs being electrically connected to the plurality of decoupling capacitors and including an array of first decoupling capacitor contact plugs and second decoupling capacitor contact plugs.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: September 4, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Dong-hyun Han
  • Patent number: 8247885
    Abstract: A semiconductor device containing a cylindrical shaped capacitor and a method for manufacturing the same is presented. The semiconductor device includes a plurality of storage nodes and a support pattern. The plurality of storage nodes is formed over a semiconductor substrate. The support pattern is fixed to adjacent storage nodes in which the support pattern has a flowable insulation layer buried within the support pattern. The buried flowable insulation layer direct contacts adjacent storage nodes.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: August 21, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Sung Min Park
  • Publication number: 20120199949
    Abstract: Higher capacitance density is achieved by increasing a surface area of a capacitor. A larger surface area may be obtained by forming isotropic ball shapes (a concave surface) in the trenches on the semiconductor die. The concave surfaces are fabricated by depositing bilayers of amorphous-silicon and silicon oxide. Openings are patterned in the silicon oxide hard mask for trenches. The openings are transferred to the amorphous-silicon layers through isotropic etching to form concave surfaces. Conducting, insulating, and conducting layers are deposited on the concave surfaces of the trenches by atomic layer deposition.
    Type: Application
    Filed: February 4, 2011
    Publication date: August 9, 2012
    Applicant: QUALCOMM INCORPORATED
    Inventors: Je-Hsiung Lan, Matthew Michael Nowak, Evgeni P. Gousev, Jonghae Kim, Clarence Chui
  • Publication number: 20120199950
    Abstract: Integrated circuits having place-efficient capacitors and methods for fabricating the same are provided. A dielectric layer is formed overlying a conductive feature on a semiconductor substrate. A via opening is formed into the dielectric layer to expose a portion of the conductive feature. A partial opening is etched into the dielectric layer and positioned over the conductive feature. Etch resistant particles are deposited overlying the dielectric layer and in the partial opening. The dielectric layer is further etched using the etch resistant particles as an etch mask to extend the partial opening. A first conductive layer is formed overlying the extended partial opening and electrically contacting the conductive feature. A capacitor insulating layer is formed overlying the first conductive layer. A second conductive layer is formed overlying the insulating layer.
    Type: Application
    Filed: February 7, 2011
    Publication date: August 9, 2012
    Applicant: GLOBALFOUNDRIES INC.
    Inventor: Dmytro CHUMAKOV
  • Patent number: 8236645
    Abstract: Integrated circuits having place-efficient capacitors and methods for fabricating the same are provided. A dielectric layer is formed overlying a conductive feature on a semiconductor substrate. A via opening is formed into the dielectric layer to expose a portion of the conductive feature. A partial opening is etched into the dielectric layer and positioned over the conductive feature. Etch resistant particles are deposited overlying the dielectric layer and in the partial opening. The dielectric layer is further etched using the etch resistant particles as an etch mask to extend the partial opening. A first conductive layer is formed overlying the extended partial opening and electrically contacting the conductive feature. A capacitor insulating layer is formed overlying the first conductive layer. A second conductive layer is formed overlying the insulating layer.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: August 7, 2012
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventor: Dmytro Chumakov
  • Patent number: 8237282
    Abstract: A semiconductor device includes a semiconductor substrate including a main surface; a plurality of first interconnections formed in a capacitance forming region defined on the main surface and extending in a predetermined direction; a plurality of second interconnections each adjacent to the first interconnection located at an edge of the capacitance forming region, extending in the predetermined direction, and having a fixed potential; and an insulating layer formed on the main surface and filling in between each of the first interconnections and between the first interconnection and the second interconnection adjacent to each other. The first interconnections and the second interconnections are located at substantially equal intervals in a plane parallel to the main surface, and located to align in a direction substantially perpendicular to the predetermined direction.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: August 7, 2012
    Assignees: Renesas Electronics Corporation, Renesas Device Design Corp.
    Inventors: Takashi Okuda, Yasuo Morimoto, Yuko Maruyama, Toshio Kumamoto
  • Publication number: 20120168905
    Abstract: The capacitor of a nonvolatile memory device includes first and second electrodes formed in the capacitor region of a semiconductor substrate to respectively have consecutive concave and convex shape of side surfaces formed along each other and a dielectric layer formed between the first and the second electrodes.
    Type: Application
    Filed: November 3, 2011
    Publication date: July 5, 2012
    Inventor: Je Il RYU
  • Patent number: 8207592
    Abstract: A capacitor in an integrated circuit (“IC”) has a first plurality of conductive crosses formed in a layer of the IC electrically connected to and forming a portion of a first node of the capacitor and a second plurality of conductive crosses formed in the metal layer of the IC. The conductive crosses in the second plurality of conductive crosses are electrically connected to and form a portion of a second node of the capacitor and capacitively couple to the first node.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: June 26, 2012
    Assignee: Xilinx, Inc.
    Inventor: Patrick J. Quinn
  • Patent number: 8183616
    Abstract: Provided is a technology capable of reducing parasitic capacitance of a capacitor while reducing the space occupied by the capacitor. A stacked structure is obtained by forming, over a capacitor composed of a lower electrode, a capacitor insulating film and an intermediate electrode, another capacitor composed of the intermediate electrode, another capacitor insulating film and an upper electrode. Since the intermediate electrode has a step difference, each of the distance between the intermediate electrode and lower electrode and the distance between the intermediate electrode and upper electrode in a region other than the capacitor formation region becomes greater than that in the capacitor formation region. For example, the lower electrode is brought into direct contact with the capacitor insulating film in the capacitor formation region, while the lower electrode is not brought into direct contact with the capacitor insulating film in the region other than the capacitor formation region.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: May 22, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Tsuyoshi Fujiwara, Toshinori Imai, Takeshi Saikawa, Yoshinori Kawasaki, Mitsuhiro Toya, Shunji Mori, Yoshiyuki Okabe
  • Patent number: 8178404
    Abstract: A Metal-Insulator-Metal (MIM) capacitor structure and method of fabricating the same in an integrated circuit improve capacitance density in a MIM capacitor structure by utilizing a sidewall spacer extending along a channel defined between a pair of legs that define portions of the MIM capacitor structure. Each of the legs includes top and bottom electrodes and an insulator layer interposed therebetween, as well as a sidewall that faces the channel. The sidewall spacer incorporates a conductive layer and an insulator layer interposed between the conductive layer and the sidewall of one of the legs, and the conductive layer of the sidewall spacer is physically separated from the top electrode of the MIM capacitor structure. In addition, the bottom electrode of a MIM capacitor structure may be ammonia plasma treated prior to deposition of an insulator layer thereover to reduce oxidation of the electrode.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: May 15, 2012
    Assignee: NXP B.V.
    Inventors: Michael Olewine, Kevin Saiz
  • Publication number: 20120104551
    Abstract: Trench capacitors and methods of manufacturing the trench capacitors are provided. The trench capacitors are very dense series capacitor structures with independent electrode contacts. In the method, a series of capacitors are formed by forming a plurality of insulator layers and a plurality of electrodes in a trench structure, where each electrode is formed in an alternating manner with each insulator layer. The method further includes planarizing the electrodes to form contact regions for a plurality of capacitors.
    Type: Application
    Filed: January 12, 2012
    Publication date: May 3, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Timothy W. KEMERER, James S. NAKOS, Steven M. SHANK
  • Patent number: 8169051
    Abstract: A semiconductor device includes a substrate, an insulating film formed over the substrate, first and second conductive plugs formed in the insulating film, a capacitor element, and a wiring. The capacitor element includes a lower electrode, a dielectric film, and an upper electrode. The lower electrode is connected to an end of the first plug and formed on the insulating film, and includes a first barrier film. The dielectric film is formed on upper and side surfaces of the lower electrode. The upper electrode is formed on the dielectric film, and includes a second barrier metal film being wider than the lower electrode. The wiring is connected to an end of the second plug and formed on the insulating film, and includes a first layer and a second layer formed on the first layer. The first and second layers include the first and second barrier metal films, respectively.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: May 1, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Tetsuo Yoshimura, Kenichi Watanabe, Satoshi Otsuka
  • Patent number: 8169014
    Abstract: System and method for an improved interdigitated capacitive structure for an integrated circuit. A preferred embodiment comprises a first layer of a sequence of substantially parallel interdigitated strips, each strip of either a first polarity or a second polarity, the sequence alternating between a strip of the first polarity and a strip of the second polarity. A first dielectric layer is deposited over each strip of the first layer of strips. A first extension layer of a sequence of substantially interdigitated extension strips is deposited over the first dielectric layer, each extension strip deposited over a strip of the first layer of the opposite polarity. A first sequence of vias is coupled to the first extension layer, each via deposited over an extension strip of the same polarity. A second layer of a sequence of substantially parallel interdigitated strips can be coupled to the first sequence of vias.
    Type: Grant
    Filed: January 9, 2006
    Date of Patent: May 1, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yueh-You Chen, Chung-Long Chang, Chih-Ping Chao
  • Patent number: 8159046
    Abstract: A capacitor includes a lower electrode; a dielectric layer formed on a predetermined portion of the lower electrode; an upper electrode formed on the dielectric layer; a hard mask pattern formed on the upper electrode; and an isolation layer having a shape of a spacer, formed on one sidewall of the hard mask pattern, the upper electrode, and the dielectric layer.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: April 17, 2012
    Assignee: Magnachip Semiconductor, Ltd.
    Inventors: Jin-Youn Cho, Young-Soo Kang, Jong-Il Kim, Sang-Geun Koo
  • Publication number: 20120086105
    Abstract: A first capacitor recess and a wiring trench are formed through an interlayer insulating film. A lower electrode fills the first capacitor recess, and a first wiring fills the wiring trench. An etching stopper film and a via layer insulating film are disposed over the interlayer insulating film. A first via hole extends through the via layer insulating film and etching stopper film and reaches the first wiring, and a first plug fills the first via hole. A second capacitor recess is formed through the via layer insulating film, the second capacitor recess at least partially overlapping the lower electrode, as viewed in plan. The upper electrode covers the bottom and side surfaces of the second capacitor recess. A capacitor is constituted of the upper electrode, etching stopper film and lower electrode. A second wring connected to the first plug is formed over the via layer insulating film.
    Type: Application
    Filed: December 19, 2011
    Publication date: April 12, 2012
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Kenichi Watanabe
  • Publication number: 20120061801
    Abstract: A method of making a semiconductor structure includes forming at least a first trench and a second trench having different depths in a substrate, forming a capacitor in the first trench, and forming a via in the second trench. A semiconductor structure includes a capacitor arranged in a first trench formed in a substrate and a via arranged in a second trench formed in the substrate. The first and second trenches have different depths in the substrate.
    Type: Application
    Filed: November 22, 2011
    Publication date: March 15, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: David S. COLLINS, Kai D. FENG, Zhong-Xiang HE, Peter J. LINDGREN, Robert M. RASSEL
  • Patent number: 8129772
    Abstract: Disclosed are integrated circuit structures each having a silicon germanium film incorporated as a local interconnect and/or an electrical contact. These integrated circuit structures provide improved local interconnects between devices and/or increased capacitance to devices without significantly increasing structure surface area or power requirements. Specifically, disclosed are integrated circuit structures that incorporate a silicon germanium film as one or more of the following features: as a local interconnect between devices; as an electrical contact to a device (e.g., a deep trench capacitor, a source/drain region of a transistor, etc.); as both an electrical contact to a deep trench capacitor and a local interconnect between the deep trench capacitor and another device; and as both an electrical contact to a deep trench capacitor and as a local interconnect between the deep trench capacitor and other devices.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: March 6, 2012
    Assignee: International Business Machines Corporation
    Inventor: Steven H. Voldman
  • Patent number: 8125050
    Abstract: A semiconductor device is described includes a wiring layer, an insulating layer stacked on the wiring layer, a trench formed by digging down the insulating layer from the surface thereof, a film-shaped lower electrode formed along the inner surface of the trench, a capacitor film formed along the surface of the lower electrode, and an upper electrode opposed to the lower electrode with the capacitor film sandwiched therebetween.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: February 28, 2012
    Assignee: Rohm Co., Ltd.
    Inventor: Satoshi Kageyama
  • Publication number: 20120032302
    Abstract: Semiconductor devices (100) and methods of making the same. Each of the semiconductor devices includes a substrate (102) having a first surface (118) and an opposing second surface. A vertical capacitive element (104) is disposed on the first surface of the substrate. The vertical capacitive element comprises a plurality of parallel conductive plates (120b, 120d, 120f, 120h, 120j, 120l, 120n) extending transverse to the first surface of the substrate. Adjacent conductive plates are spaced a distance D from each other. A dielectric material (104) can be disposed in a space separating the adjacent conductive plates. Each of the conductive plates has a height-to-width (h/w) ratio greater than or equal to one.
    Type: Application
    Filed: August 4, 2010
    Publication date: February 9, 2012
    Applicant: Harris Corporation
    Inventor: David M. Smith
  • Patent number: 8080474
    Abstract: The present invention provides a method for making an electrode. Firstly, a conducting substrate is provided. Secondly, a plurality of nano-sized structures is formed on the conducting substrate by a nano-imprinting method. Thirdly, a coating is formed on the nano-sized structures. The nano-sized structures are configured for increasing specific surface area of the electrode.
    Type: Grant
    Filed: June 1, 2009
    Date of Patent: December 20, 2011
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Ga-Lane Chen
  • Publication number: 20110291240
    Abstract: To provide a power storage device with improved cycle characteristics and a method for manufacturing the power storage device, a power storage device is provided with a conductive layer in contact with a surface of an active material layer including a silicon layer after an oxide film, such as a natural oxide film, which is formed on the surface of the active material layer is removed. The conductive layer is thus provided in contact with the surface of the active material layer including a silicon layer, whereby the conductivity of the electrode surface of the power storage device is improved; therefore, cycle characteristics of the power storage device can be improved.
    Type: Application
    Filed: May 27, 2011
    Publication date: December 1, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Shunpei YAMAZAKI
  • Publication number: 20110272786
    Abstract: An energy storage device (300), the device (300) comprising a substrate (102), a steric structure (104) formed on and/or in a main surface (106) of the substrate (102), a current collector stack (202) formed on the steric structure (104), and an electric storage stack (302) formed on the current collector stack (202), wherein side walls (108) of the steric structure (104) and the main surface (106) of the substrate (102) enclose an acute angle of more than 80 degrees.
    Type: Application
    Filed: September 25, 2009
    Publication date: November 10, 2011
    Applicant: NXP B.V.
    Inventors: Willem Frederik Adrianus Besling, Rogier Adrianus Henrica Niessen, Johan Hendrik Klootwijk, Nynke Verhaegh, Petrus Henricus Laurentius Notten, Marcel Mulder
  • Patent number: 8049302
    Abstract: At least a first capacitor is formed on a substrate and connected to a first differential node of a differential circuit, and the first capacitor may be variable in capacitance. A second capacitor is formed on the substrate and connected to a second differential node of the differential circuit, and the second capacitor also may be variable. A third capacitor is connected between the first differential node and the second differential node, and is formed at least partially above the first capacitor. In this way, a size of the first capacitor and/or the second capacitor may be reduced on the substrate, and capacitances of the first and/or second capacitor(s) may be adjusted in response to a variable characteristic of one or more circuit components of the differential circuit.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: November 1, 2011
    Assignee: Broadcom Corporation
    Inventors: Hooman Darabi, Oiang Li, Bo Zhang
  • Publication number: 20110254132
    Abstract: The present disclosure provides a semiconductor device. The semiconductor device includes a substrate that spans in an X-direction and a Y-direction that is orthogonal to the X-direction. The semiconductor device includes an interconnect structure formed over the substrate in a Z-direction that is orthogonal to both the X-direction and the Y-direction. The interconnect structure includes a plurality of metal lines interconnected together in the Z-direction by a plurality of vias. The interconnect structure contains a capacitor that includes an anode component and a cathode component. The anode component includes an array of elongate anode stack elements extending in the Z-direction. The cathode component includes an array of elongate cathode stack elements extending in the Z-direction. The array of anode stack elements are interdigitated with the array of cathode stack elements in both the X direction and the Y direction.
    Type: Application
    Filed: June 10, 2011
    Publication date: October 20, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Hsiu-Ying Cho