Including Resistive Element Patents (Class 257/536)
  • Patent number: 8999808
    Abstract: A nonvolatile memory element includes a first and a second electrode layers, and a variable resistance layer provided between the first and the second electrode layers and having a resistance value reversibly changing according to application of an electrical pulse, wherein the variable resistance layer includes a first variable resistance layer contacting the first electrode layer and comprising an oxygen-deficient first metal oxide, and a second variable resistance layer contacting the first variable resistance layer and comprising a second metal oxide having a smaller oxygen deficiency than the first metal oxide, and including host layers and an inserted layer between each of adjacent pairs of the host layers, wherein the second metal oxide of the inserted layer has a larger oxygen deficiency than the second metal oxide of the host layer, and the first metal oxide has a larger oxygen deficiency than the second metal oxide of the host layer.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: April 7, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Satoru Fujii, Takumi Mikawa
  • Patent number: 9000552
    Abstract: In a semiconductor integrated circuit device including a digital circuit region in which a digital circuit is formed, and an analog circuit region in which an analog circuit is formed, the analog circuit region is separated into an active element region in which an active element of the analog circuit is formed, and a resistive and capacitive element region in which a resistor or a capacitor of the analog circuit is formed, the resistive and capacitive element region is arranged in a region adjacent to the digital circuit region, and the active element region is arranged in a region separated from the digital circuit region.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: April 7, 2015
    Assignee: Mitsumi Electric Co., Ltd.
    Inventor: Takatoshi Itagaki
  • Patent number: 9000411
    Abstract: Various embodiments of the present invention are direct to nanoscale, reconfigurable, two-terminal memristor devices. In one aspect, a device (400) includes an active region (402) for controlling the flow of charge carriers between a first electrode (104) and a second electrode (106). The active region is disposed between the first electrode and the second electrode and includes a storage material. Excess mobile oxygen ions formed within the active region are stored in the storage material by applying a first voltage.
    Type: Grant
    Filed: January 6, 2009
    Date of Patent: April 7, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Zhiyong Li, Alexandre M. Bratkovski, Jianhua Yang
  • Patent number: 8987865
    Abstract: A resistor structure incorporated into a resistive switching memory cell or device to form memory devices with improved device performance and lifetime is provided. The resistor structure may be a two-terminal structure designed to reduce the maximum current flowing through a memory device. A method is also provided for making such memory device. The method includes depositing a resistor structure and depositing a variable resistance layer of a resistive switching memory cell of the memory device, where the resistor structure is disposed in series with the variable resistance layer to limit the switching current of the memory device. The incorporation of the resistor structure is very useful in obtaining desirable levels of device switching currents that meet the switching specification of various types of memory devices. The memory devices may be formed as part of a high-capacity nonvolatile memory integrated circuit, which can be used in various electronic devices.
    Type: Grant
    Filed: May 27, 2014
    Date of Patent: March 24, 2015
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Dipankar Pramanik, Tony P. Chiang, Mankoo Lee
  • Patent number: 8987864
    Abstract: There is provided an array type chip resistor including: a chip body, four pairs of lower electrodes disposed on both sides of a lower surface of the chip body and formed so as to be extended to edges of the chip body, side electrodes formed so that the lower electrodes are extended to sides of the chip body, and a resistor interposed between the lower electrodes on the lower surface of the chip body and electrically connected to the lower electrode through a contact portion, wherein when a width of the side electrode is defined as d1, a distance between adjacent side electrodes is defined as d2, and a height of the side electrode is defined as h, in the case in which d1/d2 is 0.5 to 1.5, a value of h is 4,300/d1 ?m or above and is 0.24d2+87.26 ?m or less.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: March 24, 2015
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Jung Il Kim, Ha Sung Hwang, Hae In Kim, Ichiro Tanaka, Oh Sung Kwon
  • Patent number: 8981489
    Abstract: Semiconductor devices including a resistor structure is provided. The semiconductor device may include a gate structure on an active region, a resistor structure on a field region and a first interlayer insulating layer on the gate structure and the resistor structure. The semiconductor devices may also include a resistor trench plug vertically penetrating through the first interlayer insulating layer and contacting the resistor structure and a second interlayer insulating layer on the first interlayer insulating layer and the resistor trench plug. Further, the semiconductor devices may include a resistor contact plug vertically penetrating through the first and second interlayer insulating layers and contacting the resistor structure.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: March 17, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Junjie Xiong, Yoon-Hae Kim, Hong-Seong Kang, Yoon-Seok Lee, You-Shin Choi
  • Patent number: 8980703
    Abstract: A method of forming a semiconductor structure is provided. A substrate having a cell area and a periphery area is provided. A stacked structure including a gate oxide layer, a floating gate and a first spacer is formed on the substrate in the cell area and a resistor is formed on the substrate in the periphery area. At least two doped regions are formed in the substrate beside the stacked structure. A dielectric material layer and a conductive material layer are sequentially formed on the substrate. A patterned photoresist layer is formed on the substrate to cover the stacked structure and a portion of the resistor. The dielectric material layer and the conductive material layer not covered by the patterned photoresist layer are removed, so as to form an inter-gate dielectric layer and a control gate on the stacked structure, and simultaneously form a salicide block layer on the resistor.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: March 17, 2015
    Assignee: Maxchip Electronics Corp.
    Inventors: Chen-Chiu Hsu, Tung-Ming Lai, Kai-An Hsueh, Ming-De Huang
  • Patent number: 8975663
    Abstract: There is provided a semiconductor device such that it is possible to average the temperatures of a plurality of semiconductor chips simply by providing gate resistors. The semiconductor device includes a semiconductor module wherein a plurality of circuit substrates on which are mounted one or more semiconductor chips having a gate terminal and a gate resistor connected to the gate terminal are disposed in parallel, wherein the disposition distance of the gate resistor from the semiconductor chip is set based on the temperature of the semiconductor chip.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: March 10, 2015
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Yujin Okamoto
  • Patent number: 8975725
    Abstract: A bias circuit according to the present invention includes a resistor layer 2 which is placed above a substrate 1 and connected to a ground potential, and a conductor 4 for forming an inductor 5 placed above the resistor layer 2. Further, a manufacturing method of the bias circuit according to the present invention generates the resistor layer 2 above the substrate 1 and is connected to the ground potential, and generates the conductor 4 for forming the inductor 5 above the resistor layer 2. The present invention can provide a bias circuit and a manufacturing method of the bias circuit that enables easy integration on a semiconductor substrate and prevents parasitic oscillation.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: March 10, 2015
    Assignee: NEC Corporation
    Inventors: Yasuhiro Hamada, Shuya Kishimoto, Kenichi Maruhashi
  • Patent number: 8975727
    Abstract: A resistor structure incorporated into a resistive switching memory cell with improved performance and lifetime is provided. The resistor structure may be a two-terminal structure designed to reduce the maximum current flowing through a memory cell. A method is also provided for making such a memory cell. The method includes depositing a resistor structure and depositing a variable resistance layer of a resistive switching memory cell of the memory cell, where the resistor structure is disposed in series with the variable resistance layer to limit the switching current of the memory cell. The incorporation of the resistor structure is very useful in obtaining desirable levels of switching currents that meet the switching specification of various types of memory cells. The memory cells may be formed as part of a high-capacity nonvolatile memory integrated circuit, which can be used in various electronic devices.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: March 10, 2015
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Yun Wang, Tony P. Chiang, Imran Hashim, Tim Minvielle, Dipankar Pramanik, Takeshi Yamaguchi
  • Patent number: 8963116
    Abstract: A device is disclosed. The device includes a top electrode, a bottom electrode and a storage element between the top and bottom electrodes. The storage element includes a heat generating element disposed on the bottom electrode, a phase change element wrapping around an upper portion of the heat generating element, and a dielectric liner sandwiched between the phase change element and the heat generating element.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: February 24, 2015
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Khee Yong Lim, Zufa Zhang
  • Publication number: 20150048480
    Abstract: Some novel features pertain to a semiconductor device that includes a substrate, a first cavity that traverses the substrate. The first cavity is configured to be occupied by a interconnect material (e.g., solder ball). The substrate also includes a first metal layer coupled to a first side wall of the first cavity. The substrate further includes a first integrated passive device (IPD) on a first surface of the substrate, the first IPD coupled to the first metal layer. In some implementations, the substrate is a glass substrate. In some implementations, the first IPD is one of at least a capacitor, an inductor and/or a resistor. In some implementations, the semiconductor device further includes a second integrated passive device (IPD) on a second surface of the substrate. The second IPD is coupled to the first metal layer.
    Type: Application
    Filed: August 16, 2013
    Publication date: February 19, 2015
    Applicant: QUALCOMM Incorporated
    Inventors: Daeik Daniel Kim, Young Kyu Song, Changhan Hobie Yun, Mario Francisco Velez, Chengjie Zuo, Jonghae Kim, Xiaonan Zhang, Ryan David Lane
  • Publication number: 20150041915
    Abstract: A semiconductor device arrangement includes a first semiconductor device having a load path and a plurality of second semiconductor devices, each having a load path between a first and a second load terminal and a control terminal. The second semiconductor devices have their load paths connected in series and connected in series to the load path of the first semiconductor device. Each of the second semiconductor devices has its control terminal connected to the load terminal of one of the other second semiconductor devices, and one of the second semiconductor devices has its control terminal connected to one of the load terminals of the first semiconductor device. Each of the second semiconductor devices has at least one device characteristic. At least one device characteristic of at least one of the second semiconductor devices is different from the corresponding device characteristic of others of the second semiconductor devices.
    Type: Application
    Filed: January 30, 2013
    Publication date: February 12, 2015
    Inventors: Rolf Weis, Michael Treu, Gerald Deboy, Armin Willmeroth, Hans Weber
  • Patent number: 8952492
    Abstract: An embodiment of an electrically trimmable electronic device, wherein a resistor of electrically modifiable material is formed by a first generally strip-shaped portion and by a second generally strip-shaped portion, which extend transversely with respect to one another and are in direct electrical contact in a crossing area. The first and second portions have respective ends connected to own contact regions, coupled to a current pulse source and are made of the same material or of the same composition of materials starting from a same resistive layer of the material having electrically modifiable resistivity, for example, a phase-change material, such as a Ge—Sb—Te alloy, or polycrystalline silicon, or a metal material used for thin-film resistors. The trimming is performed by supplying a trimming current to the second portion so as to heat the crossing area and modify the resistivity thereof, without flowing longitudinally in the first portion.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: February 10, 2015
    Assignee: STMicroelectronics S.R.L.
    Inventors: Stefania Maria Serena Privitera, Antonello Santangelo
  • Patent number: 8952350
    Abstract: A non-volatile memory device of the present invention comprises a first electrode; a variable resistance layer formed on and above the first electrode; a second electrode formed on and above the variable resistance layer; a side wall protective layer having an insulativity and covering a side wall of the first electrode, a side wall of the variable resistance layer and a side wall of the second electrode; and an electrically-conductive layer connected to the second electrode; the non-volatile memory device including a connection layer which is provided between the second electrode and the electrically-conductive layer to connect the second electrode and the electrically-conductive layer to each other, and comprises an electrically-conductive material different from a material constituting the electrically-conductive layer; wherein the side wall protective layer extends across the second electrode to a position which is above an upper end of the second electrode and below an upper end of the connection layer s
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: February 10, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Hideaki Murase, Yoshio Kawashima, Atsushi Himeno
  • Publication number: 20150035120
    Abstract: A semiconductor device package is formed of DBC in which thinned MOSgated and/or diode die are soldered to the bottom of an etched depression in the upper conductive layer. A via in the insulation layer of the DBC is filled with a conductive material to form a resistive shunt. Plural packages may be formed in a DBC card and may be separated individually or in clusters. The individual packages arc mounted in various arrays on a support DBC board and heat sink. Integrated circuits may be mounted on the assembly and connected to the die for control of the die conduction.
    Type: Application
    Filed: October 21, 2014
    Publication date: February 5, 2015
    Inventor: Henning M. Hauenstein
  • Patent number: 8946857
    Abstract: A semiconductor device includes a semiconductor substrate, a heat generating device, and a heat radiating part. The heat generating device is provided on the semiconductor substrate, and the heat radiating part is provided above the heat generating device. The heat radiating part is thermally coupled with the semiconductor substrate through at least one contact part.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: February 3, 2015
    Assignees: Fujitsu Limited, Fujitsu Semiconductor Limited
    Inventors: Mitsuaki Igeta, Takashi Suzuki
  • Publication number: 20150028448
    Abstract: A chip package includes an electrically conducting chip carrier and at least one first semiconductor chip attached to the electrically conducting chip carrier. The chip package further includes a passive component. The electrically conducting chip carrier, the at least one first semiconductor chip, and the passive component are embedded in an insulating laminate structure.
    Type: Application
    Filed: July 26, 2013
    Publication date: January 29, 2015
    Inventors: Khalil Hosseini, Joachim Mahler, Georg Meyer-Berg
  • Publication number: 20150014815
    Abstract: A semiconductor device and a method for forming a semiconductor device are provided. The semiconductor device includes a semiconductor body including a diode-structure with a pn-junction, and an edge-termination structure arranged in a peripheral area of the semiconductor body. The edge-termination structure includes an insulating region partially arranged in the semiconductor body adjacent the pn-junction and a semi-insulating region arranged on the insulating region and spaced apart from the semiconductor body. The semi-insulating region forms a resistor connected in parallel with the diode-structure.
    Type: Application
    Filed: October 1, 2014
    Publication date: January 15, 2015
    Inventors: Gerhard Schmidt, Daniel Schloegl
  • Patent number: 8933431
    Abstract: A memory array has a plurality of conductor structures. Each conductor structure has a top wire segment extending in a first direction, a middle wire segment extending in a second direction at an angle from the first direction, a bottom wire segment extending in a direction opposite to the first direction, and a via connecting the top, middle, and bottom wire segments. A plurality of memory cells in an upper plane of the memory array are formed at intersections of the middle wire segment of each conductor structure with the top wire segments of neighboring conductor structures, and a plurality of memory cells in a lower plane are formed at intersections of the middle wire segment of each conductor structure with the bottom wire segments of neighboring conductor structures.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: January 13, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: Frederick Perner
  • Patent number: 8927955
    Abstract: According to one embodiment, a resistance change memory includes a first interconnect line extending in a first direction, a second interconnect line extending in a second direction intersecting with the first direction, and a cell unit which is provided at the intersection of the first interconnect line and the second interconnect line and which includes a memory element and a non-ohmic element that are connected in series. The memory element stores data in accordance with a change in a resistance state. The non-ohmic element includes a metal layer, a first semiconductor layer containing a first impurity, and a second semiconductor layer which is provided between the first semiconductor layer and the metal layer and which has an unevenly distributed layer.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: January 6, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takeshi Sonehara, Masaki Kondo
  • Patent number: 8928115
    Abstract: A semiconductor device package is formed of DBC in which thinned MOSgated and/or diode die are soldered to the bottom of an etched depression in the upper conductive layer. A via in the insulation layer of the DBC is filled with a conductive material to form a resistive shunt. Plural packages may be formed in a DBC card and may be separated individually or in clusters. The individual packages are mounted in various arrays on a support DBC board and heat sink. Integrated circuits may be mounted on the assembly and connected to the die for control of the die conduction.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: January 6, 2015
    Assignee: International Rectifier Corporation
    Inventor: Henning M. Hauenstein
  • Patent number: 8927956
    Abstract: A resistance type memory device is provided. The resistance type memory device includes a first and a second conductors and a metal oxide layer. The metal oxide layer is disposed between the first and the second conductors, and the resistance type memory device is defined in a first resistivity. The resistance type memory device is defined in a second resistivity after a first pulse voltage is applied to the metal oxide layer. The resistance type memory device is defined in a third resistivity after a second pulse voltage is applied to the metal oxide layer. The second resistivity is greater than the first resistivity, and the first resistivity is greater than the third resistivity.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: January 6, 2015
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Ming-Daou Lee, Chia-Hua Ho, Erh-Kun Lai, Kuang-Yeu Hsieh
  • Publication number: 20150001677
    Abstract: A semiconductor device includes: a semiconductor substrate; a high-voltage first resistive structure which extends along a spiral path above the substrate and is separated from the substrate by a first dielectric layer; and a conductive shielding structure, including a plurality of first shielding strips, which are arranged in sequence along respective portions of the first resistive structure and are separated from the first resistive structure by a second dielectric layer.
    Type: Application
    Filed: June 19, 2014
    Publication date: January 1, 2015
    Applicant: STMicroelectronics S.r.l.
    Inventors: Vincenzo Palumbo, Mirko Venturato
  • Publication number: 20150001678
    Abstract: Semiconductor devices, methods of manufacture thereof, and methods of forming resistors are disclosed. In one embodiment, a method of manufacturing a semiconductor device includes forming a first insulating material over a workpiece, and forming a conductive chemical compound material over the first insulating material. The conductive chemical compound material is patterned to form a resistor. A second insulating material is formed over the resistor, and the second insulating material is patterned. The patterned second insulating material is filled with a conductive material to form a first contact coupled to a first end of the resistor and to form a second contact coupled to a second end of the resistor.
    Type: Application
    Filed: September 15, 2014
    Publication date: January 1, 2015
    Inventors: Chia-Yu Lu, Shyue-Shyh Lin, Chin-Shan Hou, Kuo-Feng Yu, Tung-Heng Hsieh, Chih-Hung Wang, Jian-Hao Chen
  • Patent number: 8921946
    Abstract: A semiconductor device includes a substrate including an isolation region, and a resistor disposed over the isolation region, wherein the resistor includes an implant with an inverse box-like dopant profile that minimizes resistance variation from subsequent planarization variation. A contact is disposed over the resistor. A method of fabricating such a semiconductor device is also provided.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: December 30, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: King-Yuen Wong, Chia-Pin Lin, Chia-Yu Lu, Yi-Cheng Tsai, Da-Wen Lin, Kuo-Feng Yu
  • Patent number: 8921821
    Abstract: Some embodiments include a method of forming a memory cell. A first portion of a switching region is formed over a first electrode. A second portion of the switching region is formed over the first portion using atomic layer deposition. The second portion is a different composition than the first portion. An ion source region is formed over the switching region. A second electrode is formed over the ion source region. Some embodiments include a memory cell having a switching region between a pair of electrodes. The switching region is configured to be reversibly transitioned between a low resistive state and a high resistive state. The switching region includes two or more discrete portions, with one of the portions not having a non-oxygen component in common with any composition directly against it in the high resistive state.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: December 30, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Shuichiro Yasuda, Noel Rocklein, Scott E. Sills, D. V. Nirmal Ramaswamy, Qian Tao
  • Patent number: 8921919
    Abstract: A first insulation film is on a substrate. A first resistance part is on the first insulation film. A boundary film is on the first resistance part. A second resistance part is on the boundary film. A second insulation film is on the second resistance part. A first conductive part and a second conductive part are on the second insulation film, and are isolated from each other. The first conductive part includes a first connection part penetrating the second insulation film and the second resistance part and contacting a surface of the boundary film. The second conductive part includes a second connection part penetrating the second insulation film and the second resistance part and contacting a surface of the boundary film. The first resistance part is connected to the first conductive part via the first connection part, and is connected to the second conductive part via the second connection part.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: December 30, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroyuki Kuroe, Shoichi Watanabe
  • Patent number: 8916949
    Abstract: A resistive memory device and a method for manufacturing the same are provided. The resistive memory device includes a lower electrode, a variable resistive layer formed on the lower electrode and configured so that the volume thereof is contracted or expanded according to temperature, and an upper electrode formed on the variable resistive layer. At least a portion of the lower electrode is configured to be electrically connected to the upper electrode.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: December 23, 2014
    Assignee: SK Hynix Inc.
    Inventors: Hyo Seob Yoon, Han Woo Cho
  • Patent number: 8912630
    Abstract: An integrated circuit (IC) and a method of making the same. In one embodiment, the IC includes: a substrate; an insulation layer over the substrate; a resistor over the insulation layer; a thermal gate over the resistor; and a heat sink connected to the thermal gate via a substrate contact, the heat sink adapted to receive thermal energy from the resistor via the thermal gate.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: December 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Jed H. Rankin, Robert R. Robison, Dustin K. Slisher
  • Publication number: 20140361405
    Abstract: There is provided an array type chip resistor including: a chip body, four pairs of lower electrodes disposed on both sides of a lower surface of the chip body and formed so as to be extended to edges of the chip body, side electrodes formed so that the lower electrodes are extended to sides of the chip body, and a resistor interposed between the lower electrodes on the lower surface of the chip body and electrically connected to the lower electrode through a contact portion, wherein when a width of the side electrode is defined as d1, a distance between adjacent side electrodes is defined as d2, and a height of the side electrode is defined as h, in the case in which d1/d2 is 0.5 to 1.5, a value of h is 4,300/d1 ?m or above and is 0.24d2+87.26 ?m or less.
    Type: Application
    Filed: September 5, 2013
    Publication date: December 11, 2014
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Jung Il KIM, Ha Sung HWANG, Hae In KIM, Ichiro TANAKA, Oh Sung KWON
  • Publication number: 20140361402
    Abstract: An integrated circuit (IC) package including an IC die and a conductive ink printed circuit layer electrically connected to the IC die.
    Type: Application
    Filed: August 26, 2014
    Publication date: December 11, 2014
    Inventors: Matthew David Romig, Lance Cole Wright, Leslie Edward Stark, Frank Stepniak, Sreenivasan K. Koduri
  • Patent number: 8901712
    Abstract: The technical problem to be solved is to achieve high density with simple manufacturing process to decrease bit costs of memory. A semiconductor memory device according to a first aspect of the present invention includes a variable resistance material layer and a channel layer that are connected in series between a first diffusion layer and a metal wire, thereby separating the metal wire and a channel semiconductor layer. A semiconductor memory device according to a second aspect of the present invention includes a variable resistance material layer electrically connecting channel semiconductor layers opposed to each other in a first direction and electrically connecting channel semiconductor layers adjacent to each other in a second direction, wherein a plurality of the channel semiconductor layers is disposed in the second direction.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: December 2, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Yoshitaka Sasago, Akira Kotabe
  • Patent number: 8901704
    Abstract: An integrated circuit and a manufacturing method thereof are provided. A chip size can be reduced by forming a memory device in which a ferroelectric capacitor region is laminated on a DRAM. The integrated circuit includes a cell array region having a capacitor, a peripheral circuit region, and a ferroelectric capacitor region being formed on an upper layer of the cell array region and the peripheral circuit region, and having a ferroelectric capacitor device.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: December 2, 2014
    Assignee: SK Hynix Inc.
    Inventor: Hee Bok Kang
  • Patent number: 8901705
    Abstract: The present invention relates to an electronic component, that comprises, on a substrate, at least one integrated MIM capacitor, (114) an electrically insulating first cover layer (120) which partly or fully covers the top capacitor electrode (118) and is made of a lead-containing dielectric material, and a top barrier layer (122) on the first cover layer. The top barrier layer serves for avoiding a reduction of lead atoms comprised by the first cover layer under exposure of the first cover layer to a reducing substance. An electrically insulating second cover layer (124) on the top barrier layer has a dielectric permittivity smaller than that of the first cover layer establishes a low parasitic capacitance of the cover-layer structure. The described cover-layer structure with the intermediate top barrier layer allows to fabricate a high-accuracy resistor layer (126.1) on top.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: December 2, 2014
    Assignee: NXP, B.V.
    Inventors: Aarnoud Laurens Roest, Mareike Klee, Rudiger Gunter Mauczok, Linda Van Leuken-Peters, Robertus Adrianus Maria Wolters
  • Patent number: 8896093
    Abstract: A vertical TVS (VTVS) circuit includes a semiconductor substrate for supporting the VTVS device thereon having a heavily doped layer extending to the bottom of substrate. Deep trenches are provided for isolation between multi-channel VTVS. Trench gates are also provided for increasing the capacitance of VTVS with integrated EMI filter.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: November 25, 2014
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Shekar Mallikararjunaswamy, Madhur Bobde
  • Patent number: 8890222
    Abstract: A meander line resistor structure comprises a first resistor formed on a first active region, wherein the first resistor is formed by a plurality of first vias connected in series, a second resistor formed on a second active region, wherein the second resistor is formed by a plurality of second vias connected in series and a third resistor formed on the second active region, wherein the third resistor is formed by a plurality of third vias connected in series. The meander line resistor further comprises a first connector coupled between the first resistor and the second resistor.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: November 18, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin
  • Patent number: 8890109
    Abstract: Provided are resistive random access memory (ReRAM) cells including resistive switching layers and thermally isolating structures for limiting heat dissipation from the switching layers during operation. Thermally isolating structures may be positioned within a stack or adjacent to the stack. For example, a stack may include one or two thermally isolating structures. A thermally isolating structure may directly interface with a switching layer or may be separated by, for example, an electrode. Thermally isolating structures may be formed from materials having a thermal conductivity of less than 1 W/m*K, such as porous silica and mesoporous titanium oxide. A thermally isolating structure positioned in series with a switching layer generally has a resistance less than the low resistance state of the switching layer. A thermally isolating structure positioned adjacent to a switching layer may have a resistance greater than the high resistance state of the switching layer.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: November 18, 2014
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Yun Wang, Tony P. Chiang, Tim Minvielle, Takeshi Yamaguchi
  • Patent number: 8878342
    Abstract: Various embodiments of the present invention are direct to nanoscale, reconfigurable, memristor devices. In one aspect, a memristor device comprises an electrode (301,303) and an alloy electrode (502,602). The device also includes an active region (510,610) sandwiched between the electrode and the alloy electrode. The alloy electrode forms dopants in a sub-region of the active region adjacent to the alloy electrode. The active region can be operated by selectively positioning the dopants within the active region to control the flow of charge carriers between the electrode and the alloy electrode.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: November 4, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Nathaniel J. Quitoriano, Douglas Ohlberg, Philip J. Kuekes, Jianhua Yang
  • Patent number: 8872273
    Abstract: An integrated circuit containing a gate controlled voltage divider having an upper resistor on field oxide in series with a transistor switch in series with a lower resistor. A resistor drift layer is disposed under the upper resistor, and the transistor switch includes a switch drift layer adjacent to the resistor drift layer, separated by a region which prevents breakdown between the drift layers. The switch drift layer provides an extended drain or collector for the transistor switch. A sense terminal of the voltage divider is coupled to a source or emitter node of the transistor and to the lower resistor. An input terminal is coupled to the upper resistor and the resistor drift layer. A process of forming the integrated circuit containing the gate controlled voltage divider.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: October 28, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Hideaki Kawahara, Marie Denison, Sameer Pendharkar, Philip L. Hower, John Lin, Robert A. Neidorff
  • Patent number: 8871603
    Abstract: The invention relates to a semiconductor device and a method of manufacturing an electronic device. A first conductive layer (first metal interconnect layer) is deposited. There is an insulating layer (first intermetal dielectric) layer deposited. A resistive layer is deposited on top of the insulating layer and structured in order to serve as a thin film resistor. A second insulating layer (second intermetal dielectric) is then deposited on top of the resistive layer. A first opening is etched into the insulating layers (first and second intermetal dielectric) down to the first conductive layer. A second opening is etched into the insulating layers (first and second intermetal dielectrics) down to the first conductive layer. A cross-sectional plane of the second opening is arranged such that it at least partially overlaps the resistive layer of the thin film resistor in a first direction.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: October 28, 2014
    Assignees: Texas Instruments Deutschland GmbH, Texas Instruments Incorporated
    Inventors: Christoph Andreas Othmar Dirnecker, Leif Christian Olsen
  • Publication number: 20140312878
    Abstract: Indexing a plurality of die obtainable from a material wafer comprising a plurality of stacked material layers. Each die is obtained in a respective position of the wafer. A manufacturing stage comprises at least two steps for treating a respective superficial portion of the material wafer that corresponds to a subset of said plurality of dies using the at least one lithographic mask through the exposition to the proper radiation in temporal succession. The method may include providing a die index on each die which is indicative of the position of the respective die by forming an external index indicative of the position of the superficial portion of the material wafer corresponding to the subset of the plurality of dies including said die and may comprise a plurality of electronic components electrically coupled to each other by means of a respective common control line.
    Type: Application
    Filed: July 2, 2014
    Publication date: October 23, 2014
    Inventors: Daniele Alfredo BRAMBILLA, Fausto REDIGOLO
  • Patent number: 8866117
    Abstract: A diode layer includes a first impurity semiconductor layer that includes a first impurity acting as an acceptor and a second impurity semiconductor layer that includes a second impurity acting as a donor. One end of a first electrode layer contacts the diode layer. One end of a polysilicon layer contacts the other end of the first electrode layer. One end of a variable resistance layer contacts the other end of the polysilicon layer and is able to change a resistance value. A second electrode layer contacts the other end of the variable resistance layer. At least one of a first area and a second area contains a third impurity. The first area includes one end of the polysilicon layer, the second area includes the other end of the polysilicon layer. The third impurity differs from the first impurity and the second impurity.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: October 21, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Katsuyuki Sekine, Yasuhiro Nojiri, Hiroyuki Fukumizu
  • Patent number: 8860182
    Abstract: A resistance random access memory device according to an embodiment includes a first electrode, a second electrode and a variable resistance film provided between the first electrode and the second electrode. The second electrode includes material selected from the group consisting of silver, copper, zinc, gold, titanium, nickel, cobalt, tantalum, aluminum, and bismuth, alloys thereof, and silicides thereof. The variable resistance film includes silicon oxynitride. The variable resistance film includes a first resistance change layer having a first nitrogen concentration and a second resistance change layer having a second nitrogen concentration lower than the first nitrogen concentration.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: October 14, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Riichiro Takaishi, Hidenori Miyagawa, Shosuke Fujii
  • Patent number: 8860181
    Abstract: A thin film resistor structure includes a substrate, a flat bottom ILD (inter layer dielectric) disposed on the substrate, a plurality of first contacts disposed in the bottom ILD, and each top surface of the first contacts is on the same level as a top surface of the bottom ILD; a flat top ILD disposed on the bottom ILD, a plurality of second contacts disposed in the top ILD, and each top surface of the second contacts is on the same level as a top surface of the top ILD, and a thin film resistor disposed between the bottom ILD and the top ILD.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: October 14, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Ming-Te Wei, Po-Chao Tsao, Chen-Hua Tsai, Chien-Yang Chen, Chia-Jui Liang, Ming-Tsung Chen
  • Patent number: 8853045
    Abstract: A precision low capacitance resistor is formed, e.g., in a bulk substrate. An embodiment includes forming a source/drain region on a substrate, patterning a portion of the source/drain region to form segments, etching the segments to substantially separate an upper section of each segment from a lower section of each segment, and filling the space between the segments with an insulating material. The resulting structure maintains electrical connection between the segments at end pads, but separates the resistor segments from the bottom substrate, thereby avoiding capacitive coupling with the substrate.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: October 7, 2014
    Assignee: GlobalFoundries, Inc.
    Inventor: Steven R. Soss
  • Patent number: 8841745
    Abstract: A resistance-change memory device using stress engineering is described, including a first layer including a first conductive electrode, a second layer above the first layer including a resistive-switching element, a third layer above the second layer including a second conductive electrode, where a first stress is created in the switching element at a first interface between the first layer and the second layer upon heating the memory element, and where a second stress is created in the switching element at a second interface between the second layer and the third layer upon the heating. A stress gradient equal to a difference between the first stress and the second stress has an absolute value greater than 50 MPa, and a reset voltage of the memory element has a polarity relative to a common electrical potential that has a sign opposite the stress gradient when applied to the first conductive electrode.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: September 23, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Michael Miller, Prashant Phatak, Tony Chiang
  • Publication number: 20140264753
    Abstract: A plurality of openings is formed in a dielectric layer formed on a semiconductor substrate. The plurality of openings comprises a first opening extending to the semiconductor substrate, a second opening extending to a first depth that is substantially less than a thickness of the dielectric layer, and a third opening extending to a second depth that is substantially greater than the first depth. A multi-layer gate electrode is formed in the first opening. A thin resistor structure is formed in the second opening, and a connection structure is formed in the third opening, by filling the second and third openings substantially simultaneously with a resistor metal.
    Type: Application
    Filed: July 5, 2013
    Publication date: September 18, 2014
    Inventors: Hsiu-Jung Yen, Jen-Pan Wang, Yu-Hong Pan, Chih-Fu Chang
  • Publication number: 20140264752
    Abstract: Various embodiments include dual three-dimensional (3D) resistor structures and methods of forming such structures. In some embodiments, a dual 3D resistor structure includes: a dielectric layer having a first set of trenches extending in a first direction through the dielectric layer; and a second set of trenches overlayed on the first set of trenches, the second set of trenches extending in a second direction through the dielectric layer, the second set of trenches and the first set of trenches forming at least one dual 3D trench; and a resistor material overlying the dielectric layer and at least partially filling the at least one dual 3D trench along the first direction and the second direction.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James P. Di Sarro, Robert J. Gauthier, JR., Tom C. Lee, Junjun Li, Souvick Mitra, Christopher S. Putnam
  • Patent number: 8823137
    Abstract: A semiconductor device includes first and second wells formed side by side as impurity diffusion regions of a first conductive type in a semiconductor substrate, below an intermediate dielectric film that covers a major surface of the substrate. A conductive layer formed above the intermediate dielectric film is held at a potential. A first resistive layer is formed on the intermediate dielectric film and is electrically connected to the first well. A second resistive layer is formed on the intermediate dielectric film and is electrically connected to the second well. The first resistive layer and first well form a first resistance element. The second resistive layer and second well form a second resistance element.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: September 2, 2014
    Assignee: LAPIS Semiconductor Co., Ltd.
    Inventors: Hidekazu Kikuchi, Hisao Ohtake, Danya Sugai