Field Effect Device In Non-single Crystal, Or Recrystallized, Semiconductor Material Patents (Class 257/66)
  • Patent number: 9240481
    Abstract: A semiconductor device can include an active region having a fin portion providing a channel region between opposing source and drain regions. A gate electrode can cross over the channel region between the opposing source and drain regions and first and second strain inducing structures can be on opposing sides of the gate electrode and can be configured to induce strain on the channel region, where each of the first and second strain inducing structures including a respective facing side having a pair of {111} crystallographically oriented facets.
    Type: Grant
    Filed: January 14, 2015
    Date of Patent: January 19, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Shigenobu Maeda, Hidenobu Fukutome, Young-Gun Ko, Joo-Hyun Jeong
  • Patent number: 9236490
    Abstract: A transistor including an oxide semiconductor film, in which the threshold voltage is prevented from being a negative value, is provided. A high quality semiconductor device having the transistor including an oxide semiconductor film is provided. A transistor includes an oxide semiconductor film having first to third regions. The top surface of the oxide semiconductor film in the first region is in contact with a source electrode or a drain electrode. The top surface of the oxide semiconductor film in the second region is in contact with a protective insulating film. The thickness of the second region is substantially uniform and smaller than the maximum thickness of the first region. The top surface and a side surface of the oxide semiconductor film in the third region are in contact with the protective insulating film.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: January 12, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Daisuke Matsubayashi, Keisuke Murayama
  • Patent number: 9230965
    Abstract: Methods of operating semiconductor memory devices with floating body transistors, using a silicon controlled rectifier principle are provided, as are semiconductor memory devices for performing such operations.
    Type: Grant
    Filed: July 28, 2014
    Date of Patent: January 5, 2016
    Assignee: Zeno Semiconductor, Inc.
    Inventor: Yuniarto Widjaja
  • Patent number: 9223124
    Abstract: A system is disclosed for measuring the crystallization of crystalline-amorphous mixtures. The system includes a sample holder. and a heating apparatus to melt a ink composition and to keep the melted ink composition at a first specified temperature for a first period of time. The system includes a cooling apparatus to receive the melted ink composition, to cool the melted ink composition and to maintain the cooled ink composition at a second specified temperature. The system includes a microscope and a video recording device to capture images of the cooled ink composition for a second period of time A video processing computer includes a memory, a processor and software instructions and the software instructions causes the computer to extract crystallization parameters about the cooled ink composition from the captured images. The crystallization parameters identify fast solidifying crystalline inks that have a short time duration from onset of crystallization until crystallization.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: December 29, 2015
    Assignee: XEROX CORPORATION
    Inventors: Gabriel Iftime, Jennifer L. Belelie, Peter G. Odell, Paul S. Bonino, Joanne L. Lee, Naveen Chopra
  • Patent number: 9219065
    Abstract: A method of fabricating a circuit comprising an nMOSFET includes providing a substrate, depositing a strain-inducing material comprising germanium over the substrate, and integrating a pMOSFET on the substrate, the pMOSFET comprising a strained channel having a surface roughness of less than 1 nm. The strain-inducing material is proximate to and in contact with the pMOSFET channel, the strain in the pMOSFET channel is induced by the strain-inducing material, and a source and a drain of the pMOSFET are at least partially formed in the strain-inducing material.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: December 22, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Eugene A. Fitzgerald, Nicole Gerrish
  • Patent number: 9213792
    Abstract: A first gate level feature forms gate electrodes of a first transistor of a first transistor type and a first transistor of a second transistor type. A second gate level feature forms a gate electrode of a second transistor of the first transistor type. A third gate level feature forms a gate electrode of a second transistor of the second transistor type. The gate electrodes of the second transistors of the first and second transistor types are positioned on opposite sides of a gate electrode track along which the gate electrodes of the first transistors of the first and second transistor types are positioned. The gate electrodes of the second transistors of the first and second transistor types are electrically connected to each other through an electrical connection that includes respective gate contacts and one or more conductive interconnect structures.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: December 15, 2015
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 9202821
    Abstract: This disclosure provides systems, methods and apparatus for forming electromechanical systems (EMS) displays where the area of a substrate occupied by a pixel circuit can be reduced if portions of the pixel circuit can be built in three dimensions. In some aspects, certain EMS displays can incorporate structures that are substantially normal to the surface of a substrate. Incorporating circuit components, such as transistors, into such structures, can reduce the area they occupy within the plane of the substrate. In some aspects, the components of a transistor can be fabricated directly into a MEMS anchor that supports a light modulator or a portion of an actuator over the substrate. In some other aspects, the transistor can be fabricated on one or more sidewalls of any MEMS structure.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: December 1, 2015
    Assignee: Pixtronix, Inc.
    Inventors: Patrick F. Brinkley, Wilhelmus A. De Groot, Jasper L. Steyn, Elif Selin Mungan
  • Patent number: 9196739
    Abstract: A transistor is provided in which the top surface portion of an oxide semiconductor film is provided with a metal oxide film containing a constituent similar to that of the oxide semiconductor film, and an insulating film containing a different constituent from the metal oxide film and the oxide semiconductor film is formed in contact with a surface of the metal oxide film, which is opposite to the surface in contact with the oxide semiconductor film. In addition, the oxide semiconductor film used for the active layer of the transistor is an oxide semiconductor film highly purified to be electrically i-type (intrinsic) through heat treatment in which impurities such as hydrogen, moisture, hydroxyl, and hydride are removed from the oxide semiconductor and oxygen which is one of main component materials of the oxide semiconductor is supplied and is also reduced in a step of removing the impurities.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: November 24, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 9196624
    Abstract: Methods and systems of fabricating a wordline protection structure are described. As described, the wordline protection structure includes a polysilicon structure formed adjacent to a memory core region. The polysilicon structure includes first doped region positioned on a core side of the polysilicon structure and a second doped region positioned on a spine side of the polysilicon structure. An un-doped region positioned between the first and second doped regions. A conductive layer is formed on top of the polysilicon structure and arranged so that it does not contact the un-doped region at either the transition between the first doped region and the un-doped region or the second doped region and un-doped region.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: November 24, 2015
    Assignee: CYPRESS SEMICONDUCTOR CORPORATION
    Inventors: Bradley Marc Davis, Mark W. Randolph, Sung-Yong Chung, Hidehiko Shiraiwa
  • Patent number: 9196583
    Abstract: Semiconductor interconnects and methods for making semiconductor interconnects. An interconnect may include a first via of a first conductive material between a first conductive interconnect layer and a first middle of line (MOL) interconnect layer. The first MOL interconnect layer is on a first level. The first via is fabricated with a single damascene process. Such a semiconductor interconnect also includes a second via of a second conductive material between the first conductive interconnect layer and a second MOL interconnect layer. The second MOL interconnect layer is on a second level. The second via is fabricated with a dual damascene process. The first conductive material is different than the second conductive material.
    Type: Grant
    Filed: May 9, 2014
    Date of Patent: November 24, 2015
    Assignee: QUALCOMM INCORPORATED
    Inventors: John Jianhong Zhu, Jeffrey Junhao Xu, Stanley Seungchul Song, Kern Rim, Zhongze Wang
  • Patent number: 9196735
    Abstract: The present invention discloses a thin film transistor and a method for manufacturing the same, an array substrate and a display device. The performance of the thin film transistor can be improved and thereby the image quality can be improved by an increase in the width of the conducting area of a thin film transistor without change of the capacitance of the source electrode. The thin film transistor comprises a substrate, a gate electrode, a source electrode, at least two drain electrodes, a semiconductor layer, a gate electrode protection layer located between the gate electrode and the semiconductor layer and an etch stopping layer located between the semiconductor layer and the source electrode with the drain electrode, wherein the source electrode and the drain electrodes are respectively connected with the semiconductor layer by a via hole.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: November 24, 2015
    Assignees: BOE TECHNOLOGY GROUP CO., LTD., HEFEI BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Haipeng Yang, Yong Jun Yoon, Zhizhong Tu, Jai Kwang Kim
  • Patent number: 9184272
    Abstract: A compound semiconductor device includes: a compound semiconductor layer; a protective insulating film that covers a top of the compound semiconductor layer; and a gate electrode formed on the protective insulating film, wherein the protective insulating film has a first trench and a second trench which is formed side by side with the first trench and in which the protective insulating film remains with only a predetermined thickness on the compound semiconductor layer, and wherein the gate electrode fills the first trench, and one end of the gate electrode is away from the first trench and located at least in the second trench.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: November 10, 2015
    Assignee: FUJITSU LIMITED
    Inventors: Kozo Makiyama, Naoya Okamoto, Toshihide Kikkawa
  • Patent number: 9166097
    Abstract: An embodiment of the invention provides a thin film transistor substrate includes: a substrate; a plurality of transistors on the substrate, wherein each of the transistors includes: a light-blocking layer on the substrate; an active layer on the light-blocking layer; a gate insulating layer on the substrate and covering the active layer; a gate electrode on the gate insulating layer and over the active layer; a source electrode on the substrate and electrically connected to the active layer; and a drain electrode on the substrate and electrically connected to the active layer.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: October 20, 2015
    Assignee: INNOLUX CORPORATION
    Inventor: Kuan-Feng Lee
  • Patent number: 9165926
    Abstract: A chip includes a semiconductor substrate, a well region in the semiconductor substrate, and a Dynamic Threshold Metal-Oxide Semiconductor (DTMOS) transistor formed at a front side of the semiconductor substrate. The DTMOS transistor includes a gate electrode, and a source/drain region adjacent to the gate electrode. The source/drain region is disposed in the well region. A well pickup region is in the well region, and the well pickup region is at a back side of the semiconductor substrate. The well pickup region is electrically connected to the gate electrode.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: October 20, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Jam-Wem Lee
  • Patent number: 9166055
    Abstract: A transistor including an oxide semiconductor layer and having electric characteristics required depending on an intended use, and a semiconductor device including the transistor are provided. In a transistor in which a semiconductor layer, a source electrode layer and a drain electrode layer, a gate insulating film, and a gate electrode layer are stacked in this order over an oxide insulating film, an oxide semiconductor stack composed of at least two oxide semiconductor layers having different energy gaps is used as the semiconductor layer. Oxygen and/or a dopant may be introduced into the oxide semiconductor stack.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: October 20, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Tatsuya Honda
  • Patent number: 9153689
    Abstract: A semiconductor device (10), comprising a first semiconductor portion (32) having a first end (34), a second end (36), and a slit portion (30), wherein the width of the slit portion (30) is less than the width of at least one of the first end (34) and the second end (36); a second portion (38) that is a different material than the first semiconductor portion (32), a third portion (40) that is a different material than the first semiconductor portion (32), wherein the second (38) and third (40) portions are on opposite sides of the slit portion (30), and at least three terminals selected from a group consisting of a first terminal (12) connected to the first end (34), a second terminal (14) connected to the second end (36), a third terminal (16) connected to the second portion (38), and a fourth terminal (17) connected to the third portion (40).
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: October 6, 2015
    Assignee: Carnegie Mellon University
    Inventor: Wojciech P. Maly
  • Patent number: 9147803
    Abstract: Engineered substrates having epitaxial formation structures with enhanced shear strength and associated systems and methods are disclosed herein. In several embodiments, for example, an engineered substrate can be manufactured by forming a shear strength enhancement material at a front surface of a donor substrate and implanting ions a depth into the donor substrate through the shear strength enhancement material. The ion implantation can form a doped portion in the donor substrate that defines an epitaxial formation structure. The method can further include transferring the epitaxial formation structure from the donor substrate to a front surface of a handle substrate. The shear strength enhancement material can be positioned between the epitaxial formation structure and the front surface of the handle substrate and bridge defects in the front surface of the handle substrate.
    Type: Grant
    Filed: January 2, 2013
    Date of Patent: September 29, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Belford T. Coursey, F. Daniel Gealy, George E. Beck
  • Patent number: 9147766
    Abstract: A method for forming a semiconductor device having a fin-type channel is provided. The method may include the following operations: forming a first buffer layer over a substrate; forming a first dielectric layer over the first buffer layer; patterning the first dielectric layer over the first buffer layer; forming a barrier layer over the first buffer layer; forming a second dielectric layer over the barrier layer; patterning the second dielectric layer over the barrier layer; forming a channel layer over the barrier layer; and patterning the second dielectric layer, such that at least a portion of the channel layer protrudes to form the fin-type channel.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: September 29, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chien-Hsun Wang, Chun-Hsiung Lin, Mao-Lin Huang
  • Patent number: 9136355
    Abstract: Embodiments described herein provide amorphous silicon thin-film transistors (a-Si TFTs) and methods for forming a-Si TFTs. A substrate is provided. A gate electrode is formed above the substrate. An a-Si channel layer is formed above the gate electrode. A contact layer is formed above the a-Si channel layer. The contact layer includes titanium, zinc, arsenic, or a combination thereof. A source electrode and a drain electrode are formed above the contact layer.
    Type: Grant
    Filed: December 3, 2013
    Date of Patent: September 15, 2015
    Assignee: Intermolecular, Inc.
    Inventor: Khaled Ahmed
  • Patent number: 9129800
    Abstract: The invention relates to a method for manufacturing a semiconductor on insulator type substrate for radio frequency applications, comprising the following steps in sequence: (a) provision of a silicon substrate with an electrical resistivity of more than 500 Ohm.cm, (b) formation of a polycrystalline silicon layer on the substrate, the method comprising a step between steps a) and b) to form a dielectric material layer, different from a native oxide layer, on the substrate, between 0.5 and 10 nm thick.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: September 8, 2015
    Assignees: Soitec, Commissariat A L'Energie Atomique et aux Energies Alternatives
    Inventors: Frédéric Allibert, Julie Widiez
  • Patent number: 9123673
    Abstract: Disclosed herein is a method of processing a device, comprising providing a substrate having a buffer layer disposed on a back side and forming an outer protection layer over the back side of the buffer layer, forming a thermal layer on the back side of the outer protection layer and heating the substrate through the thermal layer and the back side of the outer protective layer. A back side protection layer may be formed on the back side of the buffer layer. The thermal layer has a thermal emissivity coefficient of about 0.7 or greater and a thickness greater than a roughness of the back side of the outer protection layer. The back side protection layer is an oxide with a thickness between about 20 angstroms and about 50 angstroms. The outer protection layer is a nitride with a thickness between about 50 angstroms and about 300 angstroms.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: September 1, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Chien Li, Wei-Chih Lin, Song-Bor Lee, Ching-Kun Huang
  • Patent number: 9105558
    Abstract: A silicon carbide semiconductor device includes: a semiconductor substrate made of silicon carbide single crystal and having a principal surface and a backside; and an ohmic electrode contacting one of the principal surface and the backside of the semiconductor substrate in an ohmic manner. A boundary between the ohmic electrode and the one of the principal surface and the backside of the semiconductor substrate is terminated with an element, which has a Pauling electronegativity larger than silicon and a binding energy with silicon larger than a binding energy of Si—H.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: August 11, 2015
    Assignee: DENSO CORPORATION
    Inventors: Jun Kawai, Kazuhiko Sugiura
  • Patent number: 9093341
    Abstract: An imaging apparatus includes: a sensor substrate, wherein the sensor substrate has plural photoelectric conversion devices and driving devices thereof formed on a substrate, signal lines for reading imaging signals obtained in the photoelectric conversion devices through the driving devices and relay electrodes electrically connecting between the driving devices and the signal lines to relay between them.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: July 28, 2015
    Assignee: Japan Display Inc.
    Inventors: Shinya Ibuki, Takayuki Kato
  • Patent number: 9093540
    Abstract: The present invention relates to a thin film transistor, a thin film transistor array panel, and a manufacturing method thereof. A thin film transistor according to an exemplary embodiments of the present invention includes: a gate electrode; a gate insulating layer positioned on or under the gate electrode; a channel region overlapping the gate electrode, the gate insulating layer interposed between the channel region and the gate electrode; and a source region and a drain region, facing each other with respect to the channel region, positioned in the same layer as the channel region, and connected to the channel region, wherein the channel region, the source region, and the drain region include an oxide semiconductor, and wherein a carrier concentration of the source region and the drain region is larger than a carrier concentration of the channel region.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: July 28, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Je Hun Lee, Jun Ho Song, Yun Jong Yeo, Hwa Dong Jung
  • Patent number: 9082768
    Abstract: It is an object of the present invention to prevent an influence of voltage drop due to wiring resistance, trouble in writing of a signal into a pixel and trouble in gray scales, and provide a display device with higher definition, represented by an EL display device and a liquid crystal display device. In the present invention, a wiring including Cu is provided as an electrode or a wiring used for the display device represented by the EL display device and the liquid crystal display device. Besides, sputtering is performed with a mask to form the wiring including Ca. With such structure, it is possible to reduce the voltage drop and a deadened signal.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: July 14, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Mitsuaki Osame
  • Patent number: 9070773
    Abstract: A semiconductor device and a method for preparing the same that can solve crack of a semiconductor film, capacitance electrodes and the like due to stress when forming a source electrode and a drain electrode in a semiconductor device having a thin film transistor and a holding capacitance with three or more capacitance electrodes is provided. Before forming the source electrode and the drain electrode, a crystalline silicon film for relaxing the stress is formed, then a contact hole connecting to the semiconductor film of the thin film transistor is opened, and a metal film to be the source electrode and the drain electrode is formed.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: June 30, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Akira Ishikawa
  • Patent number: 9063602
    Abstract: A display device includes a display panel including a plurality of pixels, a sensing electrode generating a sensing signal in response to an external stimulus, a sensing line connected to the sensing electrode, a sensing driver connected to the sensing line, receiving the sensing signal from the sensing line and storing the sensing signal as a specific register value, and outputting a position pulse according to the specific register value, and a signal controller determining a position of the external stimulus based on the position pulse and a predetermined clock signal.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: June 23, 2015
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventor: Seung-hwan Moon
  • Patent number: 9054266
    Abstract: An IR sensing transistor according to an exemplary embodiment of the present invention includes: a light blocking layer formed on a substrate; a gate insulating layer formed on the light blocking layer; a semiconductor formed on the gate insulating layer; a pair of ohmic contact members formed on the semiconductor; a source electrode and a drain electrode formed on respective ones of the ohmic contact members; a passivation layer formed on the source electrode and the drain electrode; and a gate electrode formed on the passivation layer, wherein substantially all of the gate insulating layer lies on the light blocking layer.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: June 9, 2015
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Suk Won Jung, Byeong Hoon Cho, Sung Hoon Yang, Woong Kwon Kim, Sang Youn Han, Dae Cheol Kim, Ki-Hun Jeong, Kyung-Sook Jeon, Seung Mi Seo, Jung-Suk Bang, Kun-Wook Han
  • Publication number: 20150144949
    Abstract: A manufacturing method of a semiconductor device having a stacked structure in which a lower layer is exposed is provided without increasing the number of masks. A source electrode layer and a drain electrode layer are formed by forming a conductive film to have a two-layer structure, forming an etching mask thereover, etching the conductive film using the etching mask, and performing side-etching on an upper layer of the conductive film in a state where the etching mask is left so that part of a lower layer is exposed. The thus formed source and drain electrode layers and a pixel electrode layer are connected in a portion of the exposed lower layer. In the conductive film, the lower layer and the upper layer may be a Ti layer and an Al layer, respectively. The plurality of openings may be provided in the etching mask.
    Type: Application
    Filed: January 28, 2015
    Publication date: May 28, 2015
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hidekazu MIYAIRI, Takafumi MIZOGUCHI
  • Patent number: 9041202
    Abstract: An object is to provide a semiconductor device with high aperture ratio or a manufacturing method thereof. Another object is to provide semiconductor device with low power consumption or a manufacturing method thereof. A light-transmitting conductive layer which functions as a gate electrode, a gate insulating film formed over the light-transmitting conductive layer, a semiconductor layer formed over the light-transmitting conductive layer which functions as the gate electrode with the gate insulating film interposed therebetween, and a light-transmitting conductive layer which is electrically connected to the semiconductor layer and functions as source and drain electrodes are included.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: May 26, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hajime Kimura
  • Patent number: 9040980
    Abstract: It is an object to provide a semiconductor device for high power application which has good properties. A means for solving the above-described problem is to form a transistor described below. The transistor includes a source electrode layer; an oxide semiconductor layer in contact with the source electrode layer; a drain electrode layer in contact with the oxide semiconductor layer; a gate electrode layer part of which overlaps with the source electrode layer, the drain electrode layer, and the oxide semiconductor layer; and a gate insulating layer in contact with an entire surface of the gate electrode layer.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: May 26, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Masami Endo
  • Patent number: 9040999
    Abstract: An organic light emitting display device includes an active layer of a transistor disposed on a substrate, a gate electrode disposed on the active layer and on a first insulation layer, a second insulation layer which is disposed on the gate electrode and exposes a source area and a drain area of the active layer, a drain electrode which is disposed on the second insulation layer and is connected to an exposed area of the drain area, a third insulation layer on the drain electrode, and a cathode electrode on the third insulation layer, where the cathode electrode penetrates the first insulation layer, the second insulation layer and the third insulation layer, and the cathode electrode is connected to an exposed area of the source area.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: May 26, 2015
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Yul-Kyu Lee, Kyu-Sik Cho, Sun Park, Ji-Hoon Song
  • Patent number: 9040964
    Abstract: An apparatus and a method of manufacturing a thin film semiconductor device having a thin film transistor with improved electrical properties in organic light-emitting display apparatus are described.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: May 26, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventor: Ki-Yeol Byun
  • Publication number: 20150137127
    Abstract: A display substrate includes a gate line disposed on a base substrate and extending in a direction. A data line crosses the gate line. A thin film transistor comprises a gate electrode, a semiconductor pattern, a source electrode, and a drain electrode. The thin film transistor is connected to the gate line and the data line. A pixel electrode is connected to the thin film transistor. A light blocking pattern overlaps the semiconductor pattern. The light blocking pattern includes a haze-processed material of substantially the same material as the pixel electrode.
    Type: Application
    Filed: April 10, 2014
    Publication date: May 21, 2015
    Applicant: SAMSUNG DISPLAY CO., LTD.
    Inventors: HYUN-KI HWANG, Sung-Man Kim, Young-Jin Park, Hwa-Yeul Oh, Young-Je Cho, Soo-Jung Chae
  • Patent number: 9035295
    Abstract: A semiconductor device (100A) according to the present invention includes an oxide semiconductor layer (31a), first and second source electrodes (52a1 and 52a2), and first and second drain electrodes (53a1 and 53a2). The second source electrode (52a2) is formed to be in contact with a top surface of the first source electrode and inner to the first source electrode (52a1). The second drain electrode (53a2) is formed to be in contact with a top surface of the first drain electrode (53a1) and inner to the first drain electrode (53a1). The oxide semiconductor layer (31a) is formed to be in contact with the top surface of the first source electrode (52a1) and the top surface of the first drain electrode (53a1).
    Type: Grant
    Filed: April 5, 2011
    Date of Patent: May 19, 2015
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Okifumi Nakagawa, Yoshifumi Ohta, Yoshimasa Chikama, Tsuyoshi Inoue, Masahiko Suzuki, Michiko Takei, Yoshiyuki Harumoto, Yoshinobu Miyamoto, Hinae Mizuno
  • Publication number: 20150129854
    Abstract: A thin-film transistor, method of manufacturing the same, and organic light-emitting diode (OLED) display including the same are disclosed. In one aspect, the thin-film transistor includes an active layer including a channel region, a source region, and a drain region, wherein the active layer has a top surface. The transistor also includes a gate insulating layer formed over the active layer and a gate metal layer formed over the gate insulating layer and having a bottom surface. The area of the bottom surface of the gate metal layer is less than the area of the top surface of the active layer and the bottom surface of the gate metal layer overlaps the top surface of the active layer.
    Type: Application
    Filed: October 29, 2014
    Publication date: May 14, 2015
    Inventor: Ki Yeol BYUN
  • Publication number: 20150129878
    Abstract: A semiconductor device includes a peripheral circuit region on a substrate, a polysilicon layer on the peripheral circuit region, a memory cell array region on the polysilicon layer and overlapping the peripheral circuit region, the peripheral circuit region being under the memory cell array region, an upper interconnection layer on the memory cell array region, and a vertical contact through the memory cell array region and the polysilicon layer, the vertical contact connecting the upper interconnection layer to the peripheral circuit region.
    Type: Application
    Filed: November 6, 2014
    Publication date: May 14, 2015
    Inventors: Yoo-cheol SHIN, Young-woo PARK, Jae-duk LEE
  • Patent number: 9029861
    Abstract: Thin film transistors having a high current drive capability and a suitable threshold voltage are provided. The thin film transistor includes a gate electrode, an insulating layer formed on the gate electrode, a semiconductor layer formed on the insulating layer, and source/drain electrodes formed on the semiconductor layer. The semiconductor layer includes a plurality of regions separated from each other in a longitudinal direction of the source/drain electrodes.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: May 12, 2015
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tetsuo Kikuchi, Yoshiharu Kataoka, Shinya Tanaka, Junya Shimada, Chikao Yamasaki
  • Patent number: 9029863
    Abstract: A variation in electrical characteristics, such as a negative shift of the threshold voltage or an increase in S value, of a fin-type transistor including an oxide semiconductor material is prevented. An oxide semiconductor film is sandwiched between a plurality of gate electrodes with an insulating film provided between the oxide semiconductor film and each of the gate electrodes. Specifically, a first gate insulating film is provided to cover a first gate electrode, an oxide semiconductor film is provided to be in contact with the first gate insulating film and extend beyond the first gate electrode, a second gate insulating film is provided to cover at least the oxide semiconductor film, and a second gate electrode is provided to be in contact with part of the second gate insulating film and extend beyond the first gate electrode.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: May 12, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Atsuo Isobe
  • Publication number: 20150123099
    Abstract: A thin film transistor includes a semiconductor pattern on a base substrate, the semiconductor pattern including an input area, an output area, and a channel area between the input area and the output area, a first insulating layer covering the semiconductor pattern, a control electrode on the first insulating layer, the control electrode overlapping the channel area, a second insulating layer covering the control electrode, an input electrode connected to the input area, an output electrode connected to the output area, and a heat discharge electrode on the second insulating layer, the heat discharge electrode being connected to the control electrode.
    Type: Application
    Filed: August 19, 2014
    Publication date: May 7, 2015
    Inventors: Young Jun SHIN, Jeehoon KIM, Sehun PARK, Jaehwan OH, Guanghai KIM, Byoungki KIM, Wonkyu LEE
  • Patent number: 9024316
    Abstract: An electronic device comprises at least one static induction transistor (14; 114; 214) and at least one thin film transistor (16; 116). The static induction transistor (14; 114; 214) has a first channel (14.4; 114.4; 214.4) of a semi conducting material extending between a first main electrode (14.2; 114.2; 214.2) and a second main electrode (14.3; 114.3) through a first and a second insulating layer (11, 13; 111, 113), and has a first control electrode (14.1; 114.1) surrounding the first channel and extending between the first and the second insulating layer. The thin film transistor (16; 116) has a third main electrode (16.2; 116.2) and a fourth main electrode (16.3; 116.3) coupled by a second channel (16.4; 116.4) of a semi conducting material and a second control electrode (16.1; 116.1). At least one of the first and the second insulating layer functions as a dielectric layer between the second control electrode and the second channel.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: May 5, 2015
    Assignee: Creator Technology B.V.
    Inventors: Kevin Michael O'Neill, Petrus Johannes Gerardus van Lieshout
  • Patent number: 9024318
    Abstract: An embodiment of the invention provides a manufacturing method of a thin film transistor substrate including: sequentially forming a gate electrode, a gate insulating layer covering the gate electrode, an active material layer, and a photo-sensitive material layer on a first substrate; performing a photolithography process by using a half tone mask to form a photo-sensitive protective layer which is above the gate electrode and has a first recess and a second recess; etching the active material layer by using the photo-sensitive protective layer as a mask to form an active layer; removing a portion of the photo-sensitive protective layer at bottoms of the first recess and the second recess to expose a first portion and a second portion of the active layer respectively; forming a first electrode connecting to the first portion; and forming a second electrode connecting to the second portion.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: May 5, 2015
    Assignees: Innocom Technology (Shenzhen) Co., Ltd., Innolux Corporation
    Inventor: Kuan-Feng Lee
  • Publication number: 20150115270
    Abstract: An encapsulated sensors and methods of manufacture are disclosed herein. The method includes forming an amorphous or polycrystalline material in contact with a layer of seed material. The method further includes forming an expansion space for the amorphous or polycrystalline material. The method further includes forming an encapsulation structure about the amorphous or polycrystalline material. The method further includes crystallizing the amorphous or polycrystalline material by a thermal anneal process such that the amorphous or polycrystalline material expands within the expansion space.
    Type: Application
    Filed: October 31, 2013
    Publication date: April 30, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John J. ELLIS-MONAGHAN, Jeffrey P. GAMBINO, Mark D. JAFFE, William J. MURPHY, Kirk D. PETERSON, Steven M. SHANK
  • Patent number: 9018630
    Abstract: Provided are a novel heterocyclic compound represented by formula (1), and a field-effect transistor having a semiconductor layer comprising the aforementioned compound. Also provided is a method for producing an intermediate enabling the production of the aforementioned novel heterocyclic compound. (In the formula, R1 and R2 represent a hydrogen atom, a C2-16 alkyl group or an aryl group. However, when R1 each independently represents a C2-16 alkyl group or an aryl group, R2 represents a hydrogen atom or each independently represents an aryl group; and when R1 represents a hydrogen atom, R2 each independently represents an aryl group.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: April 28, 2015
    Assignee: Nippon Kayaku Kabushiki Kaisha
    Inventors: Kazuo Takimiya, Kazuki Niimi, Hirokazu Kuwabara, Yuichi Sadamitsu, Eisei Kanoh
  • Patent number: 9012913
    Abstract: Provided is a fin-type transistor having an oxide semiconductor in a channel formation region in which the channel formation region comprising an oxide semiconductor is three-dimensionally structured and a gate electrode is arranged to extend over the channel formation region. Specifically, the fin-type transistor comprises: an insulator protruding from a substrate plane; an oxide semiconductor film extending beyond the insulator; a gate insulating film over the oxide semiconductor film; and a gate electrode over and extending beyond the oxide semiconductor film. This structure allows the expansion of the width of the channel formation region, which enables the miniaturization and high integration of a semiconductor device having the transistor. Additionally, the extremely small off-state current of the transistor contributes to the formation of a semiconductor device with significantly reduced power consumption.
    Type: Grant
    Filed: January 3, 2013
    Date of Patent: April 21, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kosei Noda, Yuta Endo
  • Patent number: 9012906
    Abstract: A thin film transistor disposed on a substrate is provided. The TFT includes a gate layer, an insulation layer, a carrier transmission layer, a passivation layer, a first source/drain layer, and a second source/drain layer. The gate layer is disposed on the substrate. The insulation layer is disposed on the gate layer. The carrier transmission layer is disposed on the insulation layer. The carrier transmission layer includes an active layer and a mobility enhancement layer. The passivation layer is disposed on the active layer. The first source/drain layer is disposed on the active layer. The second source/drain layer is disposed on the active layer. The mobility enhancement layer includes a first element. The active layer includes a second element. The electronegativity of the first element is smaller than that of the second element to enhance the carrier mobility of the active layer.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: April 21, 2015
    Assignee: E Ink Holdings Inc.
    Inventors: Chia-Chun Yeh, Xue-Hung Tsai, Po-Hsin Lin
  • Publication number: 20150102346
    Abstract: A semiconductor device is provided as follows. A peripheral circuit structure is disposed on a first substrate. A cell array structure is disposed on the peripheral circuit structure. A second substrate is interposed between the peripheral circuit structure and the cell array structure. The cell array structure includes a stacked structure, a through hole and a vertical semiconductor pattern. The stacked structure includes gate electrodes stacked on the second substrate. The through hole penetrates the stacked structure and the second substrate to expose the peripheral circuit structure. The vertical semiconductor pattern is disposed on the peripheral circuit structure, filling the through hole.
    Type: Application
    Filed: September 30, 2014
    Publication date: April 16, 2015
    Inventors: YOOCHEOL SHIN, JAEGOO LEE, Young-Jin KWON, JINTAEK PARK
  • Publication number: 20150102347
    Abstract: A semiconductor element having high mobility, which includes an oxide semiconductor layer having crystallinity, is provided. The oxide semiconductor layer includes a stacked-layer structure of a first oxide semiconductor film and a second oxide semiconductor film having a wider band gap than the first oxide semiconductor film, which is in contact with the first oxide semiconductor film. Thus, a channel region is formed in part of the first oxide semiconductor film (that is, in an oxide semiconductor film having a smaller band gap) which is in the vicinity of an interface with the second oxide semiconductor film. Further, dangling bonds in the first oxide semiconductor film and the second oxide semiconductor film are bonded to each other at the interface therebetween. Accordingly, a decrease in mobility resulting from an electron trap or the like due to dangling bonds can be reduced in the channel region.
    Type: Application
    Filed: December 18, 2014
    Publication date: April 16, 2015
    Inventor: Junichi KOEZUKA
  • Publication number: 20150102317
    Abstract: A thin film transistor substrate may include a gate electrode on a base substrate, a gate insulation layer covering the gate electrode on the base substrate, an active pattern on the gate insulation layer, an etch-stop layer pattern partially exposing the active pattern, a source electrode and a drain electrode in contact with a portion of the exposed active pattern, and an inorganic barrier layer on the source electrode, the drain electrode, and the etch-stop layer pattern. The active pattern may be superimposed over the gate electrode. The source electrode and the drain electrode may be superimposed over both ends of the gate electrode. The inorganic barrier layer may be in contact with a remaining portion of the exposed active pattern.
    Type: Application
    Filed: August 18, 2014
    Publication date: April 16, 2015
    Inventor: Jae-Sik KIM
  • Publication number: 20150102345
    Abstract: An active device includes a gate, a gate insulation layer, a channel layer, a first passivation layer, a second passivation layer, a source and a drain. The gate insulation layer is disposed on the substrate and covers the gate. The channel layer is disposed on the gate insulation layer and has a semiconductor section disposed corresponding to the gate and a conductive section located around the semiconductor section. The first passivation layer is disposed on the channel layer and covers the semiconductor section. The second passivation layer is disposed on and covers the first passivation layer. The source and the drain are disposed on the gate insulation layer, and extended along peripheries of the conductive section, the first and the second passivation layers to be disposed on the second passivation layer. A portion of the second passivation layer is exposed between the source and the drain.
    Type: Application
    Filed: March 14, 2014
    Publication date: April 16, 2015
    Applicant: E Ink Holdings Inc.
    Inventors: Chih-Hsiang Yang, Ted-Hong Shinn, Wei-Tsung Chen, Hsing-Yi Wu