Using A Coherent Energy Beam, E.g., Laser Or Electron Beam (epo) Patents (Class 257/E21.134)
  • Patent number: 8674359
    Abstract: A thin film transistor (TFT), an array substrate including the TFT, and methods of manufacturing the TFT and the array substrate. The TFT includes an active layer, and a metal member that corresponds to a portion of each of the source region and the drain region of the active layer, and is arranged on the active layer, a portion of the metal member contacts the source and drain regions of the active layer and the source and drain electrodes, and portions of the active layer that corresponds to portions below the metal member of the active layer are not doped.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: March 18, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Dae-Hyun Noh, Sung-Ho Kim
  • Patent number: 8673751
    Abstract: A laser crystallization system and a method of manufacturing a display apparatus using the laser crystallization system are disclosed. In one embodiment, the system includes i) a mother substrate in which first, second, and third display regions and ii) a stage for supporting the mother substrate and moving in first and second directions perpendicular to each other. The embodiment also includes i) a first laser irradiation unit for irradiating a first laser beam having a width greater than or identical to a width of a side of one of the first, second, and third display regions in the first direction and ii) a second laser irradiation unit spaced apart from the first laser irradiation unit and irradiating a second laser beam having a width greater than or identical to the width of the one side in the first direction.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: March 18, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jae-Hwan Oh, Jae-Beom Choi, Won-Kyu Lee, Young-Jin Chang, Seong-Hyun Jin
  • Patent number: 8652893
    Abstract: A semiconductor device and its manufacturing method, wherein the NMOS device is covered by a layer of silicon nitride film having a high ultraviolet light absorption coefficient through PECVD, said silicon nitride film can well absorb ultraviolet light when being subject to the stimulated laser surface anneal so as to achieve a good dehydrogenization effect, and after dehydrogenization, the silicon nitride film will have a high tensile stress; since the silicon nitride film has a high ultraviolet light absorption coefficient, there is no need to heat the substrate, thus avoiding the adverse influences to the device caused by heating the substrate to dehydrogenize, and maintaining the heat budget brought about by the PECVD process.
    Type: Grant
    Filed: November 25, 2011
    Date of Patent: February 18, 2014
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huaxiang Yin, Qiuxia Xu, Dapeng Chen
  • Patent number: 8648360
    Abstract: A light-emitting diode structure includes a base with a recessed portion, a light-emitting chip and a light-transmissive block. The light-emitting chip disposed in the recessed portion of the base and emits a light beam. The light-transmissive block disposed on the base covers the recessed portion and the light-emitting chip, so that the light beam emitted from the light-emitting chip is radiated outwardly via the light-transmissive block. The light-transmissive block is a flat-top multilateral cone including a bottom surface, a top surface, and several side surfaces connected to and located between the bottom surface and the top surface. A slot with a bottom portion is formed on the top surface of the light-transmissive block.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: February 11, 2014
    Assignee: Everlight Electronics Co., Ltd.
    Inventor: Kuan-Yu Chen
  • Patent number: 8629031
    Abstract: It is an object of the present invention to provide a method for manufacturing an SOI substrate having an SOI layer that can be used in practical applications with high yield even when a flexible substrate such as a glass substrate or a plastic substrate is used. Further, it is another object of the present invention to provide a method for manufacturing a thin semiconductor device using such an SOI substrate with high yield. When a single-crystal semiconductor substrate is bonded to a flexible substrate having an insulating surface and the single-crystal semiconductor substrate is separated to manufacture an SOI substrate, one or both of bonding surfaces are activated, and then the flexible substrate having an insulating surface and the single-crystal semiconductor substrate are attached to each other.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: January 14, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yasuhiro Jinbo, Hironobu Shoji, Hideto Ohnuma, Shunpei Yamazaki
  • Patent number: 8629567
    Abstract: A method of manufacture of an integrated circuit packaging system includes: forming an isolated contact having a contact protrusion; forming a die paddle, adjacent to the isolated contact, having a die paddle contour; depositing a contact pad on the contact protrusion; coupling an integrated circuit die to the contact protrusion; molding an encapsulation on the integrated circuit die; and depositing an organic filler on and between the isolated contact and the die paddle, the contact protrusion extended past the organic filler.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: January 14, 2014
    Assignee: Stats Chippac Ltd.
    Inventors: Byung Tai Do, Arnel Senosa Trasporto, Linda Pei Ee Chua
  • Patent number: 8629522
    Abstract: A laser annealing method for executing laser annealing by irradiating a semiconductor film formed on a surface of a substrate with a laser beam, the method including the steps of, generating a linearly polarized rectangular laser beam whose cross section perpendicular to an advancing direction is a rectangle with an electric field directed toward a long-side direction of the rectangle or an elliptically polarized rectangular laser beam having a major axis directed toward a long-side direction, causing the rectangular laser beam to be introduced to the surface of the substrate, and setting a wavelength of the rectangular laser beam to a length which is about a desired size of a crystal grain in a standing wave direction.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: January 14, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Ryusuke Kawakami, Kenichirou Nishida, Norihito Kawaguchi, Miyuki Masaki, Atsushi Yoshinouchi
  • Patent number: 8603896
    Abstract: A method for transferring a monocrystalline semiconductor layer onto a support substrate by implanting species in a donor substrate; bonding the donor substrate to the support substrate; and fracturing the donor substrate to transfer the layer onto the support substrate; wherein a portion of the monocrystalline layer to be transferred is rendered amorphous, without disorganizing the crystal lattice of a second portion of the layer, with the portions being, respectively, a surface portion and a buried portion of the monocrystalline layer; and wherein the amorphous portion is recrystallized at a temperature below 500° C., with the crystal lattice of the second portion serving as a seed for recrystallization.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: December 10, 2013
    Assignee: Soitec
    Inventors: Gweltaz Gaudin, Carlos Mazure
  • Patent number: 8587104
    Abstract: A wiring board includes a stacked body having a plurality of insulating layers and a plurality of wiring layers which are alternately stacked, and a solder-resist layer being formed on one side of the stacked body and covering the wiring layer exposed to the one side of the stacked body. The insulating layer is exposed to the other side of the stacked body. The solder-resist layer is in a transparent or semitransparent light yellow color.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: November 19, 2013
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Fumihisa Miyasaka, Junji Sato
  • Patent number: 8574926
    Abstract: According to one embodiment, a manufacturing method of a magnetic memory includes forming a magnetoresistive element in a cell array section on a semiconductor substrate, forming a dummy element in a peripheral circuit section on the semiconductor substrate, the dummy element having the same stacked structure as the magnetoresistive element and being arranged at the same level as the magnetoresistive element, collectively flattening the magnetoresistive element and the dummy element, applying a laser beam to the dummy element to form the dummy element into a non-magnetic body, and forming an upper electrode on the flattened magnetoresistive element.
    Type: Grant
    Filed: September 18, 2011
    Date of Patent: November 5, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kenji Noma, Hiroshi Watanabe, Shinya Kobayashi
  • Patent number: 8569187
    Abstract: The present invention generally relates to an optical system that is able to reliably deliver a uniform amount of energy across an anneal region contained on a surface of a substrate. The optical system is adapted to deliver, or project, a uniform amount of energy having a desired two-dimensional shape on a desired region on the surface of the substrate. An energy source for the optical system is typically a plurality of lasers, which are combined to form the energy field.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: October 29, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Stephen Moffatt, Douglas E. Holmgren, Samuel C. Howells, Edric Tong, Bruce E. Adams, Jiping Li, Aaron Muir Hunter
  • Patent number: 8569814
    Abstract: The energy distribution in the short-side direction of a rectangular laser beam applied to an amorphous semiconductor film (amorphous silicon film) is uniformized. It is possible to the energy distribution in the short-side direction of the rectangular laser beam by the use of a cylindrical lens array or a light guide and concentrating optical systems or by the use of an optical system including a diffracting optical element. Accordingly, since the effective energy range of a laser beam applied to the amorphous semiconductor film is widened and the transport speed of a substrate can be enhanced as much, it is possible to improve the processing ability of the laser annealing.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: October 29, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kenichiro Nishida, Ryusuke Kawakami, Norihito Kawaguchi, Miyuki Masaki
  • Patent number: 8558291
    Abstract: An apparatus for annealing a substrate includes a substrate stage having a substrate mounting portion configured to mount the substrate; a heat source having a plurality of heaters disposed under the substrate mounting portion, the heaters individually preheating a plurality areas defined laterally in the substrate through a bottom surface of the substrate; and a light source facing a top surface of the substrate, configured to irradiate a pulsed light at a pulse width of about 0.1 ms to about 100 ms on the entire top surface of the substrate.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: October 15, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Takayuki Ito
  • Patent number: 8546805
    Abstract: Systems and methods are disclosed for performing laser annealing in a manner that reduces or minimizes wafer surface temperature variations during the laser annealing process. The systems and methods include annealing the wafer surface with first and second laser beams that represent preheat and anneal laser beams having respective first and second intensities. The preheat laser beam brings the wafer surface temperate close to the annealing temperature and the anneal laser beam brings the wafer surface temperature up to the annealing temperature. The anneal laser beam can have a different wavelength, or the same wavelength but different orientation relative to the wafer surface. Reflectivity maps of the wafer surface at the preheat and anneal wavelengths are measured and used to select first and second intensities that ensure good anneal temperature uniformity as a function of wafer position.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: October 1, 2013
    Assignee: Ultratech, Inc.
    Inventors: Xiaohua Shen, Yun Wang, Xiaoru Wang
  • Patent number: 8530932
    Abstract: A semiconductor fabrication method includes depositing a dummy gate layer onto a substrate, patterning the dummy gate layer, depositing a hardmask layer over the dummy gate layer, patterning the hardmask layer, etching a recess into the substrate, adjacent the dummy gate layer, depositing a semiconductor material into the recess, removing the hardmask layer, depositing replacement spacers onto the dummy gate layer, performing an oxide deposition over the dummy gate layer and replacement spacers, removing the dummy gate and replacement spacers, thereby forming a gate recess in the oxide and depositing a gate stack into the recess.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: September 10, 2013
    Assignee: International Business Machines Corporation
    Inventors: Josephine B. Chang, Michael A. Guillorn, Isaac Lauer, Amlan Majumdar
  • Patent number: 8507331
    Abstract: A method of manufacturing a display device includes forming a buffer layer on a top surface of a substrate, forming an amorphous silicon layer on a top surface of the buffer layer, and forming a polysilicon layer by irradiating the amorphous silicon layer with a laser beam. A plurality of first protrusions are formed on the top surface of the polysilicon layer, and a plurality of second protrusions are formed on a surface of the buffer layer by transferring the shape of the polysilicon layer to the buffer layer. A gate insulator on the buffer layer is then formed in the shape of bumps of the second protrusions.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: August 13, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Min-Chul Shin, Do-Young Kim, Yun-Gyu Lee, Jong-Moo Huh
  • Patent number: 8486812
    Abstract: The present invention relates to a fabrication method for polycrystalline silicon thin that is capable of providing uniform crystallization of polycrystalline silicon thin film by laser using a mask having a mixed structure of laser transmission regions and laser non-transmission regions, wherein the laser transmission regions exist asymmetrically on the basis of a laser scanning directional axis, and the laser transmission regions exist symmetrically on the basis of a certain central axis, and the laser transmission regions are shifted to a certain distance on the basis of another axis parallel to the certain central axis, so that the laser transmission regions and non laser transmission regions are alternately positioned.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: July 16, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Ji-Yong Park, Hye-Hyang Park
  • Patent number: 8470696
    Abstract: A crystallization method using a mask includes providing a substrate having a semiconductor layer; positioning a mask over the substrate, the mask having first, second and third blocks, each block having a periodic pattern including a plurality of transmitting regions and a blocking region, the periodic pattern of the first block having a first position, the periodic pattern of the second block having a second position, the periodic pattern of the third block having a third position, the first, second and third positions being different from each other; and crystallizing the semiconductor layer by irradiating a laser beam through the mask.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: June 25, 2013
    Assignee: LG Display Co., Ltd.
    Inventor: JaeSung You
  • Patent number: 8441085
    Abstract: An electronic apparatus having a substrate with a bottom gate p-channel type thin film transistor; a resist pattern over the substrate; and a light shielding film operative to block light having a wavelength shorter than 260 nm over at least a channel part of said thin film transistor.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: May 14, 2013
    Assignee: Japan Display West Inc.
    Inventors: Koichi Nagasawa, Takashi Yamaguchi, Nobutaka Ozaki, Yasuhiro Kanaya, Hirohisa Takeda, Yasuo Mikami, Yoshifumi Mutoh
  • Patent number: 8435807
    Abstract: A method for manufacturing a laser-active solid having a bonded passive Q-switch is provided. A plane-parallel first wafer plate may be manufactured from a laser-active material. A second plane-parallel wafer plate may be manufactured from a material that is suitable as a passive Q-switch. The first wafer plate and the second wafer plate may be bonded to form a wafer block, which may then be coated on both end faces with a resonator mirror. Subsequently, the wafer block may be separated into multiple passively Q-switched solid state lasers.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: May 7, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Werner Herden, Heiko Ridderbusch
  • Patent number: 8431467
    Abstract: An object to be processed is restrained from warping at the time of laser processing. A modified region M2 is formed within a wafer 11, and fractures a2, b2 extending in directions parallel to the thickness direction of the wafer 11 and tilted with respect to a plane including lines 5 are generated from the modified region M2. A modified region M3 is formed within the wafer 11, and a fracture a3 extending in a direction parallel to the thickness direction of the wafer 11 and tilted with respect to the plane including the lines 5 is generated from the modified region M3 so as to connect with the fracture b2. That is, the fractures a2, a3, b2 are generated so as to be connected together.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: April 30, 2013
    Assignee: Hamamatsu Photonics K.K.
    Inventor: Takeshi Sakamoto
  • Patent number: 8426324
    Abstract: A method for manufacturing a memory element is proposed. A laser beam emitted from a laser oscillator is entered into a deflector, and a laser beam which has passed through the deflector is entered into a diffractive optical element to be diverged into a plurality of laser beams. Then, a photoresist formed over an insulating film is irradiated with the laser beam which is made to diverge into the plurality of laser beams, and the photoresist irradiated with the laser beam is developed so as to selectively etch the insulating film.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: April 23, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Koichiro Tanaka, Hirotada Oishi
  • Patent number: 8420439
    Abstract: A method of producing a radiation-emitting thin film component includes providing a substrate, growing nanorods on the substrate, growing a semiconductor layer sequence with at least one active layer epitaxially on the nanorods, applying a carrier to the semiconductor layer sequence, and detaching the semiconductor layer sequence and the carrier from the substrate by at least partial destruction of the nanorods.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: April 16, 2013
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Hans-Jürgen Lugauer, Klaus Streubel, Martin Strassburg, Reiner Windisch, Karl Engl
  • Patent number: 8421090
    Abstract: A display and a method of manufacturing the same, the display including a substrate main body, a first thin film transistor on the substrate main body, the first thin film transistor including a first gate electrode, the first gate electrode including polycrystalline silicon, a first semiconductor layer on the first gate electrode, first source electrode, and a first drain electrode, and a second thin film transistor on the substrate main body, the second thin film transistor including a second semiconductor layer, the second semiconductor layer including polycrystalline silicon and being on a same plane as the first gate electrode, a second gate electrode on the second semiconductor layer, a second source electrode, and a second drain electrode.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: April 16, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventor: Jong-Hyun Choi
  • Patent number: 8409940
    Abstract: A silicon crystallization method renders it is possible to form alignment key without additional photolithography, and to adjust a substrate to a correct position by sensing a deviation of the substrate when the substrate is loaded. The silicon crystallization method includes aligning the substrate by sensing a fixed substrate with a sensing device, and moving and/or rotating a stage, wherein the sensing device faces toward an edge of the substrate to directly sense the edge of the substrate; forming alignment keys on predetermined portions of a non-display area of the substrate by correspondingly placing a mask for formation of an alignment key above the substrate; and crystallizing an amorphous silicon by correspondingly providing a mask for crystallization above the substrate.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: April 2, 2013
    Assignee: LG Display Co., Ltd.
    Inventors: Yun Ho Jung, Young Joo Kim
  • Patent number: 8409982
    Abstract: A method includes forming a first substrate by (a) applying an electrodepositable dielectric coating onto a conductive surface; (b) curing the dielectric coating; (c) depositing an adhesion layer and a seed layer onto the dielectric coating; (d) applying a layer of a first removable material to the seed layer; (e) forming openings in the first removable material to expose areas of the seed layer; (f) electroplating a first conductive material to the exposed areas of the seed layer; (g) applying a layer of a second removable material; (h) forming openings in the second removable material to expose areas of the first conductive material; (i) plating a second conductive material to the exposed areas of the first conductive material; (j) removing the first and second removable materials; (k) removing unplated portions of the seed layer; repeating steps (a) through (k) to form a second substrate; and laminating the first and second substrates together with a layer of dielectric material between the first and secon
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: April 2, 2013
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Kevin C. Olson, Alan E. Wang
  • Patent number: 8405175
    Abstract: The present invention generally relates to a thermal processing apparatus and method that permits a user to index one or more preselected light sources capable of emitting one or more wavelengths to a collimator. Multiple light sources may permit a single apparatus to have the capability of emitting multiple, preselected wavelengths. The multiple light sources permit the user to utilize multiple wavelengths simultaneously to approximate “white light”. One or more of a frequency, intensity, and time of exposure may be selected for the wavelength to be emitted. Thus, the capabilities of the apparatus and method are flexible to meet the needs of the user.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: March 26, 2013
    Assignee: Applied Materials, Inc.
    Inventor: Stephen Moffatt
  • Patent number: 8399329
    Abstract: It is an object of the present invention to provide a method for manufacturing an SOI substrate having an SOI layer that can be used in practical applications with high yield even when a flexible substrate such as a glass substrate or a plastic substrate is used. Further, it is another object of the present invention to provide a method for manufacturing a thin semiconductor device using such an SOI substrate with high yield. When a single-crystal semiconductor substrate is bonded to a flexible substrate having an insulating surface and the single-crystal semiconductor substrate is separated to manufacture an SOI substrate, one or both of bonding surfaces are activated, and then the flexible substrate having an insulating surface and the single-crystal semiconductor substrate are attached to each other.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: March 19, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yasuhiro Jinbo, Hironobu Shoji, Hideto Ohnuma, Shunpei Yamazaki
  • Patent number: 8367486
    Abstract: It is an object to reduce characteristic variation among transistors and reduce contact resistance between an oxide semiconductor layer and a source electrode layer and a drain electrode layer, in a transistor where the oxide semiconductor layer is used as a channel layer. In a transistor where an oxide semiconductor is used as a channel layer, at least an amorphous structure is included in a region of an oxide semiconductor layer between a source electrode layer and a drain electrode layer, where a channel is to be formed, and a crystal structure is included in a region of the oxide semiconductor layer which is electrically connected to an external portion such as the source electrode layer and the drain electrode layer.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: February 5, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Junichiro Sakata
  • Patent number: 8354351
    Abstract: A system for configuring and utilizing J electromagnetic radiation sources (J?2) to serially irradiate a substrate. Each source has a different function of wavelength and angular distribution of emitted radiation. The substrate includes a base layer and I stacks (I?2; J?I) thereon. Pj denotes a same source-specific normally incident energy flux on each stack from source j. In each of I independent exposure steps, the I stacks are concurrently exposed to radiation from the J sources. Vi and Si respectively denote an actual and target energy flux transmitted into the substrate via stack i in exposure step i (i=1, . . . , I). t(i) and Pt(i) are computed such that: Vi is maximal through deployment of source t(i) as compared with deployment of any other source for i=1, . . . , I; and an error E being a function of |V1?S1|, |V2?S2|, . . . , |VI?SI| is about minimized with respect to Pi (i=1, . . . , I).
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: January 15, 2013
    Assignee: International Business Machines Corporation
    Inventors: Brent Alan Anderson, Edward Joseph Nowak
  • Patent number: 8349714
    Abstract: It is an object of the present invention to align the plane orientations of crystal grains of a semiconductor film crystallized by irradiation with a linear laser beam with a width of less than or equal to 5 ?m. By performing irradiation with the linear laser beam condensed by an aspheric cylindrical lens or a gradient index lens to completely melt the semiconductor film and scanning the linear laser beam, the completely melted semiconductor film is made to grow laterally. Because the linear beam is very narrow, the width of the semiconductor which is in a liquid state is also narrow, so the occurrence of turbulent flow in the liquid semiconductor is suppressed. Therefore, growth directions of adjacent crystal grains do not become disordered due to turbulent flow and are unformalized, and thus the plane orientations of the laterally grown crystal grains can be aligned.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: January 8, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Koichiro Tanaka, Tomoaki Moriwaka, Takatsugu Omata, Junpei Momo
  • Patent number: 8349713
    Abstract: A system and method for enhancing the conversion efficiency of thin film photovoltaics. The thin film structure includes a photovoltaic absorbent layer covered by a confinement layer. A laser beam passes through the confinement layer and hits the photovoltaic absorbent layer. The laser can be pulsed to create localized rapid heating and cooling of the photovoltaic absorbent layer. The confinement layer confines the laser induced plasma plume creating a localized high-pressure condition for the photovoltaic absorbent layer. The laser beam can be scanned across specific regions of the thin film structure. The laser beam can be pulsed as a series of short pulses. The photovoltaic absorbent layer can be made of various materials including copper indium diselenide, gallium arsenide, and cadmium telluride. The photovoltaic absorbent layer can be sandwiched between a substrate and the confinement layer, and a molybdenum layer can be between the substrate and the photovoltaic absorbent layer.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: January 8, 2013
    Assignee: Purdue Research Foundation
    Inventors: Gary J. Cheng, Martin Yi Zhang, Yingling Yang
  • Patent number: 8338830
    Abstract: The present invention provides a manufacturing method of a semiconductor device, which is able to improve on-current and mobility of a polycrystal TFT without disturbing a high integration level, and also provide a semiconductor device obtained in accordance with the manufacturing method.
    Type: Grant
    Filed: May 2, 2005
    Date of Patent: December 25, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Tamae Takano
  • Patent number: 8329520
    Abstract: An island-shaped single crystal semiconductor layer whose top surface has a plane within ±10° from a {211} plane is formed on an insulating surface; a non-single-crystal semiconductor layer is formed in contact with the top surface and a side surface of the single crystal semiconductor layer and on the insulating surface; the non-single-crystal semiconductor layer is irradiated with laser light to melt the non-single-crystal semiconductor layer, and to crystallize the non-single-crystal semiconductor layer formed on the insulating surface with use of the single crystal semiconductor layer as a seed crystal, so that a crystalline semiconductor layer is formed. A semiconductor device having an n-channel transistor and a p-channel transistor formed with use of the crystalline semiconductor layer is provided.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: December 11, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Akiharu Miyanaga, Masahiro Takahashi, Takuya Hirohashi
  • Publication number: 20120309140
    Abstract: A crystalline silicon thin film is formed by irradiating a silicon thin film with a laser beam. The laser beam is a continuous wave laser beam. An intensity distribution of the laser beam in a first region about a center of the intensity distribution is symmetric on an anterior side and a posterior side of the center. The intensity distribution in a second region about the center is asymmetric on the anterior side and the posterior side. The first region is from the maximum intensity of the laser beam at the center to an intensity half of the maximum intensity. The second region is at most equal to the half of the maximum intensity of the laser beam. In the second region, an integral intensity value on the posterior side is larger than on the anterior side.
    Type: Application
    Filed: April 19, 2012
    Publication date: December 6, 2012
    Applicant: PANASONIC CORPORATION
    Inventors: Tomohiko ODA, Takahiro KAWASHIMA
  • Patent number: 8324086
    Abstract: An SOI substrate having a single crystal semiconductor layer the surface of which has high planarity is manufactured. A semiconductor substrate is doped with hydrogen to form a damaged region containing a large amount of hydrogen. After a single crystal semiconductor substrate and a supporting substrate are bonded to each other, the semiconductor substrate is heated to separate the single crystal semiconductor substrate in the damaged region. While a heated high-purity nitrogen gas is sprayed on a separation surface of a single crystal semiconductor layer which is separated from the single crystal semiconductor substrate and irradiation with a microwave is performed from the back side of the supporting substrate, the separation surface is irradiated with a laser beam. The single crystal semiconductor layer is melted by irradiation with the laser beam, so that the surface of the single crystal semiconductor layer is planarized and re-single-crystallization thereof is performed.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: December 4, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Naoki Tsukamoto
  • Patent number: 8299553
    Abstract: A laser annealing method for executing laser annealing by irradiating a semiconductor film formed on a surface of a substrate with a laser beam, the method including the steps of, generating a linearly polarized rectangular laser beam whose cross section perpendicular to an advancing direction is a rectangle with an electric field directed toward a long-side direction of the rectangle or an elliptically polarized rectangular laser beam having a major axis directed toward a long-side direction, causing the rectangular laser beam to be introduced to the surface of the substrate, and setting a wavelength of the rectangular laser beam to a length which is about a desired size of a crystal grain in a standing wave direction.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: October 30, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Ryusuke Kawakami, Kenichirou Nishida, Norihito Kawaguchi, Miyuki Masaki, Atsushi Yoshinouchi
  • Patent number: 8293640
    Abstract: A semiconductor structure and a manufacturing method thereof are provided. The method includes the following steps. Firstly, a semiconductor substrate having an active surface and a back surface is provided. The active surface is opposite to the back surface, and the semiconductor substrate includes at least one grounding pad disposed on the active surface. Secondly, at least one through silicon via is formed through the semiconductor substrate from the back surface to the active surface thus exposing the grounding pad. Then, a conductive layer is formed on the back surface of the semiconductor substrate and filled into the through silicon via to electrically connect to the grounding pad and the semiconductor substrate.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: October 23, 2012
    Assignee: Victory Gain Group Corporation
    Inventor: Wen-Hsiung Chang
  • Patent number: 8278739
    Abstract: A method for manufacturing is: forming an insulating film over a substrate; forming an amorphous semiconductor film over the insulating film; forming over the amorphous semiconductor film, a silicon nitride film in which a film thickness is equal to or more than 200 nm and equal to or less than 1000 nm, equal to or less than 10 atomic % of oxygen is included, and a relative proportion of nitrogen to silicon is equal to or more than 1.3 and equal to or less than 1.5; irradiating the amorphous semiconductor film with a continuous-wave laser light or a laser light with repetition rate of equal to or more than the wave length of 10 MHz transmitting the silicon nitride film to melt and later crystallize the amorphous semiconductor film to form a crystalline semiconductor film.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: October 2, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Tomoaki Moriwaka
  • Patent number: 8273644
    Abstract: A soldering method of soldering first and second members includes shooting a laser light to at least one part of an outer peripheral portion surrounding a soldering-target region of the first member thereby to form an oxide film, and bonding the second member with the soldering-target region through a solder. According to the method, the solder resist is never exfoliated even after cleaning with chemicals for removing flux residues contained in solder.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: September 25, 2012
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Kazunaga Onishi, Yoshitaka Nishimura, Tatsuo Nishizawa, Eiji Mochizuki
  • Patent number: 8269224
    Abstract: Disclosed are a light emitting device and a method for manufacturing the same. The light emitting device includes a substrate having a lead frame, a light emitting diode mounted on the substrate, a mold member formed on the substrate and the light emitting diode, and a reflecting member having an opening portion at one side thereof and being inclined at an outer portion of the mold member.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: September 18, 2012
    Assignee: LG Innotek Co., Ltd.
    Inventor: Bo Geun Park
  • Patent number: 8268669
    Abstract: A method is provided for detecting laser optical paths in integrated circuit (IC) packages. The method provides an IC die encapsulated as a package in a compound of glass spheres and epoxy. Power is supplied to the IC. The IC is scanned with a laser. Typically, a laser wavelength is used that is minimally absorbed by the glass spheres in the epoxy compound of the IC package, and changes in current to the IC are detected. A detected current change is cross-referenced against a scanned IC package surface region. This process identifies an optical pathway underlying the scanned IC package surface region. In some aspects, this process leads to the identification of a glass sphere-collecting package structure underlying the optical pathway. Examples of a glass sphere-collecting structure might include an inner lead wire, lead frame edge, or die edge.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: September 18, 2012
    Assignee: Applied Micro Circuits Corporation
    Inventor: Joseph Martin Patterson
  • Patent number: 8269328
    Abstract: An assembly method is disclosed that includes providing a substrate, securing a first semiconductor device on a first surface thereof, and superimposing at least a second semiconductor device at least partially over the first semiconductor device. An outer peripheral portion of the second semiconductor device overhangs both the first semiconductor device and the substrate. Discrete conductive elements are placed between the outer peripheral portion of the second semiconductor device and a second surface of the substrate. Intermediate portions of the discrete conductive elements pass outside of a side surface of the substrate. Assemblies and packaged semiconductor devices that are formed in accordance with the method are also disclosed.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: September 18, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Dalson Ye Seng Kim, Chong Chin Hui, Lee Wang Lai, Roslan Bin Said
  • Patent number: 8222062
    Abstract: A method for fabricating a flexible display device includes providing a carrier substrate, forming a sacrificial layer on the carrier substrate, forming a metal layer and a buffer layer on the sacrificial layer in that order, forming at least one active device on the buffer layer, and separating the metal layer and the carrier substrate by laser treatment.
    Type: Grant
    Filed: August 22, 2010
    Date of Patent: July 17, 2012
    Assignee: Chimei Innolux Corporation
    Inventors: Wei-Lun Liao, Guan-Hua Yeh, Hsiao-Ping Lai, Hong-Gi Wu
  • Patent number: 8217513
    Abstract: Embodiments related to the cleaning of interface surfaces in a semiconductor wafer fabrication process via remote plasma processing are disclosed herein. For example, in one disclosed embodiment, a semiconductor processing apparatus includes a processing chamber, a load lock coupled to the processing chamber via a transfer port, a wafer pedestal disposed in the load lock and configured to support a wafer in the load lock, a remote plasma source configured to provide a remote plasma to the load lock, and an ion filter disposed between the remote plasma source and the wafer pedestal.
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: July 10, 2012
    Assignee: Novellus Systems, Inc.
    Inventors: George Andrew Antonelli, Jennifer O'Loughlin, Tony Xavier, Mandyam Sriram, Bart van Schravendijk, Vishwanathan Rangarajan, Seshasayee Varadarajan, Bryan L. Buckalew
  • Patent number: 8216892
    Abstract: There is provided a method for manufacturing a crystalline semiconductor film. An insulating film is formed over a substrate; an amorphous semiconductor film is formed over the insulating film; a cap film is formed over the amorphous semiconductor film; the amorphous semiconductor film is scanned and irradiated with a continuous wave laser beam or a laser beam with a repetition rate of greater than or equal to 10 MHz, through the cap film; and the amorphous semiconductor film is melted and crystallized At this time, an energy distribution in a length direction and a width direction in a laser beam spot is a Gaussian distribution, and the amorphous semiconductor film is scanned with the laser beam so as to be irradiated with the laser beam for a period of greater than or equal to 5 microseconds and less than or equal to 100 microseconds per region.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: July 10, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tomoaki Moriwaka, Koichiro Tanaka
  • Publication number: 20120171795
    Abstract: A method of performing irradiation of laser light is given as a method of crystallizing a semiconductor film. However, if laser light is irradiated to a semiconductor film, the semiconductor film is instantaneously melted and expands locally. The temperature gradient between a substrate and the semiconductor film is precipitous, distortions may develop in the semiconductor film. Thus, the film quality of the crystalline semiconductor film obtained will drop in some cases. With the present invention, distortions of the semiconductor film are reduced by heating the semiconductor film using a heat treatment process after performing crystallization of the semiconductor film using laser light. Compared to the localized heating due to the irradiation of laser light, the heat treatment process is performed over the entire substrate and semiconductor film. Therefore, it is possible to reduce distortions formed in the semiconductor film and to increase the physical properties of the semiconductor film.
    Type: Application
    Filed: March 15, 2012
    Publication date: July 5, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Toru Mitsuki, Tamae Takano
  • Patent number: 8211719
    Abstract: A substrate processing method includes preparing a substrate, a first mask adjacent to a first surface of the substrate and including a first light transmitting portion allowing light to be transmitted therethrough, a condenser adjacent to the first surface, a second mask including a second light transmitting portion, and a photo detecting member including a photo detecting portion detecting light having passed through the second light transmitting portion, the condenser condensing light having passed through the first light transmitting portion toward the second light transmitting portion, the second light transmitting portion allowing the light condensed by the condenser to be transmitted therethrough, and forming a recess in the substrate by laser beam irradiation from a direction opposite to the first surface. When an intensity of the laser beam detected by the photo detecting portion is at or above a specific intensity, the irradiation of the laser beam is stopped.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: July 3, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hiroyuki Morimoto, Masahiko Kubota
  • Patent number: 8207050
    Abstract: A crystallization method includes providing a substrate having a silicon thin film; positioning a laser mask having first to fourth blocks on the substrate, each block having a periodic pattern including a plurality of transmitting regions and a blocking region; and crystallizing the silicon thin film by irradiating a laser beam through the laser mask. A polycrystalline silicon film crystallized by this method is substantially free from a shot mark, and has uniform crystalline characteristics.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: June 26, 2012
    Assignee: LG Display Co., Ltd.
    Inventor: JaeSung You
  • Patent number: 8207024
    Abstract: At least two TFTs which are connected with a light emitting element are provided, crystallinities of semiconductor regions composing active layers of the respective TFTs are made different from each other. As the semiconductor region, a region obtained by crystallizing an amorphous semiconductor film by laser annealing is applied. In order to change the crystallinity, a method of changing a scan direction of a continuous oscillating laser beam so that crystal growth directions are made different from each other is applied. Alternatively, a method of changing a channel length direction of TFT between the respective semiconductor regions without changing the scan direction of the continuous oscillating laser beam so that a crystal growth direction and a current flowing direction are different from each other is applied.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: June 26, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yasuyuki Arai