Using A Coherent Energy Beam, E.g., Laser Or Electron Beam (epo) Patents (Class 257/E21.134)
  • Publication number: 20110117731
    Abstract: A laser mask is disclosed. In one embodiment, the laser mask includes: a mask substrate including i) at least one light transmission portion configured to transmit light therethrough and ii) a plurality of light interruption portions separated by the light transmission portion interposed therebetween. The light interruption portions are configured to block light; and a plurality of protrusion and depression regions positioned on the light interruption portions of the mask substrate. The protrusion and depression regions comprise a plurality of concave portions and a plurality of convex portions which are alternately formed.
    Type: Application
    Filed: September 13, 2010
    Publication date: May 19, 2011
    Applicant: Samsung Mobile Display Co., Ltd.
    Inventors: Sun Park, Chun-Gi You, Jong-Hyun Park, Yul-Kyu Lee, Jin-Hee Kang
  • Patent number: 7943936
    Abstract: A crystallizing method of causing a phase shifter to phase-modulate a laser beam whose wavelength is 248 nm or 300 nm or more from an excimer laser unit into a laser beam with a light intensity profile having a plurality of inverted triangular peak patterns in cross section and of irradiating the pulse laser beam onto a substrate to be crystallized for crystallization. The substrate to be crystallized is such that one or more silicon oxide films which present absorption properties to the laser beam and differ in the relative proportions of Si and O are provided on a laser beam incident face.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: May 17, 2011
    Assignee: Advanced LCD Technologies Development Center Co., Ltd.
    Inventors: Masato Hiramatsu, Hiroyuki Ogawa, Masakiyo Matsumura
  • Patent number: 7939438
    Abstract: Methods of inhibiting background plating on semiconductor substrates using oxidizing agents are disclosed.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: May 10, 2011
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Gary Hamm, David L. Jacques, Carl J. Colangelo
  • Patent number: 7932184
    Abstract: A method of manufacturing a solar cell module, including: forming a laminated body including a first protective member, a first sealing member having a first melting point, a plurality of solar cells, a second sealing member having a second melting point higher than the first melting point, and the second protective member; heating the first sealing member to a temperature equal to or higher than the first melting point but lower than the second melting point; and heating the second sealing member to a temperature equal to or higher than the second melting point. In forming the laminated body, the second sealing member is arranged to form a surface including a plurality of convex portions faces the first sealing member.
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: April 26, 2011
    Assignee: Sanyo Electric Co., Ltd.
    Inventor: Yousuke Ishii
  • Patent number: 7932119
    Abstract: A method is provided for detecting laser optical paths in integrated circuit (IC) packages. The method provides an IC die encapsulated as a package in a compound of glass spheres and epoxy. Power is supplied to the IC. The IC is scanned with a laser. Typically, a laser wavelength is used that is minimally absorbed by the glass spheres in the epoxy compound of the IC package, and changes in current to the IC are detected. A detected current change is cross-referenced against a scanned IC package surface region. This process identifies an optical pathway underlying the scanned IC package surface region. In some aspects, this process leads to the identification of a glass sphere-collecting package structure underlying the optical pathway. Examples of a glass sphere-collecting structure might include an inner lead wire, lead frame edge, or die edge.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: April 26, 2011
    Assignee: Applied Micro Circuits Corporation
    Inventor: Joseph Martin Patterson
  • Patent number: 7927936
    Abstract: A crystallization method includes providing a substrate having a silicon thin film; positioning a laser mask having first to fourth blocks on the substrate, each block having a periodic pattern including a plurality of transmitting regions and a blocking region; and crystallizing the silicon thin film by irradiating a laser beam through the laser mask. A polycrystalline silicon film crystallized by this method is substantially free from a shot mark, and has uniform crystalline characteristics.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: April 19, 2011
    Assignee: LG Display Co., Ltd.
    Inventor: JaeSung You
  • Patent number: 7927983
    Abstract: Attenuation regions of laser light are removed or reduced in size using a slit located in the immediate vicinity of a surface to be irradiated so that a steep energy distribution is obtained in the end portions of the laser light. The reason why the slit is located in the immediate vicinity of the surface to be irradiated is to suppress the spread of the laser light. In addition, the attenuation regions of the laser light are folded by using a mirror instead of the slit to increase energy densities in the attenuation regions by one another so that a steep energy density distribution is obtained in the end portions of the laser light.
    Type: Grant
    Filed: July 22, 2004
    Date of Patent: April 19, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Koichiro Tanaka, Tomoaki Moriwaka
  • Patent number: 7927937
    Abstract: One aspect of the present invention relates to a method for fabricating a polycrystalline silicon film. In one embodiment, the method includes the steps of providing a substrate having a thermally-grown silicon dioxide layer, forming an amorphous silicon film on the thermally-grown silicon dioxide layer of the substrate, forming an aluminum layer on the amorphous silicon film to form a structure having the substrate, the amorphous silicon film and the aluminum layer, and annealing the structure at an annealing temperature for a period of time in an N2 environment with a ramp-up time to crystallize the amorphous silicon film to form a polycrystalline silicon film.
    Type: Grant
    Filed: February 10, 2010
    Date of Patent: April 19, 2011
    Assignee: Board of Trustees of the University of Arkansas
    Inventors: Min Zou, Li Cai, William David Brown
  • Patent number: 7923275
    Abstract: A surface emitting laser includes a lower Bragg reflector, a resonator and an upper Bragg reflector. The resonator is provided on top of the lower Bragg reflector and includes an active layer, a lower semiconductor layer and an upper semiconductor layer. The upper Bragg reflector is provided on top of the resonator, and includes a plurality of semiconductor layers. In this surface emitting laser, the uppermost layer among the plurality of semiconductor layers in the lower Bragg reflector forms an air gap, which is larger than the aperture of the first insulating layer, while the lowermost layer among the plurality of semiconductor layers in the upper Bragg reflector forms an air gap, which is larger than the aperture of the second insulating layer.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: April 12, 2011
    Assignee: International Business Machines Corporation
    Inventor: Shigeru Nakagawa
  • Patent number: 7923736
    Abstract: A bottom gate thin film transistor (TFT), a flat panel display having the same, and a method of fabricating the same are disclosed. The TFT comprises a gate electrode disposed on a substrate, and a gate insulating layer disposed on the gate electrode. A semiconductor layer is disposed on the gate insulating layer and crossing over the gate electrode, and is crystallized by an MILC technique. An inter-insulating layer is disposed on the semiconductor layer and comprises source and drain contact holes which expose portions of the semiconductor layer. The source and drain contact holes are separated from at least one edge of the semiconductor layer crossing over the gate electrode. The semiconductor layer comprises conductive MIC regions corresponding to the exposed portions of the semiconductor layer in the source and drain contact holes.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: April 12, 2011
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventor: Keun-Soo Lee
  • Patent number: 7919777
    Abstract: A method of manufacturing a bottom gate thin film transistor (“TFT”) in which a polycrystalline channel region having a large grain size is formed relatively simply and easily. The method of manufacturing a bottom gate thin film transistor includes forming a bottom gate electrode on a substrate, forming a gate insulating layer on the substrate to cover the bottom gate electrode, forming an amorphous semiconductor layer, an N-type semiconductor layer and an electrode layer on the gate insulating layer sequentially, etching an electrode region and an N-type semiconductor layer region formed on the bottom gate electrode sequentially to expose an amorphous semiconductor layer region, melting the amorphous semiconductor layer region using a laser annealing method, and crystallizing the melted amorphous semiconductor layer region to form a laterally grown polycrystalline channel region.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: April 5, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyuck Lim, Young-soo Park, Wenxu Xianyu, Young-kwan Cha
  • Patent number: 7919399
    Abstract: Disclosed herein is a semiconductor device manufacturing method for performing an annealing process of irradiating a semiconductor film on which element forming areas including thin film transistor forming areas are arranged in a two-dimensional pattern with energy beams using a plurality of irradiating optical systems, wherein in the annealing process, an area irradiated with the energy beams is divided into a single beam irradiated area irradiated by each of the plurality of irradiating optical systems with an energy beam singly and a boundary area situated between single beam irradiated areas adjacent to each other and irradiated by both of two irradiating optical systems performing beam irradiation of the single beam irradiated areas with energy beams.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: April 5, 2011
    Assignee: Sony Corporation
    Inventor: Toshiaki Arai
  • Publication number: 20110068342
    Abstract: A laser method is provided for minimizing variations in transistor threshold voltages. The method supplies a wafer with a laser-crystallized active semiconductor film having a top surface with a first surface roughness. The method laser anneals the active semiconductor film, and in response to the laser annealing, melts the top surface of the active semiconductor film. The result is a top surface with a second roughness, less than the first roughness. More explicitly, the wafer active semiconductor film is crystallized using a laser with a first fluence, and then laser annealed with a second fluence, less than the first fluence. As compared with complementary metal-oxide-semiconductor field-effect (CMOSFET) thin-film transistor (TFT) structures formed in unprocessed regions of the active semiconductor film, the TFT threshold voltage standard deviation for TFTs in laser annealed portions of the active film are 60% less for n-channel and 30% less for p-channel TFTs.
    Type: Application
    Filed: September 18, 2009
    Publication date: March 24, 2011
    Inventors: Themistokles Afentakis, Robert S. Sposili, Steven R. Droes
  • Patent number: 7906414
    Abstract: High throughput systems and processes for recrystallizing thin film semiconductors that have been deposited at low temperatures on a substrate are provided. A thin film semiconductor workpiece is irradiated with a laser beam to melt and recrystallize target areas of the surface exposed to the laser beam. The laser beam is shaped into one or more beamlets using patterning masks. The mask patterns have suitable dimensions and orientations to pattern the laser beam radiation so that the areas targeted by the beamlets have dimensions and orientations that are conducive to semiconductor recrystallization. The workpiece is mechanically translated along linear paths relative to the laser beam to process the entire surface of the work piece at high speeds. Position sensitive triggering of a laser can be used generate laser beam pulses to melt and recrystallize semiconductor material at precise locations on the surface of the workpiece while it is translated on a motorized stage.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: March 15, 2011
    Assignee: The Trustees of Columbia University in the City of New York
    Inventor: James S. Im
  • Patent number: 7906834
    Abstract: A display device having a thin film semiconductor device including a semiconductor thin film having first and second semiconductor regions formed each into a predetermined shape above an insulative substrate, a conductor fabricated into a predetermined shape to the semiconductor thin film and a dielectric film put between the semiconductor thin film and the conductor, in which the semiconductor thin film is a polycrystal thin film with the crystallization ratio thereof exceeding 90% and the difference of unevenness on the surface of the semiconductor thin film does not exceed 10 nm.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: March 15, 2011
    Assignee: Hitachi Displays, Ltd.
    Inventors: Toshiyuki Mine, Mitsuharu Tai, Akio Shima
  • Publication number: 20110059561
    Abstract: A method for fabricating a flexible display device includes providing a carrier substrate, forming a sacrificial layer on the carrier substrate, forming a metal layer and a buffer layer on the sacrificial layer in that order, forming at least one active device on the buffer layer, and separating the metal layer and the carrier substrate by laser treatment.
    Type: Application
    Filed: August 22, 2010
    Publication date: March 10, 2011
    Applicant: CHIMEI INNOLUX CORPORATION
    Inventors: WEI-LUN LIAO, GUAN-HUA YEH, HSIAO-PING LAI, HONG-GI WU
  • Patent number: 7902002
    Abstract: When a semi-conductor film is irradiated with conventional pulsed laser light, unevenness, which is called as ridge, is caused on the surface of the semiconductor film. In the case of a top-gate type TFT, element characteristics are changed depending on the ridge. In particular, there is a problem in that variation in the plural thin film transistors electrically connected in parallel with one another. According to the present invention, in manufacturing a circuit including plural thin film transistors, the width LP of a region (not including a microcrystal region) that is melted by irradiating a semiconductor film with light of a continuous wave laser is enlarged, and active layers of a plurality of thin film transistors (that are electrically connected in parallel with one another) are arranged in one region.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: March 8, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Koichiro Tanaka
  • Patent number: 7902052
    Abstract: A process and system are provided for processing at least one section of each of a plurality of semiconductor film samples. In these process and system, the irradiation beam source is controlled to emit successive irradiation beam pulses at a predetermined repetition rate. Using such emitted beam pulses, at least one section of one of the semiconductor film samples is irradiated using a first sequential lateral solidification (“SLS”) technique and/or a first uniform small grained material (“UGS”) techniques to process the such section(s) of the first sample. Upon the completion of the processing of this section of the first sample, the beam pulses are redirected to impinge at least one section of a second sample of the semiconductor film samples. Then, using the redirected beam pulses, such section(s) of the second sample are irradiated using a second SLS technique and/or a second UGS technique to process the at least one section of the second sample.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: March 8, 2011
    Assignee: The Trustees of Columbia University in the City of New York
    Inventor: James S. Im
  • Patent number: 7902001
    Abstract: Provided is a sacrifice layer formed on a first substrate. A thin film laminated body is formed on the sacrifice layer. A separation groove exposing the sacrifice layer is formed to divide the thin film laminated body into at least one thin film device. The sacrifice layer is partially removed using a dry etching process. After the partial removal of the sacrifice layer, a remaining sacrifice layer region maintains the thin film device on the first substrate. A supporting structure is temporarily joined to the thin film device. The thin film device joined to the supporting structure is separated from the first substrate. Then, the remaining sacrifice layer is removed. The thin film device joined to the supporting structure is joined to a second substrate. Finally, the supporting structure is separated from the thin film device.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: March 8, 2011
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Sang Jin Kim, Yongsoo Oh, Hwan-Soo Lee
  • Patent number: 7897489
    Abstract: A method of selectively attaching a capping agent to an H-passivated Si or Ge surface is disclosed. The method includes providing the H-passivated Si or Ge surface, the H-passivated Si or Ge surface including a set of covalently bonded Si or Ge atoms and a set of surface substitutional atoms, wherein the set of surface substitutional atoms includes at least one of boron atoms, aluminum atoms, gallium atoms, indium atoms, tin atoms, lead atoms, phosphorus atoms, arsenic atoms, sulfur atoms, and bismuth atoms. The method also includes exposing the set of surface functional atoms to a set of capping agents, each capping agent of the set of capping agents having a set of functional groups bonded to a pair of carbon atoms, wherein the pair of carbon atoms includes at least one pi orbital bond, and further wherein a covalent bond is formed between at least some surface substitutional atoms of the set of surface substitutional atoms and at least some capping agents of the set of capping agents.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: March 1, 2011
    Assignee: Innovalight, Inc.
    Inventor: Elena Rogojina
  • Patent number: 7892955
    Abstract: A crystallization method using a mask includes providing a substrate having a semiconductor layer; positioning a mask over the substrate, the mask having first, second and third blocks, each block having a periodic pattern including a plurality of transmitting regions and a blocking region, the periodic pattern of the first block having a first position, the periodic pattern of the second block having a second position, the periodic pattern of the third block having a third position, the first, second and third positions being different from each other; and crystallizing the semiconductor layer by irradiating a laser beam through the mask.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: February 22, 2011
    Assignee: LG Display Co., Ltd.
    Inventor: JaeSung You
  • Publication number: 20110034009
    Abstract: To provide a thin film transistor having a high field effect mobility and a small variation in characteristics thereof, a second amorphous semiconductor layer patterned in a predetermined shape is formed on a first crystalline semiconductor layer 17 for constituting source and drain regions. By irradiating an irradiated region 21 of continuous wave laser beam while scanning along a channel length direction, the second amorphous semiconductor layer is crystallized to form a second crystalline semiconductor layer 22. The first crystalline semiconductor layer 17 is crystallized by selectively adding nickel and therefore, an orientation rate of {111} is increased.
    Type: Application
    Filed: October 21, 2010
    Publication date: February 10, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Masahiko HAYAKAWA
  • Patent number: 7884029
    Abstract: A solar cell having an improved structure of rear surface includes a p-type doped region, a dense metal layer, a loose metal layer, at least one bus bar opening, and solderable material on or within the bus bar opening. The solderable material contacts with the dense aluminum layer. The improved structure in rear surface increases the light converting efficiency, and provides a good adhesion between copper ribbon and solar cell layer thereby providing cost advantages and reducing the complexity in manufacturing. A solar module and solar system composed of such solar cell are also disclosed.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: February 8, 2011
    Assignee: DelSolar Co., Ltd.
    Inventors: Shih-Cheng Lin, Wei-Chih Chang, Yi-Chin Chou, Chorng-Jye Huang, Pin-Sheng Wang
  • Patent number: 7871907
    Abstract: A mask includes a primary opaque pattern and a number of clusters of secondary opaque patterns. The primary opaque pattern defines a number of strip transparent slits whose extending directions are substantially the same. The clusters of the secondary opaque patterns are connected to the primary opaque pattern, and each of the clusters of the secondary opaque patterns is disposed in one of the transparent slits, respectively. Each of the clusters of the secondary opaque patterns includes a number of secondary opaque patterns, and extending directions of at least a portion of the secondary opaque patterns and the extending directions of the transparent slits together form included angles that are not equal to about 90°.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: January 18, 2011
    Assignee: Au Optronics Corporation
    Inventor: Ming-Wei Sun
  • Patent number: 7871850
    Abstract: Disclosed are a light emitting device and a method for manufacturing the same. The light emitting device includes a substrate having a lead frame, a light emitting diode mounted on the substrate, a mold member formed on the substrate and the light emitting diode, and a reflecting member having an opening portion at one side thereof and being inclined at an outer portion of the mold member.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: January 18, 2011
    Assignee: LG Innotek Co., Ltd
    Inventor: Bo Geun Park
  • Patent number: 7867920
    Abstract: There is provided a method for modifying a high-k dielectric thin film provided on the surface of an object using a metal organic compound material. The method includes a preparation process for providing the object with the high-k dielectric thin film formed on the surface thereof, and a modification process for applying UV rays to the highly dielectric thin film in an inert gas atmosphere while maintaining the object at a predetermined temperature to modify the high-k dielectric thin film. According to the above constitution, the carbon component can be eliminated from the high-k dielectric thin film, and the whole material can be thermally shrunk to improve the density, whereby the occurrence of defects can be prevented and the film density can be improved to enhance the specific permittivity and thus to provide a high level of electric properties.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: January 11, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Kazuyoshi Yamazaki, Shintaro Aoyama, Koji Akiyama
  • Patent number: 7867873
    Abstract: A method of manufacturing a semiconductor substrate is demonstrated, which enables the formation of a single crystal semiconductor layer on a substrate having an insulating surface. The manufacturing method includes the steps of: ion irradiation of a surface of a single-crystal semiconductor substrate to form a damaged region; laser light irradiation of the single-crystal semiconductor substrate; formation of an insulating layer on the surface of the single-crystal semiconductor substrate; bonding the insulating layer with a substrate having an insulating surface; separation of the single-crystal semiconductor substrate at the damaged region, resulting in a thin single-crystal semiconductor layer on the surface of the substrate having the insulating surface; and laser light irradiation of the surface of the single-crystal semiconductor layer which is formed on the substrate having the insulating surface.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: January 11, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Satoshi Murakami, Hiromichi Godo, Atsuo Isobe
  • Patent number: 7863162
    Abstract: A manufacturing method of a semiconductor device in which the oxygen and carbon concentrations are reduced at the interface of each layer making up the semiconductor multilayer film. A first semiconductor layer is formed on a single-crystal substrate in a first reactor; the substrate is transferred from the first reactor to a second reactor through a transfer chamber; and a second semiconductor layer is formed on the first semiconductor layer in the second reactor. During substrate transfer, hydrogen is supplied when the number of hydrogen atoms bonding with the surface atoms of the first semiconductor layer is less than the number of surface atoms of the first semiconductor layer, and the supply of hydrogen is stopped when the number of hydrogen atoms bonding with the surface atoms of the first semiconductor layer is greater than the number of surface atoms of the first semiconductor layer.
    Type: Grant
    Filed: January 11, 2006
    Date of Patent: January 4, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Isao Suzumura, Katsuya Oda
  • Publication number: 20100323504
    Abstract: It is an object of the present invention to provide a laser irradiation apparatus being able to irradiate the irradiation object with the laser beam having homogeneous energy density without complicating the optical system. The laser irradiation apparatus of the present invention comprises a laser oscillator, an optical system for scanning repeatedly a beam spot of the laser beam emitted from the laser oscillator in a uniaxial direction over the surface of the irradiation object, and a position controlling means for moving the position of the irradiation object relative to the laser beam in a direction perpendicular to the uniaxial direction.
    Type: Application
    Filed: August 9, 2010
    Publication date: December 23, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Koichiro TANAKA, Yoshiaki YAMAMOTO
  • Patent number: 7846803
    Abstract: A method of forming a doped region includes, in one embodiment, implanting a dopant into a region in a semiconductor substrate, recrystallizing the region by performing a first millisecond anneal, wherein the first millisecond anneal has a first temperature and a first dwell time, and activating the region using as second millisecond anneal after recrystallizing the region, wherein the second millisecond anneal has a second temperature and a second dwell time. In one embodiment, the first millisecond anneal and the second millisecond anneal use a laser. In one embodiment, the first temperature is the same as the second temperature and the first dwell time is the same as the second dwell time. In another embodiment, the first temperature is different from the second temperature and the first dwell time is different from the second dwell time.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: December 7, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Gregory S. Spencer, Vishal P. Trivedi
  • Patent number: 7846768
    Abstract: An assembly method is disclosed that includes providing a substrate, securing a first semiconductor device on a first surface thereof, and superimposing at least a second semiconductor device at least partially over the first semiconductor device. An outer peripheral portion of the second semiconductor device overhangs both the first semiconductor device and the substrate. Discrete conductive elements are placed between the outer peripheral portion of the second semiconductor device and a second surface of the substrate. Intermediate portions of the discrete conductive elements pass outside of a side surface of the substrate. Assemblies and packaged semiconductor devices that are formed in accordance with the method are also disclosed.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: December 7, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Dalson Ye Seng Kim, Chong Chin Hui, Lee Wang Lai, Roslan Bin Said
  • Patent number: 7838379
    Abstract: In a phase change memory, electric property of a diode used as a selection device is extremely important. However, since crystal grain boundaries are present in the film of a diode using polysilicon, it involves a problem that the off leak property varies greatly making it difficult to prevent erroneous reading. For overcoming the problem, the present invention provides a method of controlling the temperature profile of an amorphous silicon in the laser annealing for crystallizing and activating the amorphous silicon thereby controlling the crystal grain boundaries. According to the invention, variation in the electric property of the diode can be decreased and the yield of the phase-change memory can be improved.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: November 23, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Masaharu Kinoshita, Motoyasu Terao, Hideyuki Matsuoka, Yoshitaka Sasago, Yoshinobu Kimura, Akio Shima, Mitsuharu Tai, Norikatsu Takaura
  • Patent number: 7838402
    Abstract: A method of manufacturing an electronic apparatus having a resist pattern provided over a substrate provided with a thin film transistor, the method includes the steps of forming by application a resist film over the substrate in the state of covering the thin film transistor, forming a resist pattern by subjecting the resist film to exposure to light and a developing treatment, and irradiating the resist pattern with at least one of ultraviolet light and visible light in a dry atmosphere in the condition where a channel part of the thin film transistor is prevented from being irradiated with light having a wavelength of shorter than 260 nm, wherein a step of heat curing the resist pattern is conducted after the irradiation with at least one of ultraviolet light and visible light.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: November 23, 2010
    Assignee: Sony Corporation
    Inventors: Koichi Nagasawa, Takashi Yamaguchi, Nobutaka Ozaki, Yasuhiro Kanaya, Hirohisa Takeda, Yasuo Mikami, Yoshifumi Mutoh
  • Patent number: 7838883
    Abstract: An organic EL display device of active matrix type wherein insulated-gate field effect transistors formed on a single-crystal semiconductor substrate are overlaid with an organic EL layer; characterized in that the single-crystal semiconductor substrate (413 in FIG. 4) is held in a vacant space (414) which is defined by a bed plate (401) and a cover plate (405) formed of an insulating material, and a packing material (404) for bonding the bed and cover plates; and that the vacant space (414) is filled with an inert gas and a drying agent, whereby the organic EL layer is prevented from oxidizing.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: November 23, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yasuyuki Arai
  • Publication number: 20100291760
    Abstract: The manufacturing methodology to produce polycrystalline silicon in time and cost efficient manner uses a spatially selective crystallization approach to greatly reduce the amount of energy delivered to the work surface. The amorphous silicon film is subjected to laser radiation substantially exclusively at localized areas where TFTs are to be formed. The source of radiation is a copper vapor laser which produces a highly stable radiation in a visible spectrum with an energy sufficient to convert amorphous silicon into polysilicon in 1-3 shots. The optic system delivers the homogenized, conditioned and focused laser beam to the area of interest in a controlled manner. Single or multi-laser beam arrangements, as well as different shapes and sizes of laser beam spots are contemplated.
    Type: Application
    Filed: May 15, 2009
    Publication date: November 18, 2010
    Inventors: Nicholas Doudoumopoulos, Paul Christensen, Paul Wickboldt
  • Patent number: 7833871
    Abstract: A laser annealing method for executing laser annealing by irradiating a semiconductor film formed on a surface of a substrate with a laser beam, the method including the steps of, generating a linearly polarized rectangular laser beam whose cross section perpendicular to an advancing direction is a rectangle with an electric field directed toward a long-side direction of the rectangle or an elliptically polarized rectangular laser beam having a major axis directed toward a long-side direction, causing the rectangular laser beam to be introduced to the surface of the substrate, and setting a wavelength of the rectangular laser beam to a length which is about a desired size of a crystal grain in a standing wave direction.
    Type: Grant
    Filed: September 12, 2006
    Date of Patent: November 16, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Ryusuke Kawakami, Kenichirou Nishida, Norihito Kawaguchi, Miyuki Masaki, Atsushi Yoshinouchi
  • Patent number: 7829446
    Abstract: A method for dividing a wafer into a plurality of chips is provided. The method includes providing recesses in a surface of the wafer at positions along boundaries between regions to become the individual chips, providing fragile portions having a predetermined width inside the wafer at positions along the boundaries by irradiation of the other surface of the wafer with a laser beam whose condensing point is placed inside the wafer, the fragile portions including connected portions at least at one of the surfaces of the wafer, and dividing the wafer at the fragile portions into the individual chips by applying an external force to the wafer.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: November 9, 2010
    Assignee: Seiko Epson Corporation
    Inventors: Wataru Takahashi, Yoshinao Miyata, Kazushige Umetsu, Yutaka Yamazaki
  • Patent number: 7829393
    Abstract: A copper gate electrode, applied in a thin-film-transistor liquid crystal display (LCD) device, at least comprises a patterned copper layer formed on a glass substrate, and a barrier layer formed on the patterned copper layer. The barrier layer comprises at least one of nitrogen and phosphorus, or comprises an alloy formularized as M1M2R wherein M1 is cobalt (Co) or molybdenum (Mo), M2 is tungsten (W), molybdenum (Mo), rhenium (Re) or vanadium (V), and R is boron (B) or phosphorus (P).
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: November 9, 2010
    Assignee: Au Optronics Corp.
    Inventors: Yu-Wei Liu, Wen-Ching Tsai, Kuo-Yu Huang, Hui-Fen Lin
  • Patent number: 7825020
    Abstract: Disclosed herein is a method of manufacturing a semiconductor device that includes forming a metal catalytic pattern on a semiconductor substrate; etching the semiconductor substrate using the metal catalytic pattern as an etching mask to form a recess; forming an insulating layer over a structure including the recess, the metal catalytic pattern, and the semiconductor substrate; patterning the insulating layer to cross over the metal catalytic pattern and to expose a predetermined portion of the metal catalytic pattern; and growing a nano wire using the exposed predetermined portion of the metal catalytic pattern.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: November 2, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Seung Hyun Lee
  • Patent number: 7820531
    Abstract: A method of manufacturing a semiconductor device includes the steps of: modifying a semiconductor film by applying a laser beam; and forming a semiconductor device on the modified semiconductor film. In the step of modifying the semiconductor film, the laser beam and the substrate are moved relative to each other in a first direction and a second direction which is opposite to the first direction, a change in an optical characteristic between an area irradiated with the laser beam and an area which is not irradiated with the laser beam in the substrate or an optical characteristic of the irradiated area is measured in each of the first and second directions, and irradiation power of the laser beam is modulated so that the difference between a measurement result in the first direction and a measurement result in the second direction lies in a predetermined range.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: October 26, 2010
    Assignee: Sony Corporation
    Inventors: Goh Matsunobu, Koichi Tatsuki, Yoshio Inagaki, Nobuhiko Umezu, Koichi Tsukihara
  • Publication number: 20100255663
    Abstract: A silicon crystallization method renders it is possible to form alignment key without additional photolithography, and to adjust a substrate to a correct position by sensing a deviation of the substrate when the substrate is loaded. The silicon crystallization method includes aligning the substrate by sensing a fixed substrate with a sensing device, and moving and/or rotating a stage, wherein the sensing device faces toward an edge of the substrate to directly sense the edge of the substrate; forming alignment keys on predetermined portions of a non-display area of the substrate by correspondingly placing a mask for formation of an alignment key above the substrate; and crystallizing an amorphous silicon by correspondingly providing a mask for crystallization above the substrate.
    Type: Application
    Filed: April 26, 2010
    Publication date: October 7, 2010
    Inventors: Yun Ho JUNG, Young Joo Kim
  • Patent number: 7803717
    Abstract: Epitaxial gallium nitride is grown on a silicon substrate while reducing or suppressing the formation of a buffer layer. The gallium nitride may be grown directly on the silicon substrate, for example using domain epitaxy. Alternatively, less than one complete monolayer of silicon nitride may be formed between the silicon and the gallium nitride. Subsequent to formation of the gallium nitride, an interfacial layer of silicon nitride may be formed between the silicon and the gallium nitride.
    Type: Grant
    Filed: October 21, 2004
    Date of Patent: September 28, 2010
    Assignee: North Carolina State University
    Inventors: Thomas A. Rawdanowicz, Jagdish Narayan
  • Patent number: 7803699
    Abstract: A polysilicon thin film transistor (TFT) may include a substrate, at least one insulating layer, a semiconductor layer, a gate electrode, a source electrode, a drain electrode, and a heat retaining layer formed to contact the semiconductor layer. The heat retaining layer may reduce and/or prevent a reduction in a melt duration time of amorphous silicon during a crystallization process for forming a polysilicon layer of the TFT.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: September 28, 2010
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Jae Kyeong Jeong, Hyun Soo Shin, Yeon Gon Mo
  • Patent number: 7799665
    Abstract: A laser processing process which comprises laser annealing a silicon film 2 ?m or less in thickness by irradiating a laser beam 400 nm or less in wavelength and being operated in pulsed mode with a pulse width of 50 nsec or more, and preferably, 100 nsec or more. A laser processing apparatus which comprises a laser generation device and a stage for mounting thereon a sample provided separately from said device, to thereby prevent transfer of vibration attributed to the movement of the stage to the laser generation device and the optical system. A stable laser beam can be obtained to thereby improve productivity.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: September 21, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideto Ohnuma, Nobuhiro Tanaka, Hiroki Adachi
  • Patent number: 7795121
    Abstract: A method for manufacturing a semiconductor device is provided, which includes forming a gate insulating film on a semiconductor substrate, forming a first layer on the gate insulating film, the first layer containing a first p-type impurity and, an amorphous or polycrystalline formed of Si1-xGex (0?x<0.25), subjecting the first layer to a first heat treatment wherein the first layer is heated for 1 msec or less at a temperature higher than 1100° C., forming a second layer on the first layer, the second layer containing a second p-type impurity and formed of amorphous silicon or polycrystalline silicon, the second p-type impurity having a smaller covalent bond radius than that of the first p-type impurity, and subjecting the second layer to a second heat treatment to heat the second layer at a temperature ranging from 800° C. to 1100° C.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: September 14, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tsunehiro Ino, Akio Kaneko, Nobutoshi Aoki
  • Publication number: 20100227458
    Abstract: A method of forming a polycrystalline silicon layer and an atomic layer deposition apparatus used for the same. The method includes forming an amorphous silicon layer on a substrate, exposing the substrate having the amorphous silicon layer to a hydrophilic or hydrophobic gas atmosphere, placing a mask having at least one open and at least one closed portion over the amorphous silicon layer, irradiating UV light toward the amorphous silicon layer and the mask using a UV lamp, depositing a crystallization-inducing metal on the amorphous silicon layer, and annealing the substrate to crystallize the amorphous silicon layer into a polycrystalline silicon layer. This method and apparatus provide for controlling the seed position and grain size in the formation of a polycrystalline silicon layer.
    Type: Application
    Filed: February 26, 2010
    Publication date: September 9, 2010
    Inventors: Yun-Mo CHUNG, Ki-Yong Lee, Min-Jae Jeong, Jin-Wook Seo, Jong-Won Hong, Heung-Yeol Na, Eu-Gene Kang, Seok-Rak Chang, Tae-Hoon Yang, Ji-Su Ahn, Young-Dae Kim, Byoung-Keon Park, Kil-Won Lee, Dong-Hyun Lee, Sang-Yon Yoon, Jong-Ryuk Park, Bo-Kyung Choi, Maxim Lisachenko
  • Patent number: 7790563
    Abstract: A semiconductor device of the present invention is manufactured by the following steps: forming a single-crystal semiconductor layer over a substrate having an insulating surface; irradiating a region of the single-crystal semiconductor layer with laser light; forming a circuit of a pixel portion using a region of the single-crystal semiconductor layer which is not irradiated with the laser light; and forming a driver circuit for driving the circuit of the pixel portion using the region of the single-crystal semiconductor layer which is irradiated with the laser light. Thus, a semiconductor device using a single-crystal semiconductor layer which is suitable for a peripheral driver circuit region and a single-crystal semiconductor layer which is suitable for a pixel region can be provided.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: September 7, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Tetsuya Kakehata
  • Patent number: 7790583
    Abstract: One embodiment of the present invention is a method for cleaning an electron beam treatment apparatus that includes: (a) generating an electron beam that energizes a cleaning gas in a chamber of the electron beam treatment apparatus; (b) monitoring an electron beam current; (c) adjusting a pressure of the cleaning gas to maintain the electron beam current at a substantially constant value; and (d) stopping when a predetermined condition has been reached.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: September 7, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Alexandros T. Demos, Khaled A. Elsheref, Josphine J. Chang, Hichem M'saad
  • Patent number: 7790533
    Abstract: The present invention is to provide a technique that can increase productivity with high output power by combining a plurality of laser beams on an irradiation surface without any difficulties in optical alignment. According to this technique, laser beams having different wavelengths are combined using a plurality of laser oscillators and a dichroic mirror, or additionally a polarizer. For example, a first laser beam emitted from a first laser oscillator is combined with a second laser beam emitted from a second laser oscillator having different wavelength from the first laser beam in such a way that the first laser beam passes through a dichroic mirror and the second laser beam is reflected on the dichroic mirror, and the combined laser beam is projected to an irradiation surface.
    Type: Grant
    Filed: June 15, 2005
    Date of Patent: September 7, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Koichiro Tanaka, Yoshiaki Yamamoto
  • Publication number: 20100221899
    Abstract: A TFT and the like capable of realizing performances such as a low threshold voltage value, high carrier mobility and a low leak current easily. A TFT consists of a polycrystalline Si film having a small heat capacity part and a large heat capacity part, and the small heat capacity part is used at least as a channel part. The polycrystalline Si film is formed of a crystal grain film through laser annealing of an energy density with which the small heat capacity part melts completely but the large heat capacity part does not melt completely. Since the channel part is formed of large crystal grains grown from the boundaries between the small heat capacity part and the large heat capacity parts, it is possible to realize performances such as a low threshold voltage value, high carrier mobility and a low leak current by using a typical laser annealing device.
    Type: Application
    Filed: May 7, 2010
    Publication date: September 2, 2010
    Applicant: NEC Corporation
    Inventor: Hiroshi OKUMURA