Manufacture Or Post-treatment Of Electrode Having A Capacitive Structure, I.e., Gate Structure For Field-effect Device (epo) Patents (Class 257/E21.176)
  • Patent number: 7485948
    Abstract: A front-end method of fabricating nickel plated caps over copper bond pads used in a memory device. The method provides protection of the bond pads from an oxidizing atmosphere without exposing sensitive structures in the memory device to the copper during fabrication.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: February 3, 2009
    Assignee: Micron Technology, Inc.
    Inventors: John Moore, Joseph F. Brooks
  • Patent number: 7482256
    Abstract: Provided is a semiconductor device capable of reducing the resistance of the gate electrode of a transistor. The semiconductor device comprises a semiconductor substrate, a gate oxide film formed on the substrate, a gate formed on the gate oxide film, and a metal silicide layer formed on the top surface and the upper side surface of the gate.
    Type: Grant
    Filed: December 27, 2004
    Date of Patent: January 27, 2009
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Yeong Sil Kim
  • Patent number: 7449402
    Abstract: Provided is a method of fabricating a semiconductor device, the method including: forming an insulating layer on a single crystal substrate; etching the insulating layer in a predetermined pattern to expose the surface of the single crystal substrate; depositing an amorphous material on the insulating layer and the exposed surface of the single crystal substrate; and completely melting the amorphous material on the single crystal substrate and the insulating layer using laser annealing and crystallizing the melted amorphous material. The semiconductor device has a single crystalline silicon gate on the insulating layer.
    Type: Grant
    Filed: January 23, 2006
    Date of Patent: November 11, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Soo-bong Heo, Chel-jong Choi
  • Patent number: 7422969
    Abstract: The present invention provides a method for patterning a metal gate electrode and a method for manufacturing an integrated circuit including the same. The method for patterning the metal gate electrode, among other steps, includes forming a metal gate electrode layer (220) over a gate dielectric layer (210) located on a substrate (110), and patterning the gate electrode layer (220) using a combination of a dry etch process (410) and a wet etch process (510).
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: September 9, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Antonio L. P. Rotondaro, Deborah J. Riley, Trace Q. Hurd
  • Publication number: 20080206974
    Abstract: A method of fabricating a semiconductor device with a composite contact is provided. The fabrication includes forming the composite contact to a semiconductor layer in a semiconductor structure. The composite contact is formed by forming a DC conducting electrode attached to a semiconductor layer in a semiconductor structure and forming a capacitive electrode that is partially over the DC conducting electrode and extends beyond the DC conducting electrode. The composite contact provides a combined resistive-capacitive coupling to the semiconductor layer. As a result, a contact impedance is reduced when the corresponding semiconductor device is operated at high frequencies.
    Type: Application
    Filed: July 23, 2007
    Publication date: August 28, 2008
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Publication number: 20080108202
    Abstract: A method of fabricating a capacitor in a semiconductor substrate. The semiconductor substrate is doped to have a low resistivity. A second electrode, insulated from a first electrode, is formed over a front side surface and connected by a metal-filled via to the back side surface. The via may be omitted and the second electrode may be in electrical contact with the substrate or may be formed on top of the dielectric layer, yielding a pair of series-connected capacitors. ESD protection for the capacitor is provided by a pair of oppositely-directed diodes formed in the substrate connected in parallel with the capacitor. Capacitance is increased while maintaining a low effective series resistance. Electrodes include a plurality of fingers, which are interdigitated with the fingers of other electrode. The capacitor is fabricated in a wafer-scale process with other capacitors, where capacitors are separated from each other by a dicing technique.
    Type: Application
    Filed: December 28, 2007
    Publication date: May 8, 2008
    Applicant: VISHAY-SILICONIX
    Inventors: Haim Goldberger, Sik Lui, Jacek Korec, Y. Kasem, Harianto Wong, Jack Van Den Heuvel
  • Patent number: 7355225
    Abstract: An apparatus (200) such as a semiconductor device comprises a gate electrode (201) and at least a first electrode (202). The first electrode preferably has an established perimeter that at least partially overlaps with respect to the gate electrode to thereby form a corresponding transistor channel. In a preferred approach the first electrode has a surface area that is reduced notwithstanding the aforementioned established perimeter. This, in turn, aids in reducing any corresponding parasitic capacitance. This reduction in surface area may be accomplished, for example, by providing openings (203) through certain portions of the first electrode.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: April 8, 2008
    Assignee: Motorola, Inc.
    Inventors: Paul W. Brazis, Daniel R. Gamota, Krishna Kalyanasundaram, Jie Zhang
  • Patent number: 7344908
    Abstract: The present invention relates to an AFM (atomic force microscope) cantilever including a field effect transistor (FET) and a method for manufacturing the same; and, more particularly, to a method for manufacturing an AFM cantilever including an FET formed by a photolithography process, wherein an effective channel length of the FET is a nano-scale. Therefore, The present invention can easily implement a simulation for manufacturing the AFM cantilever including the FET by accurately controlling the effective channel length. And also, the present invention can manufacture the AFM cantilever including the FET having the effective channel ranging several tens to several hundreds nanometers by applying the low price photolithography device, thereby enhancing an accuracy and yield of the manufacturing process and drastically reducing process costs.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: March 18, 2008
    Assignee: Korea Electronics Technology Institute
    Inventors: Moon Suhk Suh, Jin-Koog Shin, Churl Seung Lee, Kyoung IL Lee
  • Patent number: 7329581
    Abstract: In one aspect, a semiconductor substrate is provided having a cell area and a peripheral circuit area, and a mask layer is formed over the cell area and the peripheral circuit area of the semiconductor substrate. A FinFET gate is fabricated by forming a first opening in the mask layer to expose a first gate region in the cell area of the semiconductor substrate, and then forming a FinFET gate electrode in the first opening using a damascene process. A MOSFET gate fabricated by forming a second opening in the mask layer to expose a second gate region in the peripheral circuit area of the semiconductor substrate, and then forming a MOSFET gate electrode in the second opening using a damascene process.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: February 12, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hee-soo Kang, Dong-gun Park, Choong-ho Lee, Hye-jin Cho, Young-joon Ahn
  • Publication number: 20080026539
    Abstract: An etching technique suitable for miniaturization is provided. An inorganic film is formed on an object to be subjected, the object having a lower electrode film, a dielectric film, and an upper electrode film laminated in that order on a substrate. A patterned organic resist film is disposed on the surface of the inorganic film. The inorganic film, upper electrode film, and the dielectric film are etched using the organic resist film as a mask, and then, the organic resist film is removed with the gas used to etch the lower electrode film; and the lower electrode film is etched using the inorganic film as a mask that has been exposed. Since the film serving as a mask is not re-formed, a fine pattern can be produced with good precision.
    Type: Application
    Filed: July 20, 2007
    Publication date: January 31, 2008
    Applicant: ULVAC, INC.
    Inventors: Yutaka Kokaze, Masahisa Ueda, Mitsuhiro Endo, Koukou Suu
  • Patent number: 7323403
    Abstract: The present invention provides a method for patterning a metal gate electrode and a method for manufacturing an integrated circuit including the same. The method for patterning the metal gate electrode, among other steps, includes forming a metal gate electrode layer (220) over a gate dielectric layer (210) located on a substrate (110), and patterning the gate electrode layer (220) using a combination of a dry etch process (410) and a wet etch process (510).
    Type: Grant
    Filed: November 29, 2004
    Date of Patent: January 29, 2008
    Assignee: Texas Instruments Incroporated
    Inventors: Antonio L. P. Rotondaro, Deborah J. Riley, Trace Q. Hurd
  • Patent number: 7256114
    Abstract: A process for forming a semiconductor device having an oxide beanie structure (an oxide cap overhanging an underlying portion of the device). An oxide layer is first provided covering that portion, with the layer having a top surface and a side surface. The top and side surfaces are then exposed to an oxide deposition bath, thereby causing deposition of oxide on those surfaces. Deposition of oxide on the top surface causes growth of the cap layer in a vertical direction and deposition of oxide on the side surface causes growth of the cap layer in a horizontal direction, thereby forming the beanie structure.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: August 14, 2007
    Assignee: International Business Machines Corporation
    Inventors: Steven J. Holmes, Toshiharu Furukawa, Mark C. Hakey, David V. Horak, Charles W. Koburger, III, Larry A. Nesbit
  • Publication number: 20070178646
    Abstract: The invention includes methods of forming epitaxial silicon-comprising material and methods of forming vertical transistors. In one implementation, a method of forming epitaxial silicon-comprising material includes providing a substrate comprising monocrystalline material. A first portion of the monocrystalline material is outwardly exposed while a second portion of the monocrystalline material is masked. A first silicon-comprising layer is epitaxially grown from the exposed monocrystalline material of the first portion and not from the monocrystalline material of the masked second portion. After growing the first silicon-comprising layer, the second portion of the monocrystalline material is unmasked. A second silicon-comprising layer is then epitaxially grown from the first silicon-comprising layer and from the unmasked monocrystalline material of the second portion. Other aspects and implementations are contemplated.
    Type: Application
    Filed: March 29, 2007
    Publication date: August 2, 2007
    Inventors: Nirmal Ramaswamy, Gurtej Sandhu, Cem Basceri, Eric Blomiley
  • Patent number: 7176136
    Abstract: The semiconductor device fabrication method comprises the step of forming a conducting film 22 by CVD, so as to cover a first surface and a second surface of a silicon substrate 10; the step of removing the conducting film 22 at least in a first region of the first surface of the silicon substrate 10; and the step of forming a gate insulation film 28 in the first region of the first surface of the silicon substrate 10. The semiconductor fabricating device further comprises after the step of forming a conducting film 22 and before the step of forming a gate insulation film 28 the step of removing the conducting film 22 on the second surface of the silicon substrate 10. In the step of forming a gate insulation film 28, the gate insulation film 28 is formed with the silicon substrate 10 exposed over the second surface of the silicon substrate 10.
    Type: Grant
    Filed: September 9, 2004
    Date of Patent: February 13, 2007
    Assignee: Fujitsu Limited
    Inventor: Toru Anezaki
  • Patent number: 7160776
    Abstract: Methods of forming a gate structure of a non-volatile memory device include forming a gate pattern having a control gate on a semiconductor substrate. An oxidation-preventing layer is formed on the control gate in a process chamber while maintaining a substantially oxygen free atmosphere in the process chamber. An oxide spacer is formed on a sidewall of the gate pattern with the oxidation-preventing layer thereon in the process chamber. Forming an oxidation-preventing layer may include exposing the gate pattern to a first gas in the process chamber and forming an oxide spacer may include exposing the gate pattern to a second gas including oxygen in the process chamber.
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: January 9, 2007
    Assignee: Samsung Electronics Co. Ltd.
    Inventors: Young-Sub You, Ki-Su Na, Hun-Hyeoung Leam, Woong Lee
  • Patent number: 7153752
    Abstract: A method for forming a capacitor and a contact hole of a semiconductor device substantially simultaneously is disclosed. According to one example, a metal layer and a TiN layer are deposited in sequence on a substrate and, then, etched through a pattern to form a capacitor part and a contact hole part on the substrate. A insulating layer and an ILD layer are formed in sequence over the substrate including the capacitor part and the contact hole part. Through etching processes using photoresist patterns as masks, openings are formed in the capacitor part and the contact hole part. The openings are filed with tungsten to form tungsten plugs. As disclosed herein, device defects may be reduced using a damascene process to fabricate a semiconductor device with simple structure by using a tungsten plug as an upper metal layer of a capacitor.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: December 26, 2006
    Assignee: Dongbu Electronics, Co., Ltd.
    Inventor: Sang Woo Nam
  • Patent number: 7115504
    Abstract: An electrode structure includes a first layer of conductive material and a dielectric layer formed on a surface of the first layer. An opening is formed in the dielectric layer to expose a portion of the surface of the first layer. A binding layer is formed on the dielectric layer and on the exposed portion of the surface of the first layer and a second layer of conductive material is formed on the conductive binding layer. The binding layer can be an oxide and the second layer a conductive material that is diffusible into an oxide. The electrode structure can be annealed to cause conductive material from the second layer to be chemisorbed into the binding layer to improve adhesion between the first and second layers. A programmable cell can be formed by forming a doped glass layer in the electrode structure.
    Type: Grant
    Filed: June 23, 2004
    Date of Patent: October 3, 2006
    Assignee: Micron Technology, Inc.
    Inventors: John T. Moore, Joseph F. Brooks
  • Patent number: 7087499
    Abstract: A method is described for fabricating and antifuse structure (100) integrated with a semiconductor device such as a FINFET or planar CMOS devise. A region of semiconducting material (11) is provided overlying an insulator (3) disposed on a substrate (10); an etching process exposes a plurality of corners (111–114) in the semiconducting material. The exposed corners are oxidized to form elongated tips (111t–114t) at the corners; the oxide (31) overlying the tips is removed. An oxide layer (51), such as a gate oxide, is then formed on the semiconducting material and overlying the corners; this layer has a reduced thickness at the corners. A layer of conducting material (60) is formed in contact with the oxide layer (51) at the corners, thereby forming a plurality of possible breakdown paths between the semiconducting material and the layer of conducting material through the oxide layer.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: August 8, 2006
    Assignee: International Business Machines Corporation
    Inventors: Jed H. Rankin, Wagdi W. Abadeer, Jeffrey S. Brown, William R. Tonti
  • Patent number: 7087508
    Abstract: A new method is provided for manufacturing a gate electrode. A layer of gate material, such as polysilicon, is deposited, patterned and etched, defining the poly gate electrode structure. LDD and pocket impurity implants are performed, the LDD profile is created by a rapid thermal anneal. Next and of critical importance to the invention, a N2 or O2 or N2 based plasma treatment is performed to eliminate defects in the exposed surface of the silicon substrate and sidewalls of the defined gate electrode that occur as a result of the etch of the layer of gate material. Then gate spacers are formed.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: August 8, 2006
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Juing-Yi Cheng, Chien-Hao Chen