Making Electrode Structure Comprising Conductor-insulator-conuctor-insulator-semiconductor, E.g., Gate Stack For Non-volatile Memory (epo) Patents (Class 257/E21.209)
  • Patent number: 8598642
    Abstract: An asymmetric non-volatile memory bitcell is described. The bitcell comprises source and drain regions comprising carriers of the same conductivity type. A floating gate rests on top of the well, and extends over a channel region, and at least a portion of the source and drain regions. The drain region comprises additional carriers of a second conductivity type, allowing band to band tunneling. The source region comprises additional carriers of a first conductivity type, thereby increasing source-gate capacitance. Thus, the bitcell incorporates a select device, thereby decreasing the overall size of the bitcell. The bitcell may be created without any additional CMOS process steps, or through the addition of a single extra mask step.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: December 3, 2013
    Assignee: Synopsys, Inc.
    Inventor: Andrew E. Horch
  • Patent number: 8598644
    Abstract: A nonvolatile semiconductor storage device including a first transistor comprising a first gate electrode including a charge storage layer, an interelectrode insulating film, and a control electrode layer; a second transistor comprising a second gate electrode including a lower electrode, an upper electrode, and an upper silicide portion above the upper electrode; and a third transistor comprising a third gate electrode including a lower electrode, an upper electrode, and an upper silicide portion above the upper electrode; wherein the lower electrodes of the second and the third gate electrodes have a first side and a second side taken along a length direction of the second and the third gate electrodes, the lower electrodes of the second and the third gate electrodes including a lower silicide portion in which at least the first side of the lower electrodes are partially silicided.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: December 3, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Wataru Sakamoto
  • Patent number: 8597997
    Abstract: A process for fabricating a charge storage layer comprising metal particles of a memory cell, said layer consisting of an organic layer comprising, on the surface, said metal particles, said process comprising the following steps: (a) a step of grafting, onto a metallic, semiconductor or electrically insulating substrate, an organic layer comprising, on the surface, groups capable of complexing at least one metallic element in cationic form; (b) a step of bringing said layer into contact with a solution comprising said metallic element in cationic form, by means of which said metallic element is complexed by said abovementioned groups; and (c) a step of reducing said complexed metallic element to the metallic element in oxidation state 0, by means of which metal particles are obtained.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: December 3, 2013
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Valentina Ivanova-Hristova, Barbara De Salvo
  • Publication number: 20130313625
    Abstract: A semiconductor device includes a semiconductor substrate and at least a first gate structure disposed on the semiconductor substrate. Furthermore, a spacer only disposed at a side of the first gate structure, and a material of the spacer does not comprise nitride.
    Type: Application
    Filed: May 28, 2012
    Publication date: November 28, 2013
    Inventor: Ching-Hung Kao
  • Patent number: 8592272
    Abstract: A method of manufacturing a non-volatile semiconductor memory device of an embodiment includes: forming, on a semiconductor substrate, an element isolation region to be filled with a first insulating film; forming memory cell gate electrodes on element regions; etching the first insulating film so that the first insulating film remains in the element isolation region of a region in which a select gate electrode is to be formed; forming a second insulating film on the memory cell gate electrodes so that an air gap is created between the memory cell gate electrodes; forming two select gate electrodes; forming carbon side walls on the select gate electrodes; implanting ions of an impurity between the two select gate electrodes with the side walls as a mask; and removing the carbon side walls.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: November 26, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Koichi Matsuno
  • Publication number: 20130307049
    Abstract: A method of fabricating a semiconductor device includes the following steps. At first, a semiconductor substrate is provided. A gate stack layer is formed on the semiconductor substrate, and the gate stack layer further includes a cap layer disposed thereon. Furthermore, two first spacers surrounding sidewalls of the gate stack layer is further formed. Subsequently, the cap layer is removed, and two second spacers are formed on a part of the gate stack layer. Afterwards, a part of the first spacers and the gate stack layer not overlapped with the two second spacers are removed to form two gate stack structures.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 21, 2013
    Inventor: Ping-Chia Shih
  • Patent number: 8581346
    Abstract: A semiconductor memory device includes a first conductive line, a second conductive line crossing over the first conductive line, a resistance variation part disposed at a position in which the second conductive line intersects with the first conductive line and electrically connected to the first conductive line and the second conductive line and a mechanical switch disposed between the resistance variation part and the second conductive line. The mechanical switch includes a nanotube.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: November 12, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: HongSik Yoon, Jinshi Zhao, Ingyu Baek, Hyunjun Sim, Minyoung Park
  • Patent number: 8569130
    Abstract: Methods of forming air gaps in memory arrays and memory arrays with air gaps thus formed are disclosed. One such method may include forming an isolation region, having a first dielectric, through a charge-storage structure that is over a semiconductor, the isolation region extending into the semiconductor; forming a second dielectric over the isolation region and charge-storage structure; and forming an air gap in the isolation region so that the air gap passes through the charge-storage structure and so that a thickness of the first dielectric is between the air gap and the second dielectric.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: October 29, 2013
    Assignee: Micron Technology, Inc.
    Inventors: James Mathew, Gordon Haller, Ronald A. Weimer, John Hopkins, Vinayak K. Shamanna, Sanjeev Sapra
  • Patent number: 8557652
    Abstract: Semiconductor structures including a high k gate dielectric material that has at least one surface threshold voltage adjusting region located within 3 nm or less from an upper surface of the high k gate dielectric are provided. The at least one surface threshold voltage adjusting region is formed by a cluster beam implant step in which at least one threshold voltage adjusting impurity is formed directly within the high k gate dielectric or driven in from an overlying threshold voltage adjusting material which is subsequently removed from the structure following the cluster beam implant step.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: October 15, 2013
    Assignee: International Business Machines Corporation
    Inventors: Oleg Gluschenkov, Dae-Gyu Park, Haizhou Yin
  • Patent number: 8557658
    Abstract: The present disclosure provides a multi-transistor element including a substrate, a first floating gate disposed on the substrate, a second floating gate disposed on the substrate and coupled to the first floating gate, and a first active region disposed in the substrate and coupled to the first and second floating gates.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: October 15, 2013
    Assignee: Taiwan Semiconductor Manufacting Company, Ltd.
    Inventors: Shih Wei Wang, Chun Juang Lin
  • Publication number: 20130248969
    Abstract: A nonvolatile semiconductor storage device includes a semiconductor substrate on which an element isolation groove is formed, memory cells each including a gate electrode having a charge storage layer, an interelectrode insulating film, and a control electrode, that is formed on the semiconductor substrate via a tunnel insulating film, and an insulating film disposed in the element isolation groove. The interelectrode insulating film is formed to have a first portion above the insulating film that is separated from one of the insulating film and the control electrode by an air gap and a second portion above the charge storage layer that is separated from the charge storage layer by a cavity.
    Type: Application
    Filed: September 7, 2012
    Publication date: September 26, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Ryota SUZUKI
  • Patent number: 8542513
    Abstract: An array of vertically stacked tiers of non-volatile cross point memory cells includes a plurality of horizontally oriented word lines within individual tiers of memory cells. A plurality of horizontally oriented global bit lines having local vertical bit line extensions extend through multiple of the tiers. Individual of the memory cells comprise multi-resistive state material received between one of the horizontally oriented word lines and one of the local vertical bit line extensions where such cross, with such ones comprising opposing conductive electrodes of individual memory cells where such cross. A plurality of bit line select circuits individually electrically and physically connects to individual of the local vertical bit line extensions and are configured to supply a voltage potential to an individual of the global horizontal bit lines. Other embodiments and aspects are disclosed.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: September 24, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Gurtej S. Sandhu
  • Patent number: 8541277
    Abstract: A method of fabricating a non-volatile memory device is provided. The method includes sequentially forming a tunnel insulation layer and a first polysilicon layer on a substrate, patterning the first polysilicon layer and the tunnel insulation layer, forming a dielectric layer to cover the patterned first polysilicon layer and the patterned tunnel insulation layer, forming a gate insulation layer on the substrate where the substrate is exposed, forming a second polysilicon layer to cover the dielectric layer, and forming a first floating gate and a second floating gate a fixed distance apart from each other, the forming of the first and second floating gates including etching middle portions of the second polysilicon layer, the dielectric layer, the patterned first polysilicon layer, and the patterned tunnel insulation layer, and separating the etched layers into two parts.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: September 24, 2013
    Assignee: Magnachip Semiconductor Ltd.
    Inventor: Yong-Sik Jeong
  • Patent number: 8541829
    Abstract: A nonvolatile semiconductor memory includes a memory cell transistor including a first floating gate electrode layer formed on a first tunneling insulating film, a first inter-gate insulating film, first and second control gate electrode layers, and a first metallic silicide film; a high voltage transistor including a high voltage gate electrode layer formed on a high voltage gate insulating film, a second inter-gate insulating film having an aperture, third and fourth control gate electrode layers, and a second metallic silicide film; a low voltage transistor including a second floating gate electrode layer formed on a second tunneling insulating film, a third inter-gate insulating film having an aperture, fifth and sixth control gate electrode layers, and a third metallic silicide film; and a liner insulating film directly disposed on source and drain regions of each of the memory cell transistor, the low voltage transistor, and the high voltage transistor.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: September 24, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kikuko Sugimae, Masayuki Ichige, Fumitaka Arai, Yasuhiko Matsunaga, Atsuhiro Sato
  • Publication number: 20130240969
    Abstract: A semiconductor device according to an embodiment, includes a plurality of gate structures; a first dielectric film; and a second dielectric film. The first dielectric film crosslinks adjacent gate structures of the plurality of gate structures so as to form a cavity each above and below in a position between the adjacent gate structures. The second dielectric film is formed as if to cover the cavity above the first dielectric film between the adjacent gate structures.
    Type: Application
    Filed: August 15, 2012
    Publication date: September 19, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Osamu ARISUMI, Toshihiko Iinuma
  • Publication number: 20130237048
    Abstract: The present invention provides method of fabricating an erasable programmable single-poly nonvolatile memory, comprising steps of: defining a first area and a second area in a first type substrate; forming a second type well region in the first area; forming a first gate oxide layer and a second gate oxide layer covered on a surface of the first area, wherein the second gate oxide layer is extended to and is adjacent to the second area; forming a DDD region in the second area; etching a portion of the second gate oxide layer above the second area; forming two polysilicon gates covered on the first and the second gate oxide layers; and defining a second type doped region in the DDD region and a first type doped regions in the second type well region.
    Type: Application
    Filed: September 4, 2012
    Publication date: September 12, 2013
    Applicant: eMemory Technology Inc.
    Inventors: Te-Hsun Hsu, Hsin-Ming Chen, Wen-Hao Ching, Wei-Ren Chen
  • Publication number: 20130234224
    Abstract: According to one embodiment, a semiconductor storage device comprises a memory cell transistor including a first insulating film, a first floating gate, a second insulating film, a second floating gate, a third insulating film and a control gate which are sequentially formed on a substrate, and a select transistor including a fourth insulating film, a first electrode layer, a fifth insulating film, a second electrode layer, a sixth insulating film and a third electrode layer which are sequentially formed on the substrate. Openings are provided in at least parts of the fifth insulating film and the sixth insulating film. The first electrode layer, the second electrode layer and the third electrode layer are electrically connected via the openings.
    Type: Application
    Filed: August 21, 2012
    Publication date: September 12, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Kenji AOYAMA
  • Patent number: 8530310
    Abstract: A method for forming a device is presented. A substrate prepared with a feature having first and second adjacent surfaces is provided. A device layer is formed on the first and second adjacent surfaces of the feature. A first portion of the device layer over the first adjacent surface includes nano-crystals, whereas a second portion of the device layer over the second adjacent surface is devoid of nano-crystals.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: September 10, 2013
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Lee Wee Teo, Chunshan Yin, Shyue Seng Tan, Chung Foong Tan, Jae Gon Lee, Elgin Quek, Purakh Raj Verma
  • Patent number: 8519485
    Abstract: A method of forming a memory device. The method provides a semiconductor substrate having a surface region. A first dielectric layer is formed overlying the surface region of the semiconductor substrate. A bottom wiring structure is formed overlying the first dielectric layer and a second dielectric material is formed overlying the top wiring structure. A bottom metal barrier material is formed to provide a metal-to-metal contact with the bottom wiring structure. The method forms a pillar structure by patterning and etching a material stack including the bottom metal barrier material, a contact material, a switching material, a conductive material, and a top barrier material. The pillar structure maintains a metal-to-metal contact with the bottom wiring structure regardless of the alignment of the pillar structure with the bottom wiring structure during etching. A top wiring structure is formed overlying the pillar structure at an angle to the bottom wiring structure.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: August 27, 2013
    Assignee: Crossbar, Inc.
    Inventor: Scott Brad Herner
  • Patent number: 8518775
    Abstract: A memory device is fabricated through the integration of embedded non-volatile memory (eNVM) with replacement metal gate (RMG) and high-k/metal gate (HKMG) modules. Embodiments include forming two substrate portions having upper surfaces at different heights, forming non-volatile gate stacks over the substrate portion with the lower upper surface, and forming high-voltage gate stacks and logic gate stacks over the other substrate portion. Embodiments include the upper surfaces of the non-voltage gate stacks, the high-voltage gate stacks, and the logic gate stacks being substantially coplanar.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: August 27, 2013
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Huang Liu, Alex Kai Hung See, Hai Cong, Zheng Zou
  • Publication number: 20130207176
    Abstract: A semiconductor device and a method for manufacturing the same are provided. The semiconductor device includes a gate pattern formed by patterning a tunnel insulating layer, a conductive film for a floating gate, a dielectric film, a conductive film for a control gate, and a gate metal film sequentially formed on a semiconductor substrate; a first barrier film formed on side walls of the gate metal film; and a second barrier film formed on an upper surface of the gate metal film.
    Type: Application
    Filed: August 30, 2012
    Publication date: August 15, 2013
    Applicant: SK HYNIX INC.
    Inventor: Jong Man KIM
  • Patent number: 8502291
    Abstract: Some embodiments include memory cells including a memory component having a first conductive material, a second conductive material, and an oxide material between the first conductive material and the second conductive material. A resistance of the memory component is configurable via a current conducted from the first conductive material through the oxide material to the second conductive material. Other embodiments include a diode comprising metal and a dielectric material and a memory component connected in series with the diode. The memory component includes a magnetoresistive material and has a resistance that is changeable via a current conducted through the diode and the magnetoresistive material.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: August 6, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Chandra Mouli
  • Patent number: 8497544
    Abstract: A memory module includes multiple memory devices mounted to a substrate and one or more discrete heating elements disposed in thermal contact with the memory devices. Each of the memory devices includes charge-storing memory cells subject to operation-induced defects that degrade ability of the memory cells to store data. The discrete heating elements, or single discrete heating element, heats the memory devices to a temperature that anneals the defects.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: July 30, 2013
    Assignee: Rambus Inc.
    Inventors: Gary B. Bronner, Ming Li, Donald R. Mullen, Frederick Ware, Kevin S. Donnelly
  • Patent number: 8492848
    Abstract: Semiconductor structures including a high k gate dielectric material that has at least one surface threshold voltage adjusting region located within 3 nm or less from an upper surface of the high k gate dielectric are provided. The at least one surface threshold voltage adjusting region is formed by a cluster beam implant step in which at least one threshold voltage adjusting impurity is formed directly within the high k gate dielectric or driven in from an overlying threshold voltage adjusting material which is subsequently removed from the structure following the cluster beam implant step.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Oleg Gluschenkov, Dae-Gyu Park, Haizhou Yin
  • Patent number: 8481386
    Abstract: In one embodiment, a memory device includes a substrate, a tunneling oxide, a silicide nanocrystal floating gate, and a control oxide. The tunneling oxide is positioned upon a first surface of the substrate, the silicide nanocrystal floating gate is positioned upon the tunneling oxide, and the control oxide positioned upon the nanocrystal floating gate.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: July 9, 2013
    Assignee: The Regents of the University of California
    Inventors: Jianlin Liu, Dengtao Zhao, Yan Zhu, Ruigang Li, Bei Li
  • Publication number: 20130171815
    Abstract: In a manufacturing method of a flash memory structure with a stress area, a better stress effect can be achieved by controlling the manufacturing process of a tunneling oxide layer formed in a gate structure and contacted with a silicon substrate, so that an L-shaped spacer (or a first stress area) and a contact etch stop layer (or a second stress area) of each L-shaped spacer are formed between two gate structures and aligned towards each other to enhance the carrier mobility of the gate structure, so as to achieve the effects of improving a read current, obtaining the required read current by using a lower read voltage, reducing the possibility of having a stress-induced leakage current, and enhancing the data preservation of the flash memory.
    Type: Application
    Filed: December 28, 2011
    Publication date: July 4, 2013
    Inventors: YIDER WU, HUNG-WEI CHEN
  • Patent number: 8471323
    Abstract: A non-volatile memory device includes a source region, a drain region, and a channel region therebetween. The channel region has a length extending from the source region to the drain region and a channel width in the direction perpendicular to the channel length direction. The device includes a floating gate positioned between the source and the drain in the channel length direction. The width of the floating gate is less than the channel width. A control gate covers a top surface and a side surface of the floating gate. The control gate also overlies an entirety of the channel region. Erasure of the cell is accomplished by Fowler-Nordheim tunneling from the floating gate to the control gate. Programming is accomplished by electrons migrating through an electron concentration gradient from a channel region underneath the control gate into a channel region underneath the floating gate and then injecting into the floating gate.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: June 25, 2013
    Assignees: Semiconductor Manufacturing International (Shanghai) Corporation, Semiconductor Manufacturing International (Beijing) Corporation
    Inventors: De Yuan Xiao, Gary Chen, Roger Lee
  • Publication number: 20130153981
    Abstract: A nonvolatile memory device, and method of forming the same, discloses a semiconductor device including floating gates that each have a first region that overlaps with a corresponding junction and that each have a second region that does not overlap the corresponding junction. The first region and the second region have different work functions.
    Type: Application
    Filed: September 4, 2012
    Publication date: June 20, 2013
    Inventor: Kyoung Rok HAN
  • Patent number: 8461060
    Abstract: A semiconductor device and a method of forming it are disclosed in which at least two adjacent conductors have an air-gap insulator between them which is covered by nanoparticles of insulating material being a size which prevent the nanoparticles from substantially entering into the air-gap.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: June 11, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Nishant Sinha, Gurtej Sandhu, Neil Greeley, John Smythe
  • Patent number: 8441058
    Abstract: A memory array comprising transistors having isolated inter-gate dielectric regions with respect to one another. Transistors are formed such that each of the transistors in the array has a charge storage region such as a floating gate, a control gate and an inter-gate dielectric layer therebetween. The inter-gate dielectric layer for each transistor is isolated from the inter-gate dielectric of each of the other transistors in the array.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: May 14, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Seiichi Aritome
  • Patent number: 8435878
    Abstract: A method for forming a field effect transistor (FET) device includes forming a dielectric layer on a substrate, forming a first metal layer on the dielectric layer, removing a portion of the first metal layer to expose a portion of the dielectric layer, forming a second metal layer on the dielectric layer and the first metal layer, and removing a portion of the first metal layer and the second metal layer to define a boundary region between a first FET device and a second FET device.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: May 7, 2013
    Assignee: International Business Machines Corporation
    Inventors: Dechao Guo, Shu-Jen Han, Chung-Hsun Lin, Yanfeng Wang
  • Patent number: 8436410
    Abstract: Semiconductor devices are provided. The semiconductor devices may include a plurality of gate structures disposed on a semiconductor substrate, each of the gate structures including a floating gate, an inter-gate dielectric layer, and a control gate. The semiconductor devices may also include liners on opposing sidewalls of adjacent ones of the gate structures. The liners may define a gap. A first width of the gap may be less than a second width of the gap.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: May 7, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dae-Woong Kang, Sung-Nam Chang, Jin-Joo Kim, Kyong-Joo Lee, Eun-Jung Lee
  • Publication number: 20130105879
    Abstract: A high dielectric constant (high-k) gate dielectric for a field effect transistor (FET) and a high-k tunnel dielectric for a non-volatile random access memory (NVRAM) device are simultaneously formed on a semiconductor substrate. A stack of at least one conductive material layer, a control gate dielectric layer, and a disposable material layer is subsequently deposited and lithographically patterned. A planarization dielectric layer is deposited and patterned, and disposable material portions are removed. A remaining portion of the control gate dielectric layer is preserved in the NVRAM device region, but is removed in the FET region. A conductive material is deposited in gate cavities to provide a control gate for the NVRAM device and a gate portion for the FET. Alternately, the control gate dielectric layer may replaced with a high-k control gate dielectric in the NVRAM device region.
    Type: Application
    Filed: December 15, 2011
    Publication date: May 2, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nicolas Breil, Michael P. Chudzik, Rishikesh Krishnan, Siddarth A. Krishnan, Unoh Kwon
  • Publication number: 20130102143
    Abstract: Forming an NVM structure includes forming a floating gate layer; forming a first dielectric layer over the floating gate layer; forming a plurality of nanocrystals over the first dielectric layer; etching the first dielectric layer using the plurality of nanocrystals as a mask to form dielectric structures, wherein the floating gate layer is exposed between adjacent dielectric structures; etching a first depth into the floating gate layer using the plurality of dielectric structures as a mask to form a plurality of patterned structures, wherein the first depth is less than a thickness of the floating gate layer; patterning the floating gate layer to form a floating gate; forming a second dielectric layer over the floating gate, wherein the second dielectric layer is formed over the patterned structures and on the floating gate layer between adjacent patterned structures; and forming a control gate layer over the second dielectric layer.
    Type: Application
    Filed: October 24, 2011
    Publication date: April 25, 2013
    Inventors: Da Zhang, Frank K. Baker, JR.
  • Publication number: 20130084696
    Abstract: A semiconductor device is manufactured by, inter alia: forming second gate lines, arranged at wider intervals than each of first gate lines and first gate lines, over a semiconductor substrate; forming a multi-layered insulating layer over the entire surface of the semiconductor substrate including the first and the second gate lines; etching the multi-layered insulating layer so that a part of the multi-layered insulating layer remains between the first gate lines and the first and the second gate lines; forming mask patterns formed on the respective remaining multi-layered insulating layers and each formed to cover the multi-layered insulating layer between the second gate lines; and etching the multi-layered insulating layers remaining between the first gate lines and between the first and the second gate lines and not covered by the mask patterns so that the first and the second gate lines are exposed.
    Type: Application
    Filed: August 14, 2012
    Publication date: April 4, 2013
    Applicant: SK Hynix Inc.
    Inventors: Suk Ki KIM, Hyeon Soo KIM
  • Publication number: 20130082315
    Abstract: A semiconductor device of the present invention has a first insulating film formed between a control gate electrode and a semiconductor substrate and a second insulating film formed between a memory gate electrode and the semiconductor substrate and between the control gate electrode and the memory gate electrode, the second insulating film having a charge accumulating part therein. The second insulating film has a first film, a second film serving as a charge accumulating part disposed on the first film, and a third film disposed on the second film. The third film has a sidewall film positioned between the control gate electrode and the memory gate electrode and a deposited film positioned between the memory gate electrode and the semiconductor substrate. In this structure, the distance at a corner part of the second insulating film can be increased, and electric-field concentration can be reduced.
    Type: Application
    Filed: September 13, 2012
    Publication date: April 4, 2013
    Inventors: Naohiro HOSODA, Daisuke OKADA, Kozo KATAYAMA
  • Patent number: 8410543
    Abstract: In a non-volatile memory in which writing/erasing is performed by changing a total charge amount by injecting electrons and holes into a silicon nitride film serving as a charge accumulation layer, in order to realize a high efficiency of a hole injection from a gate electrode, the gate electrode of a memory cell comprises a laminated structure made of a plurality of polysilicon films with different impurity concentrations, for example, a two-layered structure comprising a p-type polysilicon film with a low impurity concentration and a p+-type polysilicon film with a high impurity concentration deposited thereon.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: April 2, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Itaru Yanagi, Toshiyuki Mine, Hirotaka Hamamura, Digh Hisamoto, Yasuhiro Shimamoto
  • Patent number: 8411477
    Abstract: An array of vertically stacked tiers of non-volatile cross point memory cells includes a plurality of horizontally oriented word lines within individual tiers of memory cells. A plurality of horizontally oriented global bit lines having local vertical bit line extensions extend through multiple of the tiers. Individual of the memory cells comprise multi-resistive state material received between one of the horizontally oriented word lines and one of the local vertical bit line extensions where such cross, with such ones comprising opposing conductive electrodes of individual memory cells where such cross. A plurality of bit line select circuits individually electrically and physically connects to individual of the local vertical bit line extensions and are configured to supply a voltage potential to an individual of the global horizontal bit lines. Other embodiments and aspects are disclosed.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: April 2, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Gurtej S. Sandhu
  • Patent number: 8409951
    Abstract: Methods for fabricating control gates in non-volatile storage are disclosed. When forming stacks for floating gate memory cells and transistor control gates, a sacrificial material may be formed at the top of the stacks. After insulation is formed between the stacks, the sacrificial material may be removed to reveal openings. In some embodiments, cutouts are then formed in regions in which control gates of transistors are to be formed. Metal is then formed in the openings, which may include the cutout regions. Therefore, floating gate memory cells having at least partially metal control gates and transistors having at least partially metal control gates may be formed in the same process. A barrier layer may be formed prior to depositing the metal in order to prevent silicidation of polysilicon in the control gates.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: April 2, 2013
    Assignee: SanDisk Technologies Inc.
    Inventors: Jarrett Jun Liang, Vinod Robert Purayath, Takashi Whitney Orimoto
  • Patent number: 8405140
    Abstract: In a nonvolatile semiconductor memory device, a floating gate is formed on a semiconductor substrate through a gate insulating film, and has a first portion contacting the gate insulating film and a second portion extending upwardly from a part of a surface of the first portion. A first diffusion layer is formed in the semiconductor substrate to have a plane parallel to a surface of the semiconductor substrate. A second diffusion layer is formed in the semiconductor substrate, to have the plane. A control gate is provided near the floating gate above a channel region in the semiconductor substrate and is formed on a first side of the first portion. A conductive film is connected with the first diffusion layer and is formed on a second side of the first portion and a first side of the second portion through the first insulating film.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: March 26, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Eiji Io
  • Patent number: 8399875
    Abstract: A nonvolatile memory element including a resistance variable element configured to reversibly change between a low-resistance state and a high-resistance state in response to electric signals with different polarities; and a current controlling element configured such that when a current flowing when a voltage whose absolute value is a first value which is larger than 0 and smaller than a predetermined voltage value and whose polarity is a first polarity is applied is a first current and a current flowing when a voltage whose absolute value is the first value and whose polarity is a second polarity is applied is a second current, the first current is higher than the second current, and the resistance variable element is connected with the current controlling element such that the first polarity voltage is applied to the current controlling element when the resistance variable element changes from the low-resistance to the high-resistance state.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: March 19, 2013
    Assignee: Panasonic Corporation
    Inventors: Takumi Mikawa, Kiyotaka Tsuji, Takashi Okada
  • Publication number: 20130056816
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device includes: a substrate; a memory unit provided on the substrate; and a non-memory unit provided on the substrate. The memory unit includes: a first stacked body including a plurality of first electrode films and a first inter-electrode insulating film, the plurality of first electrode films being stacked along a first axis perpendicular to the major surface, the first inter-electrode insulating film being provided between two of the first electrode films mutually adjacent along the first axis; a first semiconductor layer opposing side surfaces of the first electrode films; a first memory film provided between the first semiconductor layer and the first electrode films; and a first conductive film provided on the first stacked body apart from the first stacked body. The non-memory unit includes a resistance element unit of the same layer as the conductive film.
    Type: Application
    Filed: March 15, 2012
    Publication date: March 7, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Masao Iwase, Hiroyasu Tanaka
  • Publication number: 20130049093
    Abstract: Various embodiments include apparatuses and methods of forming the same. One such apparatus can include a first dielectric material and a second dielectric material, and a conductive material between the first dielectric material and the second dielectric material. A charge storage element, such as a floating gate or charge trap, is between the first dielectric material and the second dielectric material and adjacent to the conductive material. The charge storage element has a first surface and a second surface. The first and second surfaces are substantially separated from the first dielectric material and the second dielectric material, respectively, by a first air gap and a second air gap. Additional apparatuses and methods are disclosed.
    Type: Application
    Filed: August 31, 2011
    Publication date: February 28, 2013
    Inventors: Minsoo Lee, Akira Goda
  • Publication number: 20130043509
    Abstract: A non-volatile memory device according to an aspect of the present disclosure includes a substrate, a plurality of word lines stacked over the substrate and having a stepwise pattern, wherein the plurality of word lines each have a pad region, and a plurality of contact plugs coupled to the respective pad regions of the word lines, wherein a width of a pad region of a first one of the plurality of word lines is greater than a width of a pad region of a second word line lower than the first word line.
    Type: Application
    Filed: August 16, 2012
    Publication date: February 21, 2013
    Inventors: Sung Yoon CHO, Hae Jung LEE, Byung Soo PARK, Eun Mi KIM
  • Patent number: 8377774
    Abstract: A split gate-type non-volatile semiconductor memory device includes a floating gate having an acute-angled portion between a side surface and an upper surface above a semiconductor substrate; a control gate provided apart from the floating gate to oppose to the acute-angled portion; and an insulating portion provided on the floating gate. A side surface of the insulating portion on a side of the control gate is inclined to a direction apart from the control gate with respect to a vertical line to the semiconductor substrate.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: February 19, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Takaaki Nagai
  • Publication number: 20130040450
    Abstract: Disclosed herein are various methods of forming metal-containing insulating material regions on a metal layer of a gate structure of a semiconductor device. In one example, the method includes forming a gate structure of a transistor, the gate structure comprising at least a first metal layer, and forming a first metal-containing insulating material region in the first metal layer by performing a gas cluster ion beam process using to implant gas molecules into the first metal layer.
    Type: Application
    Filed: August 8, 2011
    Publication date: February 14, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Ruilong Xie, Chang Seo Park, William James Taylor, JR., John Iacoponi
  • Publication number: 20130032870
    Abstract: Methods of forming multi-tiered semiconductor devices are described, along with apparatuses that include them. In one such method, a silicide is formed in a tier of silicon, the silicide is removed, and a device is formed at least partially in a void that was occupied by the silicide. One such apparatus includes a tier of silicon with a void between tiers of dielectric material. Residual silicide is on the tier of silicon and/or on the tiers of dielectric material and a device is formed at least partially in the void. Additional embodiments are also described.
    Type: Application
    Filed: August 3, 2011
    Publication date: February 7, 2013
    Inventors: Anurag Jindal, Gowri Damarla, Roger W. Lindsay, Eric Blomiley
  • Patent number: 8368125
    Abstract: An electronic device includes a conductive channel defining a crystal structure and having a length and a thickness tC; and a dielectric film of thickness tg in contact with a surface of the channel. Further, the film comprises a material that exerts one of a compressive or a tensile force on the contacted surface of the channel such that electrical mobility of the charge carriers (electrons or holes) along the channel length is increased due to the compressive or tensile force in dependence on alignment of the channel length relative to the crystal structure. Embodiments are given for chips with both hole and electron mobility increased in different transistors, and a method for making such a transistor or chip.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: February 5, 2013
    Assignee: International Business Machines Corporation
    Inventors: Dureseti Chidambarrao, Xiao Hu Liu, Lidija Sekaric
  • Patent number: 8367506
    Abstract: A metal oxide semiconductor (MOS) structure having a high dielectric constant gate insulator layer containing gold (Au) nano-particles is presented with methods for forming the layer with high step coverage of underlying topography, high surface smoothness, and uniform thickness. The transistor may form part of a logic device, a memory device, a persistent memory device, a capacitor, as well as other devices and systems. The insulator layer may be formed using atomic layer deposition (ALD) to reduce the overall device thermal exposure. The insulator layer may be formed of a metal oxide, a metal oxycarbide, a semiconductor oxide, or semiconductor oxide oxycarbide, and the gold nano-particles in insulator layer increase the work function of the insulator layer and affect the tunneling current and the threshold voltage of the transistor.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: February 5, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Publication number: 20130026552
    Abstract: A split gate memory cell is fabricated with a dielectric spacer comprising a high-k material between the word gate and the memory gate stack. Embodiments include memory cells with a dielectric spacer comprising low-k and high-k layers. Other embodiments include memory cells with an air gap between the word gate and the memory gate stack.
    Type: Application
    Filed: July 25, 2011
    Publication date: January 31, 2013
    Inventors: Eng Huat Toh, Shyue Seng (Jason) Tan, Elgin Quek