Making Electrode Structure Comprising Conductor-insulator-conuctor-insulator-semiconductor, E.g., Gate Stack For Non-volatile Memory (epo) Patents (Class 257/E21.209)
  • Publication number: 20110059603
    Abstract: Disclosed is a method of manufacturing a semiconductor device, which includes exposing a photoresist using an exposing mask provided with a light-shielding pattern having two or more narrow width portions, developing the photoresist to form a plurality of stripe-shaped resist patterns, selectively etching a first conductive film using the resist pattern as a mask, forming an intermediate insulating film on the first conductive film, forming a second conductive film on the intermediate insulating film, and forming, by patterning the first conductive film, the intermediate insulating film, and the second conductive film, a flash memory cell and a structure constructed by forming a lower conductor pattern, a segment of the intermediate insulating film, and a dummy gate electrode in this stacking order.
    Type: Application
    Filed: November 16, 2010
    Publication date: March 10, 2011
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Shinichi Nakagawa, Itsuro Sannomiya
  • Publication number: 20110059602
    Abstract: A method of forming a semiconductor device may include forming a first pattern on a substrate, and forming a first dielectric layer on the first pattern. The first pattern may be between portions of the first dielectric layer and the substrate. A second dielectric layer may be formed on the first dielectric layer, and the first dielectric layer may be between the first pattern and the second dielectric layer. A second pattern may be formed on the second dielectric layer. Portions of the second dielectric layer may be exposed by the second pattern, and the first and second dielectric layers may be between portions of the first and second patterns. The exposed portions of the second dielectric layer may be isotropically etched.
    Type: Application
    Filed: June 16, 2010
    Publication date: March 10, 2011
    Inventors: Kyung-yub Jeon, Jong-heui Song, Song-yi Yang
  • Publication number: 20110053338
    Abstract: In a method of fabricating a flash memory, a substrate with isolation structures formed therein and a dielectric layer and a floating gate formed thereon between isolation structures is provided. A mask layer is formed on the substrate, covering the isolation structures in a periphery region and the isolation structure in a cell region adjacent to the periphery region. The isolation structures in the cell region not covered by the mask layer are partially removed. Therefore, a first height difference is between surfaces of the isolation structures in the periphery region and a surface of the dielectric layer, and between a surface of the isolation structure in the cell region adjacent to the periphery region and the surface of the dielectric layer. A second height difference smaller than the first height difference is between surfaces of other isolation structures in the cell region and the surface of the dielectric layer.
    Type: Application
    Filed: September 2, 2009
    Publication date: March 3, 2011
    Applicant: Winbond Electronics Corp.
    Inventors: Lu-Ping Chiang, Hsiu-Han Liao
  • Publication number: 20110049529
    Abstract: Provided is a GaN series semiconductor element, which is capable of obtaining an adequate normally-off characteristic, and a manufacturing method thereof. In a GaN series semiconductor element that comprises an operating layer comprising a GaN series compound semiconductor, a gate insulating film that is formed on the operating layer, and a gate electrode that is formed on the gate insulating film, the gate insulating is a SiO2 film of which an infrared absorption peak that corresponds to the vibration energy of a Si—H bond does not appear in the absorption spectrum of transmitted light that is obtained by the Fourier transform infrared spectroscopy method. This kind of SiO2 film is a high-quality SiO2 film in which the occurrence of Si—H bonds and dangling bonds is suppressed. With this kind of construction, adverse effects on the control of the threshold value of the GaN series semiconductor element are also suppressed, so an adequate normally-off characteristic is obtained.
    Type: Application
    Filed: November 10, 2010
    Publication date: March 3, 2011
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Yoshihiro Sato, Takehiko Nomura, Hiroshi Kambayashi, Shinji Nagata
  • Publication number: 20110049605
    Abstract: A split gate nonvolatile semiconductor storage device includes: a substrate; a floating gate; a control gate; a first source/drain diffusion layer; a second source/drain diffusion layer; and a silicide. The floating gate is formed on the substrate through a gate insulating film. The control gate is formed adjacent to the floating gate through a tunnel insulating film. The first source/drain diffusion layer is formed in a surface region of the substrate on a side of the floating gate. The second source/drain diffusion layer is formed in a surface region of the substrate on a side of the control gate. The silicide contacts the first source/drain diffusion layer.
    Type: Application
    Filed: August 2, 2010
    Publication date: March 3, 2011
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventor: Hisashi ISHIGURO
  • Publication number: 20110053362
    Abstract: A method of forming a mask pattern, a method of forming a minute pattern, and a method of manufacturing a semiconductor device using the same, the method of forming the mask pattern including forming first mask patterns on a substrate; forming first preliminary capping layers on the first mask patterns; irradiating energy to the first preliminary capping patterns to form second preliminary capping layers ionically bonded with the first mask patterns; applying an acid to the second preliminary capping layers to form capping layers; forming a second mask layer between the capping layers, the second mask layer having a solubility lower than that of the capping layers; and removing the capping layers to form second mask patterns.
    Type: Application
    Filed: September 1, 2010
    Publication date: March 3, 2011
    Inventors: Hyoung-Hee KIM, Yool Kang, Seong-Ho Moon, Seok-Hwan Oh, So-Ra Han, Seong-Woon Choi
  • Publication number: 20110053365
    Abstract: In a method for manufacturing a semiconductor device, a silicon oxide layer is formed on a substrate. The silicon oxide layer is treated with a solution comprising ozone. Then, a conductive layer is formed on the silicon oxide layer treated with the solution.
    Type: Application
    Filed: November 9, 2010
    Publication date: March 3, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ki-Hyun HWANG, Won-Jun JANG, Jae-Young AHN, Chang-Sup MUN, Jung-Hyun PARK
  • Patent number: 7897448
    Abstract: A high voltage transistor exhibiting an improved breakdown voltage and related methods are provided. For example, a method of manufacturing an integrated circuit includes etching a poly silicon layer to provide a gate stacked above a floating gate of a flash memory cell. A source and a drain of the flash memory cell are implanted in a substrate. The poly silicon layer is etched to provide a gate of a high voltage transistor. Lightly doped drain (LDD) implants are provided in source/drain regions of the high voltage transistor in the substrate. An annealing operation is performed on the integrated circuit, wherein the annealing causes each of the LDD implants to form a graded junction in relation to a channel in the substrate between the LDD regions, and further causes sidewalls to oxidize on the gates of the flash memory cell and on the gate of the high voltage transistor.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: March 1, 2011
    Assignee: Lattice Semiconductor Corporation
    Inventor: Sunil Mehta
  • Patent number: 7897455
    Abstract: A semiconductor device manufacturing method includes forming a first insulating film on a semiconductor substrate containing silicon, the first insulating film having a first dielectric constant and constituting a part of a tunnel insulating film, forming a floating gate electrode film on the first insulating film, the floating gate electrode film being formed of a semiconductor film containing silicon, patterning the floating gate electrode film, the first insulating film, and the semiconductor substrate to form a first structure having a first side surface, exposing the first structure to an atmosphere containing an oxidizing agent, oxidizing that part of the floating gate electrode film which corresponds to a boundary between the first insulating film and the floating gate electrode film using the oxidizing agent, to form a second insulating film having a second dielectric constant smaller than the first dielectric constant and constituting a part of the tunnel insulating film.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: March 1, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshio Ozawa, Isao Kamioka
  • Patent number: 7888711
    Abstract: A structure for a memory device including a plurality of substantially planar thin-film layers or a plurality of conformal thin-film layers is disclosed. The thin-film layers form a memory element that is electrically in series with first and second cladded conductors and operative to store data as a plurality of conductivity profiles. A select voltage applied across the first and second cladded conductors is operative to perform data operations on the memory device. The memory device may optionally include a non-ohmic device electrically in series with the memory element and the first and second cladded conductors. Fabrication of the memory device does not require the plurality of thin-film layers be etched in order to form the memory element. The memory element can include a CMO layer having a selectively crystallized polycrystalline portion and an amorphous portion. The cladded conductors can include a core material made from copper.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: February 15, 2011
    Inventors: Robin Cheung, Darrell Rinerson, Travis Byonghyop Oh, Jonathan Bornstein, David Hansen
  • Patent number: 7888728
    Abstract: In a non-volatile semiconductor memory device and a method for manufacturing the device, each memory cell and its select Tr have the same gate insulating film as a Vcc Tr. Further, the gate electrodes of a Vpp Tr and Vcc Tr are realized by the use of a first polysilicon layer. A material such as salicide or a metal, which differs from second polysilicon (which forms a control gate layer), may be provided on the first polysilicon layer. With the above features, a non-volatile semiconductor memory device can be manufactured by reduced steps and be operated at high speed in a reliable manner.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: February 15, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Toshitake Yaegashi, Kazuhiro Shimizu, Seiichi Aritome
  • Patent number: 7879704
    Abstract: A memory function body has a medium interposed between a first conductor (e.g., a conductive substrate) and a second conductor (e.g., an electrode) and consisting of a first material (e.g., silicon oxide or silicon nitride). The medium contains particles. Each particle is covered with a second material (e.g., silver oxide) and formed of a third material (e.g., silver). The second material functions as a barrier against passage of electric charges, and the third material has a function of retaining electric charges. The third material is introduced into the medium by, for example, a negative ion implantation method.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: February 1, 2011
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Nobutoshi Arai, Hiroshi Iwata, Seizo Kakimoto
  • Publication number: 20110006354
    Abstract: A semiconductor device structure, for improving the metal gate leakage within the semiconductor device. A structure for a metal gate electrode for a n-type Field Effect Transistor includes a capping layer; a first metal layer comprising Ti and Al over the capping layer; a metal oxide layer over the first metal layer; a barrier layer over the metal oxide layer; and a second metal layer over the barrier layer.
    Type: Application
    Filed: April 6, 2010
    Publication date: January 13, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shiu-Ko JANGJIAN, Szu-An WU, Sheng-Wen CHEN
  • Patent number: 7867919
    Abstract: Lanthanum-metal oxide dielectric layers and methods of fabricating such dielectric layers provide an insulating layer in a variety of structures for use in a wide range of electronic devices and systems. In an embodiment, a lanthanum aluminum oxide dielectric layer is formed using a trisethylcyclopentadionatolanthanum precursor and/or a trisdipyvaloylmethanatolanthanum precursor.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: January 11, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Publication number: 20110001183
    Abstract: A memory device and a method of fabricating the same are provided. The memory device includes a tunneling dielectric layer on a substrate, a charge storage layer on the tunneling dielectric layer, a blocking dielectric layer on the charge storage layer, the blocking dielectric layer including a first dielectric layer having silicon oxide, a second dielectric layer on the first dielectric layer and having aluminum silicate, and a third dielectric layer formed on the second dielectric layer and having aluminum oxide, and an upper electrode on the blocking dielectric layer.
    Type: Application
    Filed: March 5, 2010
    Publication date: January 6, 2011
    Inventors: Dong-Chul Yoo, Eun-Ha Lee, Hyung-Ik Lee, Ki-Hyun Hwang, Sung Heo, Han-Mei Choi, Yong-Koo Kyoung, Byong-Ju Kim
  • Patent number: 7863175
    Abstract: A system and method are disclosed for processing a zero angstrom oxide interface dual poly gate structure for a flash memory device. An exemplary method can include removing an oxide on a surface of a first poly layer and forming a second poly layer on the first poly layer in a same processing chamber. A transfer of the structure is not needed from an oxide removal tool to, for example, a poly layer formation tool, an implant tool, and the like. As a result, impurities containing a silicon oxide caused by exposure of the first poly layer to an oxygen-containing atmosphere do not form at the interface of the first and second poly layers.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: January 4, 2011
    Assignees: Spansion LLC, Globalfoundries Inc.
    Inventors: Robert Bertram Ogle, Joong Jeon, Eric Paton, Austin Frenkel
  • Patent number: 7859045
    Abstract: Disclosed is a method of manufacturing a semiconductor device, which includes exposing a photoresist using an exposing mask provided with a light-shielding pattern having two or more narrow width portions, developing the photoresist to form a plurality of stripe-shaped resist patterns, selectively etching a first conductive film using the resist pattern as a mask, forming an intermediate insulating film on the first conductive film, forming a second conductive film on the intermediate insulating film, and forming, by patterning the first conductive film, the intermediate insulating film, and the second conductive film, a flash memory cell and a structure constructed by forming a lower conductor pattern, a segment of the intermediate insulating film, and a dummy gate electrode in this stacking order.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: December 28, 2010
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Shinichi Nakagawa, Itsuro Sannomiya
  • Patent number: 7855410
    Abstract: According to one embodiment, a semiconductor memory device can be generally characterized as including a gate insulating layer on a semiconductor substrate, a floating gate on the gate insulating layer and a word line disposed on one side of the floating gate. A first side of the floating gate facing the word line may include a projecting portion projecting toward the word line. A tip of the projecting portion may include a corner that extends substantially perpendicularly with respect to a top surface of the semiconductor substrate.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: December 21, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung-Jin Yang, Jeong-Uk Han, Yong-Suk Choi, Hyok-Ki Kwon, Bae-Seong Kwon
  • Publication number: 20100317186
    Abstract: Embodiments described herein generally relate to flash memory devices and methods for manufacturing flash memory devices. In one embodiment, a method for selective removal of nitrogen from the nitrided areas of a substrate is provided. The method comprises positioning a substrate comprising a material layer disposed adjacent to an oxide containing layer in a processing chamber, exposing the substrate to a nitridation process to incorporate nitrogen onto the material layer and the exposed areas of the oxide containing layer, and exposing the nitrided material layer and the nitrided areas of the oxide containing layer to a gas mixture comprising a quantity of a hydrogen containing gas and a quantity of an oxygen containing gas to selectively remove nitrogen from the nitrided areas of the oxide containing layer relative to the nitrided material layer using a radical oxidation process.
    Type: Application
    Filed: June 15, 2010
    Publication date: December 16, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Johanes Swenberg, David Chu, Theresa Kramer Guarini, Yonah Cho, Udayan Ganguly, Lucien Date
  • Publication number: 20100311232
    Abstract: A method of manufacturing a nonvolatile memory device comprises providing a semiconductor substrate defining active regions and isolation regions with a gate insulating layer and a floating gate formed over each active region and isolation layer formed in the respective isolation regions, forming a dielectric layer on a surface of the isolation layers and the floating gates, forming a polysilicon layer over the dielectric layer through a polysilicon deposition process using a nitrogen source gas, a silicon source gas, and an impurity doping gas, and patterning the polysilicon layer to form a control gate.
    Type: Application
    Filed: June 3, 2010
    Publication date: December 9, 2010
    Applicant: HYNIX SEMICONDUCTOR INC.
    Inventor: Sun Kak Hwang
  • Publication number: 20100308395
    Abstract: A method of manufacturing a nonvolatile memory device comprises forming a gate insulating layer and a first conductive layer over a semiconductor substrate that defines a first area in which selection lines will be formed and a second area in which word lines will be formed, performing an etch process to lower a height of the first conductive layer in the first area, forming a dielectric layer and a second conductive layer over the first conductive layer with a height that is different from the height of the first conductive layer, and performing a gate patterning process to form the selection lines and the word lines.
    Type: Application
    Filed: June 3, 2010
    Publication date: December 9, 2010
    Applicant: HYNIX SEMICONDUCTOR INC.
    Inventor: Jong Soon Leem
  • Patent number: 7846794
    Abstract: flash memory cell includes a silicon substrate having a main surface, a source region in a portion of the silicon substrate proximate the main surface and a drain region in a portion of the silicon substrate proximate the main surface. The drain region is spaced apart from the source region. The memory cell includes a first dielectric layer formed on the main surface, a floating gate disposed above the first dielectric layer, an inter-gate dielectric layer disposed above the floating gate, a control gate disposed above the inter-gate dielectric layer, a second dielectric layer and a low-k dielectric spacer layer disposed on the second dielectric layer. The first dielectric layer covers a portion of the main surface between the source and the drain. The second dielectric layer surrounds outer portions of the first dielectric layer, the control gate, the inter-gate dielectric layer and the floating gate.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: December 7, 2010
    Assignee: Macronix International Co., Ltd.
    Inventors: Chu-Ching Wu, Cheng-Ming Yih
  • Patent number: 7838365
    Abstract: A new SONOS memory device is provided, in which a conventional planar surface of multi-dielectric layers (ONO layers) is instead formed with a curved surface such as a cylindrical shape, and included is a method for fabricating the same. A radius of curvature of the upper surface of a blocking oxide can be designed to be larger than that of the lower surface of a tunneling oxide, which restrains electrons from passing through the blocking oxide by back-tunneling on erasing. As a result, a SONOS memory device shows an improvement in erasing speed.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: November 23, 2010
    Assignees: Samsung Electronics Co., Ltd., Seoul National University Industry Foundation
    Inventors: Byung Gook Park, Jung Hoon Lee
  • Patent number: 7838910
    Abstract: Memory devices include a semiconductor substrate and a plurality of wordlines on the semiconductor substrate. A ground select line is on the semiconductor substrate on a first side of the wordlines and a string select line is on the semiconductor substrate on a second side of the wordlines. The wordlines extend between the ground select line and the string select line. First spacers are disposed between the wordlines, between the ground select line and an adjacent one of the wordlines and between the string select line and an adjacent one of the wordlines. Second spacers are disposed on sidewalls of the ground select line and the string select line displaced from the first spacers. The second spacers are a different material than the first spacers. The memory devices may be nonvolatile memory devices. Methods are also provided for forming the memory devices.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: November 23, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Seung-Jun Lee
  • Patent number: 7834382
    Abstract: A nitride read-only memory cell and a method of manufacturing the same are provided. First, a substrate is provided, and a first oxide layer is formed on the substrate. Next, a nitride layer is deposited on the first oxide layer via a first gas and a second gas. The flow ratio of the first gas to the second gas is 2:1. After that, a second oxide layer is formed on the nitride layer. Then, a bit-line region is formed at the substrate. Afterward, a gate is formed on the second oxide layer. The first oxide layer, nitride layer, the second oxide layer and the gate compose a stack structure of the cell. Further, a spacer is formed on the side-wall of the stack structure.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: November 16, 2010
    Assignee: Macronix International Co., Ltd.
    Inventor: Chi-Pin Lu
  • Patent number: 7829927
    Abstract: The invention relates to a DRAM memory device with a capacity associated with a field effect transistor, in which all or some of the molecules capable of storing the loads comprising a polyoxometallate are incorporated into the capacity, or a flash-type memory using at least one field effect transistor, in which the molecules capable of storing the loads comprising a polyoxometallate are incorporated into the floating grid of the transistor. The invention also relates to a method for producing on such device and to an electronic appliance comprising one such memory device.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: November 9, 2010
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Gérard Bidan, Eric Jalaguier
  • Patent number: 7829935
    Abstract: A semiconductor memory has a composite floating structure in which quantum dots composed of Si and coated with a Si oxide thin film are deposited on an insulating film formed on a semiconductor substrate, quantum dots coated with a high-dielectric insulating film are deposited on the quantum dots, and quantum dots composed of Si and coated with a high-dielectric insulating film are further deposited. Each of the quantum dots includes a core layer and a clad layer which covers the core layer. The electron occupied level in the core layer is lower than that in the clad layer.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: November 9, 2010
    Assignee: Hiroshima University
    Inventors: Katsunori Makihara, Seiichi Miyazaki, Seiichiro Higashi
  • Publication number: 20100279486
    Abstract: A floating gate MOS transistor having a conductive floating gate electrode insulated from a semiconductor material having a main surface by a gate dielectric layer. At least one isolation region formed lateral to the gate electrode. An evacuation is formed in the isolation region and beneath the main surface of the semiconductor material layer. A conductive material fills the evacuation. A conductive control gate electrode is formed above the floating gate electrode. The floating gate electrode is laterally aligned to at least one isolation region.
    Type: Application
    Filed: May 21, 2010
    Publication date: November 4, 2010
    Inventors: Carlo Cremonesi, Allesia Pavan, Giorgio Servalli
  • Patent number: 7825458
    Abstract: A nonvolatile semiconductor memory includes a source area and a drain area provided on a semiconductor substrate with a gap which serves as a channel area, a first insulating layer, a charge accumulating layer, a second insulating layer (block layer) and a control electrode, formed successively on the channel area, and the second insulating layer is formed by adding an appropriate amount of high valence substance into base material composed of substance having a sufficiently higher dielectric constant than the first insulating layer so as to accumulate a large amount of negative charges in the block layer by localized state capable of trapping electrons, so that the high dielectric constant of the block layer and the high electronic barrier are achieved at the same time.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: November 2, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tatsuo Shimizu, Koichi Muraoka, Masato Koyama, Shoko Kikuchi
  • Patent number: 7824992
    Abstract: A method of fabricating a non-volatile memory device includes: forming a tunnel insulation layer pattern and a floating gate electrode layer pattern over a semiconductor substrate; forming an isolation trench by etching an exposed portion of the semiconductor substrate so that the isolation trench is aligned with the tunnel insulation layer pattern and the floating gate electrode layer pattern; forming an isolation layer by filling the isolation trench with a filling insulation layer; forming a hafnium-rich hafnium silicon oxide layer over the isolation layer and the floating gate electrode layer pattern; forming a hafnium-rich hafnium silicon oxynitride layer by carrying out a first nitridation on the hafnium-rich hafnium silicon oxide layer; forming a silicon-rich hafnium silicon oxide layer over the hafnium-rich hafnium silicon oxynitride layer; forming a silicon-rich hafnium silicon oxynitride layer by carrying out a second nitridation on the silicon-rich hafnium silicon oxide layer; and forming a control
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: November 2, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Moon Sig Joo, Heung Jae Cho, Yong Soo Kim, Won Joon Choi
  • Patent number: 7816245
    Abstract: A semiconductor device is formed by providing a semiconductor substrate comprising a cell region, a peripheral circuit region, and a resistor region, forming a device isolation layer on the semiconductor substrate so as to define an active region, forming a first insulating layer and a polysilicon pattern on the active region of the peripheral circuit region, forming a second insulating layer, a charge storage layer, and a third insulating layer on the active region of the cell region, forming a conductive layer on the semiconductor substrate, and patterning the conductive layer to form conductive patterns on the third insulating layer of the cell region, the polysilicon pattern of the active region of peripheral circuit region, and the semiconductor substrate of the resistor region, respectively.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: October 19, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Sun Sel, Jung-Dal Choi
  • Publication number: 20100258851
    Abstract: Nanocrystal memories and methods of making the same are disclosed. In one embodiment, a memory device comprises a substrate, a tunneling oxide, a silicide nanocrystal floating gate, and a control oxide. The tunneling oxide is positioned upon a first surface of the substrate, the silicide nanocrystal floating gate is positioned upon the tunneling oxide, and the control oxide positioned upon the nanocrystal floating gate.
    Type: Application
    Filed: April 9, 2010
    Publication date: October 14, 2010
    Applicant: The Regents of the University of California
    Inventors: Jianlin Liu, Dengtao Zhao, Yan Zhu, Ruigang Li, Bei Li
  • Patent number: 7812396
    Abstract: A semiconductor device having a first semiconductor region and second semiconductor region including impurities formed on an insulating layer formed on a semiconductor substrate, an insulator formed between the first semiconductor region and the second semiconductor region, a first impurity diffusion control film formed on the first semiconductor region and a second impurity diffusion control film formed on the second semiconductor region, a channel layer formed on the first impurity diffusion control film and second impurity diffusion film to cross at right angles with a direction where the first semiconductor region and the second semiconductor region are extended, a gate insulating film formed on the channel layer and a gate electrode formed on the gate insulating layer.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: October 12, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masaru Kito, Hideaki Aochi, Ryota Katsumata, Masaru Kidoh
  • Publication number: 20100252875
    Abstract: A structure of a non-volatile memory is described, including a substrate, isolation structures disposed in and protrudent over the substrate, floating gates as conductive spacers on the sidewalls of the isolation structures protrudent over the substrate, and a tunneling layer between each floating gate and the substrate. A process for fabricating a non-volatile memory is also described. Isolation structures are formed in a substrate protrudent over the same, a tunneling layer is formed over the substrate, and then floating gates are formed as conductive spacers on the sidewalls of the first isolation structures protrudent over the substrate.
    Type: Application
    Filed: April 3, 2009
    Publication date: October 7, 2010
    Applicant: POWERCHIP SEMICONDUCTOR CORP.
    Inventor: Riichiro Shirota
  • Publication number: 20100248466
    Abstract: A method of making a semiconductor device on a semiconductor layer includes: forming a gate dielectric over the semiconductor layer; forming a layer of gate material over the gate dielectric; etching the layer of gate material to form a select gate; forming a storage layer that extends over the select gate and over a portion of the semiconductor layer; depositing an amorphous silicon layer over the storage layer; etching the amorphous silicon layer to form a control gate; and annealing the semiconductor device to crystallize the amorphous silicon layer.
    Type: Application
    Filed: March 31, 2009
    Publication date: September 30, 2010
    Inventors: Konstantin V. Loiko, Brian A. Winstead, Taras A. Kirichenko
  • Patent number: 7804123
    Abstract: A nonvolatile semiconductor memory according to an example of the present invention includes first and second diffusion layers, a channel formed between the first and second diffusion layers, a gate insulating film formed on the channel, a floating gate electrode formed on the gate insulating film, an inter-gate insulating film formed on the floating gate electrode, and a control gate electrode formed on the inter-gate insulating film. An end portion of the inter-gate insulating film in a direction of channel length is on an inward side of a side surface of the floating gate electrode or a side surface of the control gate electrode.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: September 28, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Shoichi Watanabe
  • Publication number: 20100240193
    Abstract: A method of forming a flash memory device in a memory cell region of a substrate includes forming a first insulating layer on the substrate, forming a first conductive layer on the first insulating layer, forming trench isolation regions in the substrate extending through the first conductive layer and the first insulating layer to define an active region in the memory cell region between the trench isolation regions, and selectively removing the first conductive layer and the first insulating layer from the memory cell region of the substrate to expose a surface of the active region between the trench isolation regions.
    Type: Application
    Filed: May 28, 2010
    Publication date: September 23, 2010
    Inventor: Jae Hoon Kim
  • Publication number: 20100240205
    Abstract: Provided are three-dimensional nonvolatile memory devices and methods of fabricating the same. The memory devices include semiconductor pillars penetrating interlayer insulating layers and conductive layers alternately stacked on a substrate and electrically connected to the substrate and floating gates selectively interposed between the semiconductor pillars and the conductive layers. The floating gates are formed in recesses in the conductive layers.
    Type: Application
    Filed: March 9, 2010
    Publication date: September 23, 2010
    Inventors: Byoungkeun Son, Hansoo Kim, Jinho Kim, Kihyun Kim
  • Patent number: 7799629
    Abstract: A example embodiment may provide a memory device that may include an active pattern on a semiconductor substrate, a first charge trapping layer pattern on the active pattern, a first gate electrode on the first charge trapping layer pattern, a second charge trapping layer pattern on a sidewall of the active pattern in a first direction, a second gate electrode on the second charge trapping layer pattern in the first direction, and/or a source/drain region in the active pattern. The memory device may have improved integration by forming a plurality of charge trapping layer patterns on the same active pattern.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: September 21, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Na-Young Kim, Chang-Woo Oh, Sung-Hwan Kim, Yong-Lack Choi
  • Patent number: 7800157
    Abstract: According to an aspect of the present invention, there is provided a method for manufacturing a semiconductor device including: sequentially forming a first insulating film, a first electrode film, a second insulating film, and a second electrode film on a substrate; forming a groove that separates the second electrode film, the second insulating film and the first electrode film; forming an insulating film inside the groove so that an upper surface thereof is positioned between upper surfaces of the second electrode film and the second insulating film; forming an overhung portion on the second electrode film so as to overhang on the insulating film by performing a selective growth process; and forming a low resistance layer at the overhung portion and the second electrode film by performing an alloying process.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: September 21, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akihiro Ryusenji, Minori Kajimoto, Yugo Ide
  • Publication number: 20100227469
    Abstract: A method of manufacturing a flash memory device. According to the invention, a floating gate can be formed and a distance between cells can be secured sufficiently by using one conductive layer without using a SA-STI process that cannot be applied to the manufacture process of high-integrated semiconductor devices. It is therefore possible to minimize an interference phenomenon between neighboring cells. Furthermore, an isolation film is etched after a photoresist film covering only a high-voltage transistor region is formed, or a gate oxide film is formed after a semiconductor substrate is etched at a thickness, which is the same as that of the gate oxide film of the high-voltage transistor region, so that a step between the cell region and the high-voltage transistor region is the same. Accordingly, the coupling ratio can be increased even by the gate oxide film of the high-voltage transistor region, which is thicker than the tunnel oxide film of the cell region.
    Type: Application
    Filed: May 14, 2010
    Publication date: September 9, 2010
    Applicant: HYNIX SEMICONDUCTOR INC.
    Inventors: Joo Won Hwang, Byung Soo Park, Ga Hee Lee
  • Publication number: 20100227467
    Abstract: A method of manufacturing a semiconductor device on a substrate. The method may include forming a non-volatile memory in a memory area of the substrate. The forming non-volatile memory on a substrate may include formation in the memory area of a floating gate structure and of a control gate structure which is in a stacked configuration with the floating gate structure. One or more gate material layer may be formed in a logic area of the substrate. After forming the control gate structure and the gate material layer, a filling material layer may be deposited over the logic area and the memory area. The filling material layer may be partially removed by reducing the thickness of the filling material in the logic area and the memory area, at least until a top surface of the one or more gate material layer is exposed. Logic devices may be formed in the logic area, the formation may include forming a logic gate structure from the gate material layer.
    Type: Application
    Filed: August 1, 2007
    Publication date: September 9, 2010
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Virginie Beugin, Massud Abubaker Aminpur
  • Publication number: 20100227468
    Abstract: A nonvolatile semiconductor memory includes a first and a second diffusion layer regions, a floating gate electrode disposed, with a gate insulating film interposed therebetween, on a channel region between the first and second diffusion layer regions, and a control gate electrode serving as a word line and disposed on the floating gate electrode with an interelectrode insulating film interposed therebetween. The interelectrode insulating film covers whole side portions of the floating gate electrode located in a direction different from a direction in which the word line extends, and the control gate electrode covers the side portions of the floating gate electrode located in the direction different from the direction in which the word line extends.
    Type: Application
    Filed: May 17, 2010
    Publication date: September 9, 2010
    Inventor: Takayuki Toba
  • Patent number: 7790524
    Abstract: Device and design structures for memory cells in a non-volatile random access memory (NVRAM) and methods for fabricating such device structures using complementary metal-oxide-semiconductor (CMOS) processes. The device structure, which is formed using a semiconductor-on-insulator (SOI) substrate, includes a floating gate electrode, a semiconductor body, and a control gate electrode separated from the semiconductor body by the floating gate electrode. The floating gate electrode, the control gate electrode, and the semiconductor body, which are both formed from the monocrystalline SOI layer of the SOI substrate, are respectively separated by dielectric layers. The dielectric layers may each be composed of thermal oxide layers grown on confronting sidewalls of the semiconductor body, the floating gate electrode, and the control gate electrode. An optional deposited dielectric material may fill any remaining gap between either pair of the thermal oxide layers.
    Type: Grant
    Filed: January 11, 2008
    Date of Patent: September 7, 2010
    Assignee: International Business Machines Corporation
    Inventors: Wagdi W. Abadeer, Kiran V. Chatty, Robert J. Gauthier, Jr., Jed H. Rankin, Yun Shi, William R. Tonti
  • Patent number: 7790535
    Abstract: A semiconductor device and a method of manufacturing are provided. A dielectric layer is formed over a substrate, and a first silicon-containing layer, undoped, is formed over the dielectric layer. Atomic-layer doping is used to dope the undoped silicon-containing layer. A second silicon-containing layer is formed over first silicon-containing layer. The process may be expanded to include forming a PMOS and NMOS device on the same wafer. For example, the first silicon-containing layer may be thinned in the PMOS region prior to the atomic-layer doping. In the NMOS region, the doped portion of the first silicon-containing layer is removed such that the remaining portion of the first silicon-containing layer in the NMOS is undoped. Thereafter, another atomic-layer doping process may be used to dope the first silicon-containing layer in the NMOS region to a different conductivity type. A third silicon-containing layer may be formed doped to the respective conductivity type.
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: September 7, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jing-Cheng Lin, Chen-Hua Yu
  • Patent number: 7785920
    Abstract: A pillar-type phase change memory element comprises first and second electrode elements and a phase change element therebetween. A second electrode material and a chlorine-sensitive phase change material are selected. A first electrode element is formed. The phase change material is deposited on the first electrode element and the second electrode material is deposited on the phase change material. The second electrode material and the phase change material are etched without the use of chlorine to form a second electrode element and a phase change element. The second electrode material selecting step, the phase change material selecting step and the etching procedure selecting step are carried out so that the phase change element is not undercut relative to the second electrode element during etching.
    Type: Grant
    Filed: July 12, 2006
    Date of Patent: August 31, 2010
    Assignee: Macronix International Co., Ltd.
    Inventors: Hsiang-Lan Lung, ChiaHua Ho
  • Publication number: 20100213534
    Abstract: In a nonvolatile semiconductor memory device provided with memory cell transistors, each of the memory cell transistors has a tunnel insulating film, a floating gate electrode, an inter-electrode insulating film, and element isolation insulating films respectively. The floating gate electrode on the tunnel insulating film is provided with a first floating gate electrode and a second floating gate electrode formed sequentially from the bottom, the second floating gate electrode being narrower in a channel-width direction than the first one. Levels of upper surfaces of the element isolation insulating films and the first floating gate electrode are the same. The inter-electrode insulating film continuously covers the upper and side surfaces of the floating gate electrode and the upper surfaces of the element isolation insulating films, and is higher in a nitrogen concentration in a boundary portion to the floating gate electrode than in boundary portions to the element isolation insulating films.
    Type: Application
    Filed: February 19, 2010
    Publication date: August 26, 2010
    Inventors: Katsuyuki SEKINE, Katsuaki Natori, Tetsuya Kai, Yoshio Ozawa
  • Publication number: 20100213529
    Abstract: Semiconductor device formed by a first conductive strip of semiconductor material; a control gate region of semiconductor material, facing a channel portion of the first conductive strip, and an insulation region arranged between the first conductive strip and the control gate region. The first conductive strip includes a conduction line having a first conductivity type and a control line having a second conductivity type, arranged adjacent and in electrical contact with each other, and the conduction line forms the channel portion, a first conduction portion and a second conduction portion arranged on opposite sides of the channel portion.
    Type: Application
    Filed: March 20, 2006
    Publication date: August 26, 2010
    Inventors: Paolo Rolandi, Cristiano Calligaro, Luigi Pascucci
  • Publication number: 20100213530
    Abstract: A nonvolatile memory device comprises a gate insulating layer formed on a semiconductor substrate, gate patterns formed on the gate insulating layer, insulating layer spacers defining seams and being coupled together in spaces between the gate patterns, the insulating layer spacers being formed on sidewalls of the gate patterns, a height of the insulating layer spacers being lower than a height of the gate patterns, and an auxiliary layer filling the seams.
    Type: Application
    Filed: December 30, 2009
    Publication date: August 26, 2010
    Applicant: HYNIX SEMICONDUCTOR INC.
    Inventor: Sang Deok Kim
  • Patent number: 7776622
    Abstract: A semiconductor device fabrication method that improves the efficiency of semiconductor device production. A plurality of wafer substrates are set and a process for fabricating semiconductor devices each having a ferroelectric capacitor is begun. After ferroelectric layers are formed over the plurality of wafer substrates, the ferroelectric layers formed are damaged. The plurality of wafer substrates are then rearranged and treatment is performed. In each step in which the ferroelectric layers formed may be damaged, the plurality of wafer substrates are rearranged and treatment is performed. As a result, retention characteristic variations among wafer substrates in the same lot are reduced and the productivity of semiconductor devices is improved.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: August 17, 2010
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kouichi Nagai