Encapsulation Of Active Face Of Flip Chip Device, E.g., Under Filling Or Under Encapsulation Of Flip-chip, Encapsulation Perform On Chip Or Mounting Substrate (epo) Patents (Class 257/E21.503)
  • Patent number: 7964446
    Abstract: A manufacturing method of a semiconductor device includes: forming a columnar electrode on a semiconductor wafer; flip-chip bonding a second semiconductor chip onto the semiconductor wafer; forming a molding portion on the semiconductor wafer, the molding portion covering and molding the columnar electrode and the second semiconductor chip; grinding or polishing the molding portion and the second semiconductor chip so that an upper face of the columnar electrode and an upper face of the semiconductor chip are exposed; and cutting the molding portion and the semiconductor wafer so that a first semiconductor chip, where the second semiconductor chip is flip-chip bonded and the columnar electrode is formed, is formed.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: June 21, 2011
    Assignee: Spansion LLC
    Inventors: Masanori Onodera, Kouichi Meguro
  • Publication number: 20110143502
    Abstract: A device including a first body (101) with terminals (102) on a surface (101a), each terminal having a metallic connector (110), which is shaped as a column substantially perpendicular to the surface. Preferably, the connectors have an aspect ratio of height to diameter of 2 to 1 or greater, and a fine pitch center-to-center. The connector end (110a) remote from the terminal is covered by a film (130) of a sintered paste including a metallic matrix embedded in a first polymeric compound. Further a second body (103) having metallic pads (140) facing the respective terminals (102). Each connector film (130) is in contact with the respective pad (140), whereby the first body (101) is spaced from the second body (103) with the connector columns (110) as standoff. A second polymeric compound (150) is filling the space of the standoff.
    Type: Application
    Filed: January 25, 2011
    Publication date: June 16, 2011
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Abram M. CASTRO
  • Patent number: 7960214
    Abstract: A fabricating process of chip package structure is provided. First, a first substrate having a plurality of first bonding pads and a second substrate having a plurality of second bonding pads are provide, wherein a plurality of bumps are formed on the first bonding pads of the first substrate. A first two-stage adhesive layer is formed on the first substrate or on the second substrate and is B-stagized to form a first B-staged adhesive layer. A second two-stage adhesive layer is formed on the first B-staged adhesive layer and is B-stagized to form a second B-staged adhesive layer. Then, the first substrate and the second substrate are bonded via the first B-staged adhesive layer and the second B-staged adhesive layer such that each of the first bonding pads is respectively electrically connected to one of the second bonding pads via one of the bumps.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: June 14, 2011
    Assignees: ChipMOS Technologies Inc., ChipMOS Technologies (Bermuda) Ltd.
    Inventors: Geng-Shin Shen, David Wei Wang
  • Publication number: 20110133344
    Abstract: This invention relates to thermosetting resin compositions useful for flip chip (“FC”) underfill sealant materials, where a semiconductor chip is mounted directly onto a circuit through solder electrical interconnections. Similarly, the compositions are useful for mounting onto a circuit board semiconductor devices, such as chip size or chip scale packages (“CSPs”), ball grid arrays (“BGAs”), land grid arrays (“LGAs”) and the like, each of which having a semiconductor chip, such as large scale integration (“LSI”), on a carrier substrate.
    Type: Application
    Filed: December 7, 2009
    Publication date: June 9, 2011
    Applicant: Henkel Corporation
    Inventors: My Nhu Nguyen, Puwei Liu
  • Patent number: 7955895
    Abstract: A method for fabricating stacked wafers is provided. In one embodiment, the method comprises providing a wafer having a chip side and a non-chip side, the chip side comprising a plurality of semiconductor chips. A plurality of dies is provided, each of the die bonded to one of the plurality of semiconductor chips. The chip side of the wafer and the plurality of dies are encapsulated with a protecting material. The non-chip side of the wafer is thinned to an intended thickness. The wafer is then diced to separate the wafer into individual semiconductor packages.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: June 7, 2011
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ku-Feng Yang, Wen-Chih Chiou, Weng-Jin Wu, Hung-Jung Tu
  • Patent number: 7951700
    Abstract: The invention involves mounting a solder resin composition (6) including a solder powder (5a) and a resin (4) on the first electronic component (2); arranging such that the connecting terminals (3) of the first electronic component (2) and the electrode terminals (7) of the second electronic component (8) are facing each other; ejecting a gas (9a) from a gas generation source (1) included in the first electronic component (2) by heating the first electronic component (2) and the solder resin composition; and inducing the flow of the solder powder (5a) in the solder resin composition (6) by inducing convection of the gas (9a) in the solder resin composition (6), and electrically connecting the connecting terminals (3) and the electrode terminals (7) by self-assembly on the connecting terminals (3) and the electrode terminals (7).
    Type: Grant
    Filed: March 16, 2006
    Date of Patent: May 31, 2011
    Assignee: Panasonic Corporation
    Inventors: Takashi Kitae, Seiichi Nakatani, Seiji Karashima, Yoshihisa Yamashita, Takashi Ichiryu
  • Patent number: 7943421
    Abstract: A method of forming integrated circuits includes laminating a patterned film including an opening onto a wafer, wherein a bottom die in the wafer is exposed through the opening. A top die is placed into the opening. The top die fits into the opening with substantially no gap between the patterned film and the top die. The top die is then bonded onto the bottom die, followed by curing the patterned film.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: May 17, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Weng-Jin Wu, Hung-Jung Tu, Ku-Feng Yang, Jung-Chih Hu, Wen-Chih Chiou
  • Patent number: 7943435
    Abstract: An underfill film for an electronic device includes a thermally conductive sheet. The electronic device may include a printed circuit board, an electrical component, an underfill, and the thermally conductive sheet. The underfill is situated between the circuit board and the component. The thermally conductive sheet is situated within the underfill, and together with the underfill, constitutes the underfill film. The device may include solder bumps affixing the component to the circuit board, the underfill film having holes within which the solder bumps are aligned. There may be solder bumps on the underside of the circuit board promoting heat dissipation. There may be heat sinks on the circuit board to which the thermally conductive sheet is affixed promoting heat dissipation. The thermally conductive sheet may be affixed to a chassis promoting heat dissipation. The thermally conductive sheet thus promotes heat dissipation from the component to at least the circuit board.
    Type: Grant
    Filed: June 29, 2008
    Date of Patent: May 17, 2011
    Assignee: International Business Machines Corporation
    Inventor: Keiji Matsumoto
  • Publication number: 20110108875
    Abstract: There is provided a light emitting device highly resistant to the environment, and having good heat resistance, light resistance and gas barrier property, and a method for producing same. With the light emitting device, a substrate 2 and interconnect patterns 5A, 5B formed on the surface thereof are covered with an acrylic resin primer 10 having better gas barrier property than a silicone resin sealing resin part 3. Light resistance is ensured by the silicone resin sealing resin portion 3 and the gas barrier property can be ensured by the acrylic resin primer 10.
    Type: Application
    Filed: June 5, 2009
    Publication date: May 12, 2011
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Yasuji Takenaka, Masashi Takemoto, Nobuaki Aoki
  • Patent number: 7935555
    Abstract: A method of sealing a microelectromechanical system (MEMS) device from ambient conditions is described. The MEMS device is formed on a substrate and a substantially hermetic seal is formed as part of the MEMS device manufacturing process. The method may include forming a metal seal on the substrate proximate to a perimeter of the MEMS device using a method such as photolithography. The metal seal is formed on the substrate while the MEMS device retains a sacrificial layer between conductive members of MEMS elements, and the sacrificial layer is removed after formation of the seal and prior to attachment of a backplane.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: May 3, 2011
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventor: Philip D Floyd
  • Patent number: 7932593
    Abstract: Semiconductor chip packages have die asymmetrically arranged on the respective substrates. Two such packages having complementary arrangements can be stacked, one inverted with respect to the other, such that the two die are situated side-by-side in the space between the two substrates. Also, multipackage modules include stacked packages, each having the die asymmetrically arranged on the substrate. Adjacent stacked packages have complementary asymmetrical arrangements of the die, and one package is inverted with respect to the other in the stack, such that the two die are situated side-by-side in the space between the two substrates. Also, methods are disclosed for making the packages and for making the stacked package modules.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: April 26, 2011
    Assignee: STATS Chippac Ltd.
    Inventor: Hyeog Chan Kwon
  • Patent number: 7927925
    Abstract: Spreading or keep out zones may be formed in integrated circuit packages by altering the roughness of package surfaces. The surface roughness can be altered by applying or growing particles having a dimension less than 500 nanometers. Hydrophilic surfaces may be made hemi-wicking and hydrophobic surfaces may be made hemi-wicking by particles of the same general characteristics.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: April 19, 2011
    Assignee: Intel Corporation
    Inventors: Nirupama Chakrapani, Vijay S. Wakharkar, Chris Matayabas
  • Patent number: 7927923
    Abstract: Flow diverting structures for preferentially impeding, redirecting or both impeding and redirecting the flow of flowable encapsulant material, such as molding compound, proximate a selected surface or surfaces of a semiconductor die or dice during encapsulation are disclosed. Flow diverting structures may be included in or associated with one or more portions of a lead frame, such as a paddle, tie bars, or lead fingers. Flow diverting structures may also be inserted into a mold in association with semiconductor dice carried on non-lead frame substrates, such as interposers and circuit boards, to preferentially impede, redirect or both impede and redirect the flow of molding compound flowing between and over the semiconductor dice.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: April 19, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Stephen L. James
  • Patent number: 7927917
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a base circuit assembly having an integrated circuit device; mounting a pre-formed conductive frame having an outer interconnect and an inner interconnect shorter than the outer interconnect over the base circuit assembly, the inner interconnect over the integrated circuit device and the outer interconnect around the integrated circuit device; applying an encapsulant over the inner interconnect and the outer interconnect; and removing a portion of the pre-formed conductive frame exposing an end of the inner interconnect and an end of the outer interconnect.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: April 19, 2011
    Assignee: Stats Chippac Ltd.
    Inventors: Reza Argenty Pagaila, Byung Tai Do, Jong-Woo Ha
  • Patent number: 7927896
    Abstract: A method of production of semiconductor light emission devices for forming stripes of two multilayers having different emission wavelengths on a substrate, including the steps of: depositing a first multilayer including an active layer on the substrate; selectively etching the first multilayer to form a plurality of adjoining pairs of stripes of the first multilayer; depositing a second multilayer including an active layer on the substrate and the stripes of the first multilayer; selectively etching the second multilayer to form a plurality of adjoining pairs of stripes of the second multilayer on the substrate between the stripes of the first multilayer; and dividing the substrate between adjoining pairs of stripes of the first multilayer and between adjoining pairs of stripes of the second multilayer to divide it into semiconductor light emission devices provided with a stripe of the first multilayer and the second multilayer having different emission wavelengths.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: April 19, 2011
    Assignee: Sony Corporation
    Inventor: Kazuhiko Nemoto
  • Patent number: 7923290
    Abstract: A method of manufacture of an integrated circuit packaging system includes: mounting an integrated circuit, having a device through via and a device interconnect, over a substrate with the device through via traversing the integrated circuit and the device interconnect attached to the device through via; attaching a conductive support over the substrate with the conductive support adjacent to the integrated circuit; providing a pre-formed interposer, having an interposer through via and a pre-attached interconnect, with the pre-attached interconnect attached to the interposer through via; mounting the pre-formed interposer over the integrated circuit and the conductive support with the pre-attached interconnect over the device through via; and forming an encapsulation over the substrate covering the integrated circuit, the conductive support, and partially covering the pre-formed interposer.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: April 12, 2011
    Assignee: Stats Chippac Ltd.
    Inventors: Chan Hoon Ko, Soo-San Park, YoungChul Kim
  • Patent number: 7919359
    Abstract: A semiconductor mounting substrate according to the present invention comprises: a substrate; a semiconductor device, mounted on this substrate; solder bumps, which connect the semiconductor device and the substrate; a first resin, filled in a space between the semiconductor device and the substrate; and electronic components, mounted on a face side of the semiconductor device where the semiconductor device is mounted, wherein bond strength reinforcing resin section is provided at least between a side face in the vicinity of a corner part of the semiconductor device and a substrate surface of the substrate in a position corresponding to the corner part.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: April 5, 2011
    Assignee: Panasonic Corporation
    Inventors: Junichi Kimura, Hideki Niimi, Yuji Fuwa, Tsuyoshi Sakaue
  • Patent number: 7919357
    Abstract: A resin containing conductive particles and a gas bubble generating agent is supplied between a first substrate and a second substrate, and then the resin is heated to generate gas bubbles from the gas bubble generating agent contained in the resin so that the resin is self-assembled between electrodes. Then, the resin is further heated to melt the conductive particles contained in the resin, thereby forming connectors between electrodes. A partition member sealing the gap between the substrates is provided near a peripheral portion of the resin, and gas bubbles in the resin are discharged to the outside through the peripheral portion of the resin where the partition member is absent.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: April 5, 2011
    Assignee: Panasonic Corporation
    Inventors: Susumu Sawada, Seiichi Nakatani, Seiji Karashima, Takashi Kitae
  • Publication number: 20110074018
    Abstract: In one embodiment, a method of manufacturing a semiconductor device is disclosed. The method includes forming a cured film of an insulation resin on a surface of a first semiconductor chip and flip-chip bonding a second semiconductor via a bump on the first semiconductor chip on which the cured film of the insulation resin is formed. The insulation resin can be cured at temperature range from (A?50)° C. to (A+50)° C., wherein “A” is a solidification point of the bump.
    Type: Application
    Filed: September 22, 2010
    Publication date: March 31, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Masatoshi Fukuda
  • Publication number: 20110074015
    Abstract: An upper-side semiconductor chip is stacked on a lower-side semiconductor chip by connection through microbumps. In the lower-side semiconductor chip that forms a gap with the upper-side semiconductor chip to be filled with an underfill resin, and is sealed with a molding resin, a polyimide film is formed on the chip surface in a peripheral area excluding openings of bonding pads. A stacked semiconductor device and a method for manufacturing the stacked semiconductor device are provided that the device is capable of suppressing generation of a void in the underfill resin layer, prevents a decrease in measurement accuracy of the gap between the stacked semiconductor chips, and prevents peeling of the molding resin.
    Type: Application
    Filed: March 5, 2010
    Publication date: March 31, 2011
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Kazumasa Suzuki
  • Patent number: 7911068
    Abstract: A component and a method for producing a component are disclosed. The component comprises an integrated circuit, a housing body, a wiring device overlapping the integrated circuit and the housing body, and one or more external contact devices in communication with the wiring device.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: March 22, 2011
    Assignee: Infineon Technologies AG
    Inventors: Thorsten Meyer, Harry Hedler, Markus Brunnbauer
  • Patent number: 7910404
    Abstract: A method of manufacturing a stacked die module includes applying a plurality of stacked die structures to a carrier. Each stacked die structure includes a first semiconductor die applied to the carrier and a second semiconductor die stacked over the first semiconductor die. The second semiconductor die has a larger lateral surface area than the first semiconductor die. A dam is applied around each of the stacked die structures, thereby forming an enclosed cavity for each of the stacked die structures. The enclosed cavity for each stacked die structure surrounds the first semiconductor die of the stacked die structure.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: March 22, 2011
    Assignee: Infineon Technologies AG
    Inventors: Klaus Pressel, Gottfried Beer
  • Patent number: 7902676
    Abstract: Provided is a stacked semiconductor device including a first flexible layer and a second flexible layer combined together, serving as a flexible substrate body being bent somewhere such that a surface of the first flexible layer itself is face-to-face clipped, two semiconductor chips each embedded in the flexible substrate body, and an adhesive layer sandwiched in a gap between the face-to-face surface of the first flexible layer. The active surface of each of the semiconductor chips has plurality of electrode pads thereon electrically connected to a first circuit layer on the second flexible layer. The semiconductor chips are stacked up and embedded in the flexible substrate body, thereby reducing package height to achieve miniaturization of electronic products. A method for fabricating the stacked semiconductor device is also provided.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: March 8, 2011
    Assignee: Unimicron Technology Corp.
    Inventor: Kan-Jung Chia
  • Patent number: 7892883
    Abstract: In one or more embodiments, a method comprising applying thermo compression to a package assembly including a lid, a die, and a package substrate to assemble the package assembly is disclosed. The method may include assembling the package assembly without coupling a biasing mechanism to the lid. Heat may be applied to a bond head coupled with a pick and place tool. Heat may be applied to a bond stage coupled to a carrier for holding the package assembly during processing. An adhesive applied to the lid or package substrate may be allowed to at least partially cure. The method may further include, in an oven, reflowing a thermal interface material (TIM) coupled to the lid and the die, curing the TIM, and/or curing the adhesive, without using clips.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: February 22, 2011
    Assignee: Intel Corporation
    Inventors: George Kostiew, Raj Bahadur, James Mellody, George Vakanas, Leonel Arana
  • Patent number: 7892887
    Abstract: A semiconductor device and a fabrication method thereof are provided. A semiconductor device which is packaged as it includes a semiconductor in which an electronic circuit is disposed, the semiconductor device including: a substrate; a semiconductor chip which has a semiconductor main body having the electronic circuit formed thereon, a pad electrode formed on the semiconductor main body and a projected electrode that is connected to the pad electrode and projected from a surface of the semiconductor main body, wherein the semiconductor chip is mounted on the substrate from the back side of the surface to form the projected electrode thereon; and an insulating layer which is formed as the semiconductor chip buried therein and is polished from a top surface of the insulating layer to a height at which a top of the projected electrode is exposed.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: February 22, 2011
    Assignee: Sony Corporation
    Inventor: Osamu Yamagata
  • Patent number: 7888176
    Abstract: In one or more embodiments, a method of producing a stacked integrated circuit assembly includes providing a substrate having a top surface with at least one substrate connection pad. A first flip chip integrated circuit (FFIC) is disposed above the substrate, and a second flip chip integrated circuit (SFIC) is disposed above the FFIC. The FFIC may be disposed between the substrate and the SFIC. The method includes making at least one solder connection between the substrate connection pad and the FFIC and at least one solder connection between the FFIC and the SFIC.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: February 15, 2011
    Assignee: Raytheon Company
    Inventors: Tse E. Wong, Samuel D. Tonomura, Stephen E. Sox, Timothy E. Dearden, Clifton Quan, Polwin C. Chan, Mark S. Hauhe
  • Patent number: 7888177
    Abstract: The present invention is a method of manufacturing a semiconductor device, by forming a wiring on or above a wafer so that the wiring is electrically connected to a first electrode disposed on a first surface of the wafer, forming a first resin layer on or above the wafer such that the wiring is disposed between the wafer and the first resin layer, forming an opening in the first resin layer such that the opening overlaps the wiring, forming a conductive member in the opening such that the conductive member being electrically connected to the wiring, forming a second electrode on the conductive member such that the second electrode is electrically connected to the wiring via the conductive member, and separating the wafer into individual elements after the forming of the first resin layer.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: February 15, 2011
    Assignee: Seiko Epson Corporation
    Inventor: Nobuaki Hashimoto
  • Patent number: 7888174
    Abstract: An embedded chip package process is disclosed. First, a first substrate having a first patterned circuit layer thereon is provided. Then, a first chip is disposed on the first patterned circuit layer and electrically connected to the first patterned circuit layer. A second substrate having a second patterned circuit layer thereon is provided. A second chip is disposed on the second patterned circuit layer and electrically connected to the second patterned circuit layer. Afterwards, a dielectric material layer is formed and covers the first chip and the first patterned circuit layer. Then, a compression process is performed to cover the second substrate over the dielectric material layer so that the second patterned circuit layer and the second chip on the second substrate are embedded into the dielectric material layer.
    Type: Grant
    Filed: September 21, 2008
    Date of Patent: February 15, 2011
    Assignee: Unimicron Technology Corp.
    Inventor: David C. H. Cheng
  • Patent number: 7888175
    Abstract: The described embodiments provide a system that facilitates inter-chip alignment for proximity communication and power delivery. The system includes a first integrated circuit chip and a second integrated circuit chip, both of which whose surfaces have corresponding etch pit wells configured to align with each other. A shaped structure is placed in an etch pit well of the first integrated circuit chip such that when the corresponding etch pit well of the second integrated circuit chip is substantially aligned with the etch pit well of the first integrated circuit chip, the shaped structure mates with both the etch pit well of the first integrated circuit chip and with the corresponding etch pit well of the second integrated circuit chip, thereby aligning the first integrated circuit chip with the second integrated circuit chip. In some embodiments the etch pit wells include conductive structures for routing power through a conductive shaped structure.
    Type: Grant
    Filed: July 13, 2009
    Date of Patent: February 15, 2011
    Assignee: Oracle America, Inc.
    Inventors: Ashok V. Krishnamoorthy, John E. Cunningham
  • Patent number: 7880286
    Abstract: A chip-on-film package may include a tape wiring substrate, a semiconductor chip mounted on the tape wiring substrate, and a molding compound provided between the semiconductor chip and the tape wiring substrate. The tape wiring substrate may include a film having upper and lower surfaces. Vias may penetrate the film. An upper metal layer may be provided on the upper surface of the film and include input terminal patterns and/or output terminal patterns. The input terminal patterns may include ground terminal patterns and/or power terminal patterns. A lower metal layer may be provided on the lower surface of the film and include a ground layer and/or a power layer. The ground layer and the power layer may cover at least a chip mounting area.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: February 1, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Si-Hoon Lee, Eun-Seok Song
  • Patent number: 7880314
    Abstract: A wiring substrate on which an electronic component is flip-chip bonded, including a substrate main body, a solder resist which is formed on the substrate main body and having an opening, and a plurality of conductive pattern formed on the substrate main body, including exposure surfaces exposed from the opening of the solder resist. The conductive patterns include, a narrow interval group, a wide interval group, an interval between the adjacent conductive patterns belonging to the narrow interval group is narrower than an interval between the adjacent conductive patterns belonging to the wide interval group, an exposure length of the conductive patterns of the narrow interval group is shorter than an exposure length of the conductive patterns of the wide interval group.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: February 1, 2011
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventor: Tsuyoshi Sohara
  • Patent number: 7875503
    Abstract: Electronic devices and methods for fabricating electronic devices are described. One method includes providing a substrate with a die attach area, and forming a layer on the substrate outside of the die attach area. The layer may be formed from a fluoropolymer material. The method also includes coupling a die to the substrate in the die attach area, wherein a gap remains between the die and the die attach area. The method also includes placing an underfill material in the gap and adjacent to the layer on the substrate. Examples of fluoropolymer materials which may be used include polytetrafluoroethylene (PTFE) and perfluoroalkoxy polymer resin (PFA). Other embodiments are described and claimed.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: January 25, 2011
    Assignee: Intel Corporation
    Inventors: Shripad Gokhale, Kathy Wei Yan, Bijay S. Saha, Samir Pandey, Ngoc K. Dang, Munehiro Toyama
  • Patent number: 7871860
    Abstract: The present disclosure provides a method of fabricating a semiconductor device. The method includes providing a chip and a substrate. The method also includes bonding the chip to the substrate. The method also includes, after the bonding the chip, dispensing a sealing material between the chip and the substrate. In accordance with the method, the chip and the substrate are maintained within a temperature range from the bonding the chip to the dispensing the sealing material, and wherein a lower limit of the temperature range is approximately twice a room temperature.
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: January 18, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Han-Ping Pu, Tsung-Shu Lin, Chen-Shien Chen
  • Publication number: 20110006336
    Abstract: An organic light emitting diode (OLED) display includes a display substrate including a display substrate including an organic light emitting element and a pixel defining layer having an opening defining a light emitting region of the organic light emitting element, an encapsulation substrate arranged opposite to the display substrate, a sealant arranged at an edge between the display substrate and the encapsulation substrate to seal a space between the display substrate and the encapsulation substrate from an outside and a filler filling the space between the display substrate and the encapsulation substrate, wherein the pixel defining layer has a thickness that varies by location, and a portion of the pixel defining layer closest to the sealant at edges of the display substrate having a thickness that is greater than a thickness of the pixel defining layer at all other portions of the display.
    Type: Application
    Filed: July 9, 2010
    Publication date: January 13, 2011
    Applicant: Samsung Mobile Display Co., Ltd.
    Inventors: Kyung-Jun Lee, Sung-Jin Bae
  • Patent number: 7863200
    Abstract: A process to encapsulate electronic modules in a manner which is substantially resistant to water diffusion yet is carried out at moderate temperatures below 300° C., preferably below 150° C. is provided. The process forms a housing for electronic modules, in particular sensors, integrated circuits and optoelectronic components. The process includes the steps of: providing a substrate, of which at least a first substrate side is to be encapsulated; providing a vapor-deposition glass source; arranging the first substrate side in such a manner with respect to the vapor-deposition glass source that the first substrate side can be vapor-coated; and vapor-coating the first substrate side with a glass layer.
    Type: Grant
    Filed: April 15, 2003
    Date of Patent: January 4, 2011
    Assignee: Schott AG
    Inventors: Jürgen Leib, Dietrich Mund
  • Patent number: 7863109
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing an inner stacking module die; encapsulating the inner stacking module die with an inner stacking module encapsulation to form an inner stacking module, the inner stacking module encapsulation having an inner stacking module protrusion having a planar protrusion surface; and encapsulating at least part of the inner stacking module encapsulation with an encapsulation having a flat top coplanar with the planar protrusion surface or fully encapsulating the inner stacking module encapsulation.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: January 4, 2011
    Assignee: Stats Chippac Ltd.
    Inventors: Seng Guan Chow, Rui Huang, Heap Hoe Kuan
  • Patent number: 7863726
    Abstract: A method of manufacture of an integrated circuit package system includes: forming a package substrate with a top substrate side and a bottom substrate side; forming a corner contact in a first corner of the bottom substrate side, the corner contact extending to a substrate edge of the package substrate; mounting an integrated circuit device over the top substrate side; connecting an electrical interconnect between the integrated circuit device and the top substrate side; and forming a package encapsulation over the top substrate side, the integrated circuit device, and the electrical interconnect.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: January 4, 2011
    Assignee: Stats Chippac Ltd.
    Inventors: Seng Guan Chow, Tae Hoan Jang
  • Patent number: 7863099
    Abstract: An integrated circuit package system comprising: providing a first conductive line adjacent to a second conductive line; forming a first connection stack over the first conductive line with the first connection stack overhanging the second conductive line; connecting an integrated circuit device and the first connection stack; and encapsulating the integrated circuit device and the first connection stack.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: January 4, 2011
    Assignee: Stats Chippac Ltd.
    Inventors: Byung Tai Do, Seng Guan Chow
  • Publication number: 20100327427
    Abstract: A semiconductor device includes a wiring layer, a semiconductor chip which is arranged on the wiring layer with a gap there between, the semiconductor chip being electrically connected to the wiring layer through a connecting portion, a first sealing member which is filled in a space between the wiring layer and the semiconductor chip, and a second sealing member which coats the semiconductor chip. The first sealing member and the second sealing member include same organic resin, the organic resin including inorganic filler. The second sealing member has larger content of inorganic filler than the first sealing member.
    Type: Application
    Filed: May 4, 2010
    Publication date: December 30, 2010
    Applicant: NEC ELECTRONICS CORPORATION
    Inventors: Takehiro Kimura, Yoichiro Kurita
  • Patent number: 7859108
    Abstract: A flip chip package includes a substrate and a semiconductor chip. The substrate includes a substrate body, a metal wiring having a terminal part some of which is disposed in the substrate body, a solder resist pattern formed on the substrate body with an opening for exposing the terminal part, and an organic anti-oxidation layer for covering the terminal part. The semiconductor chip has a bump formed through (e.g., penetrates) the organic anti-oxidation layer and is electrically connected to the terminal part. The present invention prevents oxidation of the terminal part and allows easy coupling of a bump of a semiconductor chip and the terminal part of the substrate, since an anti-oxidation layer including an organic matter is formed over a surface of a terminal part including copper which is easily oxidized.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: December 28, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventors: Woong Sun Lee, Il Hwan Cho, Myung Geun Park, Cheol Ho Joh, Eun Hye Do, Ki Young Kim, Ji Eun Kim, Jong Hyun Nam
  • Patent number: 7858437
    Abstract: An aspect of the present invention features a method for manufacturing a substrate having a cavity. The method can comprises: (a) forming an upper layer circuit on an upper seed layer; (b) laminating a dry film on a portion of the upper seed layer where a cavity is to be formed; (c) fabricating an upper outer layer by forming an insulation layer on top of the upper seed layer and on top and sides of the upper layer circuit; (d) stacking the upper outer layer on one side of a core layer where an internal circuit is formed; (e) removing the upper seed layer; and (f) forming the cavity by removing the dry film. The method for manufacturing a substrate with a cavity according to the present invention can reduce the total thickness of the substrate while the thickness of an insulation layer remains the same, by forming the insulation layer on sides of an external circuit.
    Type: Grant
    Filed: February 15, 2007
    Date of Patent: December 28, 2010
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Hoe-Ku Jung, Myung-Sam Kang, Ji-Eun Kim, Jung-Hyun Park
  • Publication number: 20100320587
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a device having a conductor with ends exposed on opposite sides of the device; forming a first surface depression on the device around the conductor; connecting a first component over the conductor and surrounded by the first surface depression; and applying a first underfill between the first component and the device, the first underfill substantially filled within a perimeter of the first surface depression.
    Type: Application
    Filed: June 22, 2009
    Publication date: December 23, 2010
    Inventors: KyungHoon Lee, DaeWook Yang, SunMi Kim
  • Publication number: 20100323479
    Abstract: A semiconductor component including: a substrate, at least one semiconductor chip arranged on the substrate and at least one passive device likewise arranged on the substrate. The passive device is mounted with its underside on the substrate. The semiconductor component further includes an interspace disposed between the underside of the passive device and the substrate. The interspace is filled with an underfilling material. In order to avoid the solder pumping effect, the upper side and the lateral sides of the passive device are also embedded in a plastic compound.
    Type: Application
    Filed: August 25, 2010
    Publication date: December 23, 2010
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Erich Syri, Gerold Gruendler, Juergen Hoegerl, Thomas Killer, Volker Strutz
  • Patent number: 7851260
    Abstract: A method for manufacturing a semiconductor device is disclosed. As a part of the method, one surface of a substrate is molded with resin where the substrate and the resin are heated in a first heating process and maintained in a flat condition. The substrate and the resin are returned to room temperature while being maintained in the flat condition after the first heating process. The resin is cut after the substrate and the resin are returned to room temperature from a surface of the resin that is opposite the surface of the resin where the substrate contacts the resin. The substrate is left intact when the resin is cut. Thereafter, the substrate is separated.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: December 14, 2010
    Assignee: Spansion LLC
    Inventors: Junji Tanaka, Kouichi Meguro, Yasuhiro Shinma
  • Patent number: 7851258
    Abstract: A method of manufacturing an RFID tag that includes forming an antenna pattern and a reinforcing layer on one surface of a film made of a resin material, applying a thermosetting adhesive onto the reinforcing layer and the antenna pattern, mounting a circuit chip on the antenna pattern via the thermosetting adhesive, pinching the circuit chip and the other surface of the film, and fixing the circuit chip to the antenna pattern by hardening the thermosetting adhesive. The reinforcing layer is formed within a region where the circuit chip is mounted and the circuit chip includes a first protrusion contacting the antenna pattern and a second protrusion contacting the reinforcing layer.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: December 14, 2010
    Assignee: Fujitsu Limited
    Inventor: Hiroshi Kobayashi
  • Patent number: 7851927
    Abstract: A semiconductor component (1) has a semiconductor chip (5) and a semiconductor component carrier (3) with external connection strips (12, 13, 15). The semiconductor chip (5) has a first electrode (6) and a control electrode (7) on its top side (8) and a second electrode (9) on its rear side (10). The semiconductor chip (5) is fixed by its top side (8) in flip-chip arrangement (11) on a first and a second external connection strip (12, 13) for the first electrode (6) and the control electrode (7). The second electrode (9) is electrically connected to at least one third external connection strip (15) via a bonding tape (14).
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: December 14, 2010
    Assignee: Infineon Technologies AG
    Inventors: Khalil Hosseini, Alexander Koenigsberger, Ralf Otremba, Klaus Schiess
  • Patent number: 7846769
    Abstract: A method includes joining an integrated circuit die having at least one low-k dielectric layer to a package substrate or printed circuit board using a plurality of solder bumps located between the die and the package substrate or printed circuit board. The low-k dielectric layer has a dielectric constant of about 3.0 or less. The solder bumps have a lead concentration of about 5% or less. A stratified underfill is formed between the die and the package substrate or printed circuit board.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: December 7, 2010
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Mirng-Ji Lii, Szu-Wei Lu, Tjandra Winata Karta, Chien-Hsiun Lee
  • Patent number: 7846768
    Abstract: An assembly method is disclosed that includes providing a substrate, securing a first semiconductor device on a first surface thereof, and superimposing at least a second semiconductor device at least partially over the first semiconductor device. An outer peripheral portion of the second semiconductor device overhangs both the first semiconductor device and the substrate. Discrete conductive elements are placed between the outer peripheral portion of the second semiconductor device and a second surface of the substrate. Intermediate portions of the discrete conductive elements pass outside of a side surface of the substrate. Assemblies and packaged semiconductor devices that are formed in accordance with the method are also disclosed.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: December 7, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Dalson Ye Seng Kim, Chong Chin Hui, Lee Wang Lai, Roslan Bin Said
  • Patent number: 7843059
    Abstract: In an electronic parts packaging structure of the present invention constructed by stacking a plurality of sheet-like units in a thickness direction, each of the units includes a first insulating layer, wirings formed on one surface of the first insulating layer, a semiconductor chip (electronic parts) connected to the wirings, a second insulating layer formed on an one surface side of the first insulating layer to cover the semiconductor chip, and connecting portions (terminals and contact vias) for connecting electrically the wirings and wirings of other unit, wherein arrangement of the first insulating layer, the semiconductor chip, the wirings, and the second insulating layer is symmetrical between units adjacent in a thickness direction.
    Type: Grant
    Filed: July 14, 2006
    Date of Patent: November 30, 2010
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Toshio Gomyo, Yukiharu Takeuchi, Hidenori Takayanagi, Takaharu Yamano
  • Patent number: RE42158
    Abstract: A semiconductor device is comprised of a semiconductor element having a low dielectric constant insulating film, first electrode pads and barrier metal layers; and a substrate having second electrode pads corresponding to the first electrode pads. The first electrode pads and the second electrode pads are connected via metal bumps. The barrier metal layers having a thickness in a range of 0.1 to 3 ?m are interposed between the metal bumps and the first electrode pads. Besides, when it is assumed that the barrier metal layers have a diameter D1, the second electrode pads have an opening diameter D2 and the metal bumps have a minimum pitch p, the diameter D1 of the barrier metal layers satisfies at least one of conditions of D1?D2 and D1=0.4 p to 0.7 p. Thus, the occurrence of a crack, peeling or the like due to the low dielectric constant insulating films can be retarded.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: February 22, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Soichi Homma