By Selective Deposition Of Conductive Material In Vias, E.g., Selective Chemical Vapor Deposition On Semiconductor Material, Plating (epo) Patents (Class 257/E21.586)
  • Publication number: 20090068834
    Abstract: In a method of forming a contact plug of a semiconductor device, a nitride layer is prevented from being broken by forming a passivation layer over the nitride layer when contact holes are formed by etching an insulating layer between select lines formed over a semiconductor substrate. In an etch process of forming the contact plug, the passivation layer formed on sidewalls of the select lines is formed twice to protect the sidewalls of the select lines. Accordingly, the sidewalls of the select lines can be prevented from being damaged. Consequently, a process margin necessary to form a contact plug can be increased and, therefore, a smaller contact plug can be formed.
    Type: Application
    Filed: June 27, 2008
    Publication date: March 12, 2009
    Applicant: Hynix Semiconductor Inc.
    Inventor: Chan Sun Hyun
  • Publication number: 20090061619
    Abstract: A method of fabricating a metal line of a semiconductor device that prevents formation of serrations in a metal line to thereby increase operational reliability of a semiconductor device. The method includes forming a lower metal line in a semiconductor substrate; and then forming a first nitride layer as an etching stop layer over the semiconductor substrate including the lower metal line; and then forming a first insulating layer over the first nitride layer; and then forming a second nitride layer over the first insulating layer; and then forming a contact hole partially exposing the uppermost surface of the lower metal line by performing a first etching process; and then simultaneously forming a second insulating layer over the second nitride layer and a void in the contact hole; and then forming a trench corresponding spatially to the contact hole and partially exposing the uppermost surface of the lower metal line by performing a second etching process.
    Type: Application
    Filed: August 25, 2008
    Publication date: March 5, 2009
    Inventor: Sang-Il Hwang
  • Publication number: 20090047782
    Abstract: Method for manufacturing a device having a conductive via includes the following steps. A dielectric material layer including a through hole is formed on a substrate. A seed metallic layer is formed on the dielectric material layer and in the through hole. A metallic layer is formed on the seed metallic layer, and is filled in the through hole. The metallic layer located over the seed metallic layer and outside the through hole is etched by a spin etching process, whereby the metallic layer located in the through hole is formed to a lower portion. An upper portion is formed on the lower portion, and a metallic trace is formed on the seed metallic layer, wherein the upper and lower portions is formed to a conductive via, and the conductive via and the metallic trace expose a part of the seed metallic layer. The exposed seed metallic layer is etched.
    Type: Application
    Filed: July 9, 2008
    Publication date: February 19, 2009
    Applicant: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Hsueh An YANG, Po Jen CHENG
  • Patent number: 7485574
    Abstract: Methods of forming a metal line in a semiconductor device. A method includes: depositing a first etch stop layer, an interlayer insulating layer, a second etch stop layer, and a line insulating layer on a semiconductor substrate; forming a contact hole pattern on the line insulating layer; forming a contact hole by etching an exposed portion of the interlayer insulating layer using the contact hole pattern as a mask; forming a trench pattern on the line insulating layer; forming a trench by etching an exposed portion of the line insulating layer using the trench pattern as a mask; removing exposed portions of the first etch stop layer and the second etch stop layer after forming the contact hole and the trench; forming a first metal thin film within the contact hole; and forming a second metal thin film on the first metal thin film.
    Type: Grant
    Filed: October 25, 2005
    Date of Patent: February 3, 2009
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Kwan-Ju Koh
  • Patent number: 7482289
    Abstract: Methods and an apparatus are disclosed for depositing tantalum metal films in next-generation solvent fluids on substrates and/or deposition surfaces useful, e.g., as metal seed layers. Deposition involves low valence oxidation state metal precursors soluble in liquid and/or compressible solvent fluids at liquid, near-critical, or supercritical conditions for the mixed precursor solutions. Metal film deposition is effected via thermal and/or photolytic activation of the metal precursors. The invention finds application in fabrication and processing of semiconductor, metal, polymer, ceramic, and like substrates or composites.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: January 27, 2009
    Assignee: Battelle Memorial Institute
    Inventors: Clement R. Yonker, Dean W. Matson, John T Bays
  • Publication number: 20090017623
    Abstract: A wafer processing method having a step of reducing the thickness of a wafer in only a device forming area where semiconductor chips are formed by grinding and etching the back side of the wafer to thereby form a recess on the back side of the wafer. At the same time, an annular projection is formed around the recess to thereby ensure the rigidity of the wafer. Accordingly, handling in shifting the wafer from the back side recess forming step to a subsequent step of forming a back side rewiring layer can be performed safely and easily.
    Type: Application
    Filed: July 7, 2008
    Publication date: January 15, 2009
    Applicant: DISCO CORPORATION
    Inventors: Keiichi Kajiyama, Kazuhisa Arai
  • Publication number: 20090011594
    Abstract: Methods of contact formation and memory arrays formed using such methods, which methods include providing a substrate having a contacting area; forming a plurality of line-shape structures extending in a first direction; forming a hard mask spacer beside the line-shape structure; forming an insulating material layer above the hard mask spacer; forming a contiguous trench in the insulating material layer extending in a second direction different from the first direction and exposing the contacting area; and forming a conductive line in the trench to contact the contacting area.
    Type: Application
    Filed: September 16, 2008
    Publication date: January 8, 2009
    Applicant: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Miao-Chih Hsu, Tzung-Ting Han, Ming-Shang Chen
  • Patent number: 7473930
    Abstract: Method and system for providing a dynamically reconfigurable display having nanometer-scale resolution, using a patterned array of multi-wall carbon nanotube (MWCNT) clusters. A diode, phosphor or other light source on each MWCNT cluster is independently activated, and different color light sources (e.g., red, green, blue, grey scale, infrared) can be mixed if desired. Resolution is estimated to be 40-100 nm, and reconfiguration time for each MWCNT cluster is no greater than one microsecond.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: January 6, 2009
    Assignee: The United States of America as represented by the United States National Aeronautics and Space Administration
    Inventors: Lance D. Delzeit, John F. Schipper
  • Patent number: 7470619
    Abstract: Described is a method for forming a stackable interconnect. The interconnect is formed by depositing a first contact on a substrate; depositing a seed layer (SL) on the substrate; depositing a metal mask layer (MML) on the SL; depositing a bottom anti-reflection coating (BARC) on the MML; forming a photoresist layer (PR) on the BARC; removing a portion of the PR; etching the BARC and the MML to expose the SL; plating the exposed SL to form a first plated plug; removing the layers to expose the SL; removing an unplated portion of the SL; depositing an inter layer dielectric (ILD) on the interconnect; etching back the ILD to expose the first plated plug; and depositing a second contact on the first plated plug. Using the procedures described above, a second plated plug is then formed on the first plated plug to form the stackable plugged via interconnect.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: December 30, 2008
    Assignee: HRL Laboratories, LLC
    Inventors: Mary Y. Chen, James Chingwei Li, Philip H. Lawyer, Marko Sokolich
  • Patent number: 7470617
    Abstract: In one embodiment, the present invention includes a method for depositing a barrier layer on a substrate having a trench, depositing a liner layer on the barrier layer that includes a surface oxide, electrolessly depositing a copper seed layer on the liner layer, where the surface oxide is reduced in-situ in an electroless bath, depositing a bulk metal layer on the copper seed layer. Other embodiments are described and claimed.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: December 30, 2008
    Assignee: Intel Corporation
    Inventors: Ramanan Chebiam, Chin-Chang Cheng, Damian Whitney, Harsono Simka
  • Patent number: 7468317
    Abstract: A method of forming a metal line, in which a nitride layer is used instead of a metal barrier layer, enabling a metal line structure with a relatively low resistance and therefore realizing a high integration of a device. In the method of forming the metal line of the semiconductor device, a first insulating layer and a second insulating layer with a different etch selectivity are sequentially formed on a semiconductor substrate. Predetermined regions of the first insulating layer and the second insulating layer are sequentially etched to form a contact hole. A metal barrier layer is formed on the entire surface including the contact hole. A first metal material is deposited on the entire surface to gap-fill the contact hole. The first metal material on the second insulating layer is stripped such that the first metal material remains only within the contact hole, thus forming a contact plug. A metal line is formed on a predetermined region of the second insulating layer including the contact plug.
    Type: Grant
    Filed: November 7, 2006
    Date of Patent: December 23, 2008
    Assignee: Hynix Semiconductor Inc.
    Inventors: Jik Ho Cho, Tae Kyung Kim
  • Publication number: 20080311743
    Abstract: A method of fabricating an opening or plug is provided. In the process of forming the opening, before a photoresist layer is formed over a dielectric layer, a treatment process is performed to form a film on the dielectric layer, wherein the film can suppress the outgasing phenomenon of the dielectric layer and prevent the later formed photoresist layer from reacting with the running-off composition component from the dielectric layer. Therefore, the problem of incomplete development due to outgasing of the dielectric layer can be solved. Additionally, in the procedure for forming a plug, before a block layer is forming on a surface of a via, a treatment process is performed to form a film on the surface of the via. Therefore, the problem of having defects inside the block layer caused by outgasing of the dielectric layer can be overcome.
    Type: Application
    Filed: August 12, 2008
    Publication date: December 18, 2008
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Yi-Fang Cheng, Chopin Chou
  • Publication number: 20080311744
    Abstract: Interconnect structures possessing an organosilicate glass based material for 90 nm and beyond BEOL technologies in which a multilayer hardmask using a line-first approach are described. The interconnect structure of the invention achieves respective improved device/interconnect performance and affords a substantial dual damascene process window owing to the non-exposure of the OSG material to resist removal plasmas and because of the alternating inorganic/organic multilayer hardmask stack. The latter feature implies that for every inorganic layer that is being etched during a specific etch step, the corresponding pattern transfer layer in the field is organic and vice-versa.
    Type: Application
    Filed: August 26, 2008
    Publication date: December 18, 2008
    Applicant: International Business Machines Corporation
    Inventors: Nicholas C.M. Fuller, Stephen McConnell Gates, Timothy J. Dalton
  • Publication number: 20080293242
    Abstract: A method and structure for a single or dual damascene interconnect structure comprises forming wiring lines in a metallization layer over a substrate, shaping a laminated insulator stack above the metallization layer, patterning a hardmask over the laminated insulator stack, forming troughs in the hardmask, patterning the laminated insulator stack, forming vias in the patterned laminated insulator stack, creating sidewall spacers in the bottom portion of the vias, depositing an anti-reflective coating on the sidewall spacers, etching the troughs, removing the anti-reflective coating, depositing a metal layer in the troughs, vias, and sidewall spacers, and applying conductive material in the troughs and the vias. The laminated insulator stack comprises a dielectric layer further comprising oxide and polyarylene.
    Type: Application
    Filed: April 4, 2008
    Publication date: November 27, 2008
    Applicant: International Business Machiness Corporation
    Inventors: Edward C. Cooney, III, Robert M. Geffken, Anthony K. Stamper
  • Publication number: 20080280433
    Abstract: A four-layer structured hard mask composed of a SiC film, a first SiO2 film, a SiC film, and a second SiO2 film is formed on a porous silica film as an interlayer insulating film. Then, the second SiO2 film is etched with a resist mask. Subsequently, the SiC film is etched with the second SiO2 film. Thereafter, the first SiO2 film is etched with the SiC film. Subsequently, the SiC film is etched with the SiC film. Then, by etching the porous silica film with the SiC film, a wiring trench is formed. At this time, a selection ratio between the SiC film and the porous silica film is large, so that deformation of the SiC film rarely occurs, which prevents leakage caused by the deformation.
    Type: Application
    Filed: February 16, 2007
    Publication date: November 13, 2008
    Applicant: FUJITSU LIMITED
    Inventor: Yoshihisa Iba
  • Patent number: 7446415
    Abstract: Methods of electroless filling electrically different features such as contact openings to form interconnects and conductive contacts, and semiconductor devices, dies, and systems that incorporate the interconnects and contacts are disclosed. The contact openings are electrically shorted together with a selective material, a nucleation layer is selectively deposited onto the area to be plated (e.g., the base of the opening), and a conductive material is electroless plated onto the nucleation layer to fill the opening. The process achieves substantially simultaneous filling of openings having different surface potentials at an about even rate.
    Type: Grant
    Filed: March 9, 2005
    Date of Patent: November 4, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Dale W Collins, Rita J Klein
  • Patent number: 7446366
    Abstract: A method for void free filling with in-situ doped amorphous silicon of a deep trench structure is provided in which a first fill is carried out in at a temperature, pressure and dopant to silane ratio such that film deposition occurs from the bottom of the trench upwards. By way of this first fill, step coverages well in excess 100% are achieved. In the second fill step, deposition is carried out under changed conditions so as to reduce the impact of dopant on deposition rate, whereby trench fill is completed at a deposition rate which exceeds the deposition rate of the first fill. In an application of this method to the formation of deep trench capacitor structures, the intermediate steps further including the capping of the void free filled trench with a thick layer of amorphous silicon, planarization of the wafer thereafter, followed by a thermal anneal to re-distribute the dopant within the filled trench. Thereafter, additional steps can be performed to complete the formation of the capacitor structure.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: November 4, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Ajit Paranjpe, Somnath Nag
  • Publication number: 20080233743
    Abstract: Disclosed are embodiments of a semiconductor structure with a partially selfaligned contact in lower portion of the contact is enlarged to reduce resistance without impacting device yield. Additionally, the structure optionally incorporates a thick middle-of-the-line (MOL) nitride stress film to enhance carrier mobility. Embodiments of the method of forming the structure comprise forming a sacrificial section in the intended location of the contact. This section is patterned so that it is self-aligned to the gate electrodes and only occupies space that is intended for the future contact. Dielectric layer(s) (e.g., an optional stress layer followed by an interlayer dielectric) may be deposited once the sacrificial section is in place. Conventional contact lithography is used to etch a contact hole through the dielectric layer(s) to the sacrificial section. The sacrificial section is then selectively removed to form a cavity and the contact is formed in the cavity and contact hole.
    Type: Application
    Filed: April 28, 2008
    Publication date: September 25, 2008
    Applicant: International Business Machines Corporation
    Inventors: Gregory Costrini, David M. Fried
  • Patent number: 7416975
    Abstract: A method is provided for manufacturing removable contact structures on the surface of a substrate to conduct electricity from a contact member to the surface during electroprocessing. The method comprises forming a conductive layer on the surface. A predetermined region of the conductive layer is selectively coated by a contact layer so that the contact member touches the contact layer as the electroprocessing is performed on the conductive layer.
    Type: Grant
    Filed: September 21, 2005
    Date of Patent: August 26, 2008
    Assignee: Novellus Systems, Inc.
    Inventors: Cyprian E. Uzoh, Bulent M. Basol, Hung-Ming Wang, Homayoun Talieh
  • Patent number: 7413978
    Abstract: A contact structure, including: a first conductive layer; a insulating layer formed on the first conductive layer; a second conductive layer formed on the insulating layer; and a columnar structure, buried in a direction of film thickness in the insulating layer, electrically connecting the first conductive layer and the second conductive layer; wherein a reinforcement material is adhered to a vicinity of a root of the columnar structure.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: August 19, 2008
    Assignee: Seiko Epson Corporation
    Inventor: Hideki Tanaka
  • Patent number: 7407884
    Abstract: A method of forming an aluminum contact including forming a barrier metal layer on an interlayer insulation layer pattern defining a contact hole, and forming an aluminum layer on the barrier metal layer so as to fill the contact hole. The method further includes forming a photoresist pattern for ion implantation, implanting ions into the aluminum layer, and annealing by using a rapid thermal process.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: August 5, 2008
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Jae-Suk Lee
  • Patent number: 7402517
    Abstract: Methods are disclosed for depositing materials selectively and controllably from liquid, near-critical, and/or supercritical fluids to a substrate or surface controlling the location and/or thickness of material(s) deposited to the surface or substrate. In one exemplary process, metals are deposited selectively filling feature patterns (e.g., vias) of substrates. The process can be further used to control deposition of materials on sub-surfaces of composite or structured silicon wafers, e.g., for the deposition of barrier films on silicon wafer surfaces. Materials include, but are not limited to, overburden materials, metals, non-metals, layered materials, organics, polymers, and semiconductor materials. The instant invention finds application in such commercial processes as semiconductor chip manufacturing.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: July 22, 2008
    Assignee: Battelle Memorial Institute
    Inventors: Clement R. Yonker, Dean W. Matson, Daniel J. Gaspar, George S. Deverman
  • Publication number: 20080171430
    Abstract: In one embodiment of a method of forming at least one through-substrate interconnect, a semiconductor substrate having first surface and an opposing second surface is provided. At least one opening is formed in the semiconductor substrate to extend from the first surface to an intermediate depth within the semiconductor substrate. The at least one opening is partially defined by a base. At least one metal-catalyst nanoparticle is provided on the base. Conductive material is deposited within the at least one opening under conditions in which the metal-catalyst nanoparticle promotes deposition of the conductive material. Material of the semiconductor substrate may be removed from the second surface to expose a portion of the conductive material filling the at least one opening. In another embodiment, instead of using the nanoparticle, the conductive material may be selected to selectively deposit on the base partially defining the at least one opening.
    Type: Application
    Filed: January 17, 2007
    Publication date: July 17, 2008
    Inventor: Theodore I. Kamins
  • Publication number: 20080160750
    Abstract: A post-CMP cleaning process of a copper layer is to be performed as follows. An alkaline aqueous solution, a polycarboxylic acid, BTA, and an alkaline aqueous solution are sequentially brought into contact with a primary surface of a silicon substrate over which the copper layer is provided.
    Type: Application
    Filed: December 10, 2007
    Publication date: July 3, 2008
    Applicant: NEC ELECTRONICS CORPORATION
    Inventors: Toshiyuki TAKEWAKI, Manabu Iguchi, Daisuke Oshida, Hironori Toyoshima, Masayuki Hiroi, Takuji Onuma, Hiroaki Nanba, Ichiro Honma, Mieko Hasegawa, Yasuaki Tsuchiya, Toshiji Taiji, Takahara Kunugi
  • Patent number: 7393755
    Abstract: A method and system are described to reduce process variation as a result of the electrochemical deposition (ECD), also referred to as electrochemical plating (ECP), and chemical mechanical polishing (CMP) processing of films in integrated circuit manufacturing processes. The described methods use process variation and electrical impact to direct the insertion of dummy fill into an integrated circuit.
    Type: Grant
    Filed: June 7, 2002
    Date of Patent: July 1, 2008
    Assignee: Cadence Design Systems, Inc.
    Inventors: Taber H. Smith, Vikas Mehrotra, David White
  • Publication number: 20080153290
    Abstract: A method of forming a contact is provided. A substrate having at least two metal oxide semiconductor devices is provided and a gap is formed between the two devices. A first stress layer is formed over the substrate to cover the metal-oxide semiconductor devices and the substrate. The first stress layer is formed by first forming a first stress material layer over the substrate to cover the metal-oxide semiconductor devices and to fill the gap, the stress material inside the gap. An etching back process is then performed to remove a portion of the stress material layer inside the gap. A second stress layer and a dielectric layer are sequentially formed on the first stress layer. A portion of the second stress layer is removed to form a contact opening. A second conductive layer is filled into the contact opening to form a contact.
    Type: Application
    Filed: December 24, 2007
    Publication date: June 26, 2008
    Inventors: Neng-Kuo Chen, Teng-Chun Tsai, Chien-Chung Huang
  • Publication number: 20080150058
    Abstract: A method for manufacturing an image sensor that can include forming a pad electrode over a semiconductor substrate; forming a protective layer over the pad electrode; forming a via hole through the protective layer to expose a portion of the uppermost surface of the pad electrode; and then forming a gold layer over the exposed portion of the uppermost surface of the pad electrode.
    Type: Application
    Filed: December 14, 2007
    Publication date: June 26, 2008
    Inventor: Jeong-Su Park
  • Patent number: 7384867
    Abstract: Methods for the deposition of tungsten films are provided. The methods include depositing a nucleation layer by alternatively adsorbing a tungsten precursor and a reducing gas on a substrate, and depositing a bulk layer of tungsten over the nucleation layer.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: June 10, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Ken K. Lai, Jeong Soo Byun, Frederick C. Wu, Ramanujapuran A. Srinivas, Avgerinos Gelatos, Mei Chang, Moris Kori, Ashok K. Sinha, Hua Chung, Hongbin Fang, Alfred W. Mak, Michael X. Yang, Ming Xi
  • Publication number: 20080122109
    Abstract: A method for manufacturing a structure includes depositing a dense dielectric over the entire wafer, which includes areas that require low dielectric capacitance and areas that require high mechanical strength. The method further includes masking areas of the dense dielectric over the areas that require high mechanical strength and curing unmasked areas of the dense dielectric to burn out porogens inside the dense dielectric and transform the unmasked areas of the dense dielectric to porous dielectric material. A semiconductor structure comprises porous and dense hybrid interconnects for high performance and reliability semiconductor applications.
    Type: Application
    Filed: July 19, 2006
    Publication date: May 29, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chih-Chao Yang, Keith Kwong Hon Wong, Haining Yang
  • Publication number: 20080124915
    Abstract: An insulation film having an open part in which a silicon part is exposed at a bottom surface is formed on a silicon substrate for forming a semiconductor device. Titanium is deposited to form a titanium film on the bottom surface and side wall surfaces of the contact hole. The silicon substrate and the titanium film are reacted with each other by a first annealing process to form a titanium silicide film on the bottom surface. After the titanium film that remains on the side wall surfaces of the contact hole is removed, a hydrogen annealing process is performed. This hydrogen annealing reduces the density of the interface level in the interface between the silicon substrate, the gate insulation film on the substrate surface, or the like, and improves the characteristics of the semiconductor device. After the hydrogen annealing, tungsten is deposited in the remaining space of the contact hole to form a tungsten plug.
    Type: Application
    Filed: June 13, 2007
    Publication date: May 29, 2008
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventor: Keiichi Yamaguchi
  • Publication number: 20080124924
    Abstract: Embodiments of the present invention generally relate to methods and apparatuses using supercritical fluids and/or dense fluids to deposit a metal material on the surface of a substrate. In one embodiment, a metal material layer is deposited by applying a supercritical fluid, a dense fluid, or combinations thereof and a metal-containing precursor to the surface of a substrate inside a substrate processing chamber. In another embodiment, a first metal material and a second metal material is sequentially deposited and annealing is performed to form a metal alloy material on the surface of a substrate. In still another embodiment, a copper material layer is deposited by applying a supercritical fluid, a dense fluid, or combinations thereof and a copper containing precursor to the surface of the substrate.
    Type: Application
    Filed: July 18, 2006
    Publication date: May 29, 2008
    Inventor: Mehul Naik
  • Publication number: 20080122090
    Abstract: Interconnect structures that include a conformal liner repair layer bridging breaches in a liner formed on roughened dielectric material in an insulating layer and methods of forming such interconnect structures. The conformal liner repair layer is formed of a conductive material, such as a cobalt-containing material. The conformal liner repair layer may be particularly useful for repairing discontinuities in a conductive liner disposed on roughened dielectric material bordering the trenches and vias of damascene interconnect structures.
    Type: Application
    Filed: August 30, 2006
    Publication date: May 29, 2008
    Inventors: Louis Lu-Chen Hsu, Jack Allan Mandelman, William Robert Tonti, Chih-Chao Yang
  • Publication number: 20080124885
    Abstract: A method of fabricating an electrode of a capacitor is provided. A substrate is provided and a dielectric layer is then formed thereon. After that, one multilayer mask is formed on the dielectric layer to expose a portion of the dielectric layer, wherein the multilayer mask consists of at least two layers of materials having different etching rates respectively. The exposed dielectric layer is removed to form a trench, and then the dielectric layer is over-etched, so as to widen the inside diameter of the trench. Thereafter, a conductive layer is formed on the substrate, and thus the multilayer mask and a surface of the trench are covered with the conductive layer. The conductive layer except that in the trench is then removed so as to form the electrode of the capacitor. Therefore, it can prevent the conductive layer from generating more loss.
    Type: Application
    Filed: January 18, 2007
    Publication date: May 29, 2008
    Applicant: PROMOS TECHNOLOGIES INC.
    Inventors: Tsung-De Lin, Cheng-Che Lee
  • Publication number: 20080116582
    Abstract: Interconnect structures including liner layers that are non-planar with at least the adjacent insulating layer and at least one capping layer on conductive features embedded in the insulating layer. The interconnect structure includes an insulating layer of a dielectric material having a top surface and a bottom surface between the top surface and a substrate. An opening, such as a trench, has sidewalls extending from the top surface of the insulating layer toward the bottom surface and is at least partially filled by a conductive feature. A capping layer is disposed on at least a top surface of the conductive feature. A conductive liner layer is disposed between the insulating layer and the conductive feature along at least the sidewalls of the opening. The conductive liner layer has sidewall portions projecting above the top surface of the insulating layer adjacent to the sidewalls of the opening.
    Type: Application
    Filed: November 22, 2006
    Publication date: May 22, 2008
    Inventors: Louis Lu-Chen Hsu, Jack Allan Mandelman, William Robert Tonti, Chih-Chao Yang
  • Patent number: 7375014
    Abstract: The invention includes methods of electrochemically treating semiconductor substrates. The invention includes a method of electroplating a substance. A substrate having defined first and second regions is provided. The first and second regions can be defined by a single mask, and accordingly can be considered to be self-aligned relative to one another. A first electrically conductive material is formed over the first region, and a second electrically conductive material is formed over the second region. The first and second electrically conductive materials are exposed to an electrolytic solution while providing electrical current to the first and second electrically conductive materials. A desired substance is selectively electroplated onto the first electrically conductive material during the exposing of the first and second electrically conductive materials to the electrolytic solution. The invention also includes methods of forming capacitor constructions.
    Type: Grant
    Filed: February 8, 2005
    Date of Patent: May 20, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Dale W. Collins, Richard H. Lane, Rita J. Klein
  • Publication number: 20080113505
    Abstract: A method for achieving a through-substrate via through a substrate having active circuitry on a first major surface begins by forming a hole into the substrate through the first major surface. The hole is lined with a conductive layer. A dielectric layer is deposited over the conductive layer. This deposition is performed in a manner that causes the dielectric layer to be substantially conformal. Conductive material is formed over first dielectric layer. A second major surface of the substrate is etched to expose the conductive material.
    Type: Application
    Filed: November 13, 2006
    Publication date: May 15, 2008
    Inventors: Terry G. Sparks, Syed M. Alam, Ritwik Chatterjee, Shahid Rauf
  • Patent number: 7371682
    Abstract: A method of manufacturing an electronic part in which on the upper surface of an insulating member covering lower layer wiring, a conductor portion connected from the lower layer wiring is exposed. In this method, electric power supplying film is formed on the upper surface of the insulating member, whereafter an opening portion having the lower layer wiring as a bottom is formed from the electric power supplying film side. Then metal plating is grown from the edge portion of the electric power supplying film from the opening portion with the electric power supplying film as an electrode, and the opening portion is filled with the metal plating closely contacting with the lower layer wiring to thereby form a conductor portion.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: May 13, 2008
    Assignee: TDK Corporation
    Inventors: Masashi Gotoh, Hajime Kuwajima, Hiroki Hara, Hiroshi Yamamoto
  • Patent number: 7368379
    Abstract: An interconnect structure for a semiconductor device and its method of manufacture is provided. The interconnect structure includes a multi-layer structure having one or more stress-relief layers. In an embodiment, stress-relief layers are positioned between layers of electroplated copper or other conductive material. The stress-relief layer counteracts stress induced by the conductive material and helps prevent or reduce a pull-back void. For an interconnect structure using electroplated copper, the stress-relief layer may be formed by temporarily reducing the electroplating current, thereby causing a thin film of copper having a larger grain size to be formed between other layers of copper. The larger grain size typically exhibits more of a compressive stress than copper with a smaller grain size. The stress relief layer may also be formed of other materials, such as SIP-Cu, Ta, SiC, or the like.
    Type: Grant
    Filed: August 4, 2005
    Date of Patent: May 6, 2008
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jung-Chih Tsao, Kei-Wei Chen, Yu-Ku Lin, Chyi S Chern
  • Patent number: 7344986
    Abstract: The present invention relates to a plating solution useful for forming embedded interconnects by embedding a conductive material in fine recesses for interconnects provided in the surface of a substrate, such as a semiconductor substrate, or for forming a protective layer for protecting the surface of embedded interconnects, a semiconductor device manufactured by using the plating solution and a method for manufacturing the semiconductor device. The plating solution contains copper ions, metal ions of a metal, and the metal is capable of forming with copper a copper alloy in which the metal does not form a solid solution with copper, a complexing agent, and a reducing agent free from alkali metal.
    Type: Grant
    Filed: November 6, 2002
    Date of Patent: March 18, 2008
    Assignee: Ebara Corporation
    Inventors: Hiroaki Inoue, Xinming Wang, Moriji Matsumoto, Makoto Kanayama
  • Patent number: 7344977
    Abstract: The invention includes methods of electrochemically treating semiconductor substrates. The invention includes a method of electroplating a substance. A substrate having defined first and second regions is provided. The first and second regions can be defined by a single mask, and accordingly can be considered to be self-aligned relative to one another. A first electrically conductive material is formed over the first region, and a second electrically conductive material is formed over the second region. The first and second electrically conductive materials are exposed to an electrolytic solution while providing electrical current to the first and second electrically conductive materials. A desired substance is selectively electroplated onto the first electrically conductive material during the exposing of the first and second electrically conductive materials to the electrolytic solution. The invention also includes methods of forming capacitor constructions.
    Type: Grant
    Filed: February 8, 2005
    Date of Patent: March 18, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Dale W. Collins, Richard H. Lane, Rita J. Klein
  • Patent number: 7341945
    Abstract: A method of fabricating a semiconductor device prevents agglomeration of a seed metal layer in a recess. A recess is formed in a dielectric layer formed on or over a wafer. A seed metal layer (e.g., Cu or Cu alloy) is then formed on a bottom face and an inner side face of the recess. Subsequently, a surface of the seed metal layer is oxidized by exposing the surface of the seed metal layer to an oxygen-containing gas or the atmospheric air before agglomeration of the seed metal layer occurs, thereby forming an oxide layer in the surface of the seed metal layer. A filling metal (e.g., Cu or Cu alloy) is plated on the oxide layer of the seed metal layer while using the seed metal layer whose surface is oxidized as an electrode, thereby filling the recess with the metal.
    Type: Grant
    Filed: February 25, 2003
    Date of Patent: March 11, 2008
    Assignee: NEC Electronics Corporation
    Inventor: Yoshiaki Yamamoto
  • Patent number: 7329582
    Abstract: Methods are provided for fabricating a semiconductor device having an impurity doped region in a silicon substrate. The method comprises forming a metal silicide layer electrically contacting the impurity doped region and depositing a conductive layer overlying and electrically contacting the metal silicide layer. A dielectric layer is deposited overlying the conductive layer and an opening is etched through the dielectric layer to expose a portion of the conductive layer. A conductive material is selectively deposited to fill the opening and to electrically contact the impurity doped region.
    Type: Grant
    Filed: June 15, 2005
    Date of Patent: February 12, 2008
    Assignee: Advanced Micro Devices, Inc.
    Inventors: James Pan, Jonathan Byron Smith, Ming-Ren Lin
  • Patent number: 7314827
    Abstract: A method of manufacturing a semiconductor device according to an aspect of the present invention comprises forming a plated film on a substrate which has a recessed portion on its surface so as to bury in the recessed portion by a plating method; forming over the plated film a compressive stress-applying film which is composed of a material having a thermal expansion coefficient of 60% or less compared with a thermal expansion coefficient of a metal composing the plated film; heat-treating while applying a compressive stress to the plated film by the compressive stress-applying film; and removing the compressive stress-applying film and the plated film which is not buried in the recessed portion.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: January 1, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroshi Toyoda, Sachiyo Ito, Masahiko Hasunuma, Hisashi Kaneko
  • Patent number: 7312149
    Abstract: A method of electroplating a metal layer on a semiconductor device includes a sequence of biasing operations that includes a first electroplating step at a first current density followed by a second immersion step at a second current density being less than the first current density, and subsequent electroplating steps of increasing current densities beginning with a third electroplating step having a third current density that is greater than the first current density. The second, low current density immersion step improves the quality of the plating process and produces a plated film that completely fills openings such as vias and trenches and avoids hollow vias and pull-back on the bottom corners of via and trench openings. The low current density second immersion step produces an electrochemical deposition process that provides low contact resistance and therefore reduces device failure.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: December 25, 2007
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chao-Lung Chen, Kei-Wei Chen, Shih-Ho Lin, Ying-Lang Wang, Yu-Ku Lin, Ching-Hwanq Su, Po-Jen Shih, Shang-Chin Sung
  • Publication number: 20070287285
    Abstract: A manufacturing method of a circuit board is provided. Firstly, a substrate board having a plurality of through holes is provided. Next, a first metal layer is electro-less plated on the surface of the substrate board and the surface of the through holes. Then, a second metal layer is plated on the first metal layer. After that, the second metal layer and the first metal layer are patterned to form a patterned circuit layer. Lastly, a third metal layer is plated on the patterned circuit layer.
    Type: Application
    Filed: September 14, 2006
    Publication date: December 13, 2007
    Inventors: Chi-Chao Tseng, Ming-Loung Lu
  • Publication number: 20070269981
    Abstract: A method of forming an EL-Cu enhanced noble metal layer begins with providing a semiconductor substrate in a reaction chamber, wherein the semiconductor substrate includes a trench etched into a dielectric layer. Next, an organometallic precursor containing a noble metal and a reactive gas are pulsed into the reaction chamber proximate to the semiconductor substrate where they react to form a noble metal layer directly on the dielectric layer within the trench. The substrate is then moved into an electroless plating bath and an electroless plating process deposits a copper seed layer onto the noble metal layer. The substrate is then removed from the plating bath.
    Type: Application
    Filed: May 22, 2006
    Publication date: November 22, 2007
    Inventor: Adrien R. Lavoie
  • Publication number: 20070181434
    Abstract: A method of electrochemical deposition (ECD) provides a barrier and a seed layer on a substrate. The surfaces of the substrate are pre-treated before a metal layer is electrochemically deposited thereon in an electrochemical plating cell with a physical or a chemical surface treatment process. The electrochemical plating cell is covered by a cap to prevent evaporation of the electrolyte solution. The electrochemical plating cell includes a substrate holder assembly with a lift seal, e.g., with a contact angle ? less than 90° between the lift seal and the substrate. The substrate holder assembly includes a substrate chuck at the rear side of the substrate.
    Type: Application
    Filed: April 6, 2007
    Publication date: August 9, 2007
    Inventors: Hsien-Ming Lee, Jing-Cheng Lin, Shing-Chyang Pan, Ming-Hsing Tsai, Hung-Wen Su, Shih-Wei Chou, Shau-Lin Shue, Kuo-Wei Cheng, Ting-Chu Ko
  • Patent number: 7247560
    Abstract: A method has been disclosed that allows the selective deposition of the metal for double damascene silicon wafer processing. This selective deposition allows the metal to be deposited only in the via holes, contact holes, channels or where ever the deposition is targeted to be deposited on the wafer where it is needed. This method allows double damascene wafers to be processed with out the necessity of polishing back the whole surface of the wafer to remove metal from most of the wafer surface, as is currently the practice.
    Type: Grant
    Filed: March 1, 2006
    Date of Patent: July 24, 2007
    Inventors: Samuel Kinner, Gary Poovey
  • Patent number: 7238610
    Abstract: A method for selectively depositing a source material on a wafer is disclosed. In one embodiment, a wafer is having at least one recessed feature is provided. A top surface of the wafer is then coated with an inhibiting material. Finally, a source material is selectively deposited in the at least one recessed feature, the source material repelled by the inhibiting material. In another embodiment, the inhibiting material is one of a wax, a surfactant or an oil.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: July 3, 2007
    Assignee: Intel Corporation
    Inventor: Chris Barns
  • Patent number: 7226860
    Abstract: A method of electrochemical deposition (ECD) provides a barrier and a seed layer on a substrate. The surfaces of the substrate are pre-treated before a metal layer is electrochemically deposited thereon in an electrochemical plating cell with a physical or a chemical surface treatment process. The electrochemical plating cell is covered by a cap to prevent evaporation of the electrolyte solution. The electrochemical plating cell includes a substrate holder assembly with a lift seal, e.g., with a contact angle ? less than 90° between the lift seal and the substrate. The substrate holder assembly includes a substrate chuck at the rear side of the substrate.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: June 5, 2007
    Assignee: Taiwan Semiconductor Manfacturing Co. Ltd.
    Inventors: Hsien-Ming Lee, Jing-Cheng Lin, Shing-Chyang Pan, Ming-Hsing Tsai, Hung-Wen Su, Shih-Wei Chou, Shau-Lin Shue, Kuo-Wei Cheng, Ting-Chu Ko