Combination Of Charge Coupled Devices, I.e., Ccd Or Bbd (epo) Patents (Class 257/E21.617)
  • Patent number: 7585694
    Abstract: Provided is a manufacturing method of a CCD solid-state imaging device having such an impurity concentration distribution with which shading is reduced and formation of a buried channel endowed with a large saturation signal charge amount is made possible. The manufacturing method includes: an oxide layer forming step of forming an oxide layer (12) on a semiconductor substrate (11); an ion implantation step of performing ion implantation through the oxide layer (12) to the semiconductor substrate (11) thereby forming a well in a position corresponding to a charge transfer portion; and an insulation layer forming step of performing insulation layer forming processing to the oxide layer (12) having undergone the ion implantation step, at least in a position corresponding to the well.
    Type: Grant
    Filed: March 22, 2006
    Date of Patent: September 8, 2009
    Assignee: Panasonic Corporation
    Inventor: Akira Tsukamoto
  • Patent number: 7579207
    Abstract: The prevent invention is to provide a solid-state imaging device having a electrode configuration applicable to a progressive scan, and able to reduce a obstruction of incident light at the periphery of a light receiving portion, a method of producing the same, a camera including the same. A first transfer electrode, a second transfer electrode, and a third transfer electrode which have a single layer transfer electrode configuration are repeatedly arranged in a vertical direction. The first transfer electrodes are connected in a horizontal direction by an inter-pixel interconnection formed in the same layer. Shunt interconnections are formed in the horizontal direction and in the vertical direction above the transfer layers. The shunt interconnection connected to the second transfer interconnection is formed on the inter-pixel interconnection. The shunt interconnection connected to the third transfer electrode is formed above the transfer electrodes.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: August 25, 2009
    Assignee: Sony Corporation
    Inventor: Hideo Kanbe
  • Publication number: 20090200580
    Abstract: What is disclosed is an apparatus comprising a transfer gate formed on a substrate and a photodiode formed in the substrate next to the transfer gate. The photodiode comprises a shallow N-type collector formed in the substrate, a deep N-type collector formed in the substrate, wherein a lateral side of the deep N-type collector extends at least under the transfer gate, and a connecting N-type collector formed in the substrate between the deep N-type collector and the shallow N-type collector, wherein the connecting implant connects the deep N-type collector and the shallow N-type collector. Also disclosed is a process comprising forming a deep N-type collector in the substrate, forming a shallow N-type collector formed in the substrate, and forming a connecting N-type collector in the substrate between the deep N-type collector and the shallow N-type collector, wherein the connecting implant connects the deep N-type collector and the shallow N-type collector.
    Type: Application
    Filed: February 8, 2008
    Publication date: August 13, 2009
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Howard E. Rhodes, Hidetoshi Nozaki, Sohei Manabe
  • Patent number: 7557390
    Abstract: A solid image capturing element comprising a plurality of vertical shift registers arranged to each correspond to a column of a plurality of light receiving pixels in a matrix arrangement, a horizontal shift register provided on an output side of the plurality of vertical shift registers, and an output section provided on an output side of the horizontal shift register. In this solid image capturing element, a reverse conductive semiconductor region is formed over one major surface of one conductive semiconductor substrate, the plurality of light receiving pixels, the plurality of vertical shift registers, the horizontal shift register, and the output section are formed in the semiconductor region, and a portion of the semiconductor region where the output section is formed has a higher dopant concentration than the portion of the semiconductor region where the horizontal shift register is formed.
    Type: Grant
    Filed: October 17, 2003
    Date of Patent: July 7, 2009
    Assignee: Sanyo Electric co., Ltd.
    Inventors: Yoshihiro Okada, Yuzo Otsuru
  • Patent number: 7531373
    Abstract: A method of forming conductive interconnects includes forming a node of a circuit component on a substrate. A conductive metal line is formed at a first metal routing level that is elevationally outward of the circuit component. Insulative material is deposited above the first metal routing level over the conductive metal line and the circuit component. In a common masking step, a first opening is etched through the insulative material to the conductive metal line and a second opening is etched through the insulative material to the node of the circuit component that is received elevationally inward of the conductive metal line. Conductive material is concurrently deposited to within the first and second openings in respective conductive connection with the conductive metal line and the node of the circuit component. A first metal line at a second metal routing level that is above the first metal routing level is formed in conductive connection with the conductive material in the first opening.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: May 12, 2009
    Assignee: Micron Technology, Inc.
    Inventor: Xiaofeng Fan
  • Patent number: 7456044
    Abstract: A method of manufacturing an image sensor using a microlens mold is provided. The method includes: forming an interlayer dielectric layer on a semiconductor substrate having photodiodes; forming color filter layers on the interlayer dielectric layer; forming a planarization layer on the color filter layers; coating photoresist on the planarization layer; aligning a mold having a lens shaped pattern on the semiconductor substrate with the photoresist applied thereon; pressing the mold and the semiconductor substrate closely to each other such that a pattern formed in the mold is transferred onto the photoresist; and separating the mold from the semiconductor substrate, thereby forming micro-lenses.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: November 25, 2008
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Kwan Yul Lee
  • Publication number: 20080213935
    Abstract: Provided is a manufacturing method of a CCD solid-state imaging device having such an impurity concentration distribution with which shading is reduced and formation of a buried channel endowed with a large saturation signal charge amount is made possible. The manufacturing method includes: an oxide layer forming step of forming an oxide layer (12) on a semiconductor substrate (11); an ion implantation step of performing ion implantation through the oxide layer (12) to the semiconductor substrate (11) thereby forming a well in a position corresponding to a charge transfer portion; and an insulation layer forming step of performing insulation layer forming processing to the oxide layer (12) having undergone the ion implantation step, at least in a position corresponding to the well.
    Type: Application
    Filed: March 22, 2006
    Publication date: September 4, 2008
    Inventor: Akira Tsukamoto
  • Patent number: 7345328
    Abstract: A solid-state image pick-up device of a photoelectric converting film lamination type including a semiconductor substrate and at least three layers of photoelectric converting films each of which is interposed between a common electrode film and pixel electrode films. The pixel electrode films correspond to pixels respectively, and at least three layers of photoelectric converting films are laminated through insulating layers. The at least three layers of photoelectric converting films are above the semiconductor substrate. Sets of the pixel electrode films are provided on each of the at least three layers of photoelectric converting films, and electric charge storage portions formed on the semiconductor substrate are connected through sets of columnar contact electrodes. Resistance values of the sets of columnar contact electrodes are equal to each other.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: March 18, 2008
    Assignee: Fujifilm Corporation
    Inventor: Kazuya Oda
  • Publication number: 20080042170
    Abstract: An image sensor and fabricating method thereof are provided. A gate electrode is formed on a semiconductor substrate with a photodiode on one side and a low-concentration drain on the other side. A silicide blocking pattern covers the photodiode, the gate electrode, and part of the low-concentration drain, such that an aperture exposes a portion of the low-concentration drain. A high-concentration drain is formed in the substrate under the aperture.
    Type: Application
    Filed: August 21, 2007
    Publication date: February 21, 2008
    Inventor: Chang Hun Han
  • Publication number: 20070254413
    Abstract: A method of forming a charge-coupled device including the steps of forming well or substrate of a first conductivity type; a buried channel of a second conductivity type; a plurality of first gate electrodes; partially coating the first gate electrodes with a mask substantially aligned to an edge of the first gate electrodes; implanting ions of the first conductivity type of sufficient energy to penetrate the first gates and into the buried channel; and a plurality of second gate electrodes covering regions each over the buried channel between the first gate electrodes.
    Type: Application
    Filed: April 26, 2006
    Publication date: November 1, 2007
    Inventors: Christopher Parks, John McCarten, Joseph Summa
  • Patent number: 7285808
    Abstract: A plurality of optical sensors (4) are arranged in a surface region of a semiconductor substrate (6) in a matrix pattern, and electric charge generated by the optical sensors (4) is transferred by first and second transfer electrodes (12 and 14) embedded under the optical sensors (4). The semiconductor substrate (6) is constructed by laminating a support substrate (16) composed of silicon, a buffer layer (18), and a thin silicon layer (20) composed of single-crystal silicon. p? regions (26) (overflow barrier) and n-type regions (28) which function as transfer paths are formed under the optical sensors (4). The first and the second transfer electrodes (12 and 14) are disposed between the buffer layer (18) and the n-type regions (28), and an insulating film (30) is interposed between the n-type regions (28) and the first and the second transfer electrodes (12 and 14). In this structure, the light-receiving area is large since the transfer electrodes are not disposed in the front region.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: October 23, 2007
    Assignee: Sony Corporation
    Inventor: Takashi Kasuga
  • Patent number: 7247511
    Abstract: A memory cell comprises a chalcogenide random access memory (CRAM) cell and a CMOS circuit. The CMOS circuit accesses the CRAM cell. The CRAM cell has a cross-sectional area that is determined by a thin film process (e.g., a chalcogenide deposition thin film process) and by an iso-etching process. If desired, the chalcogenide structure may be implemented in series with a semiconductor device such as a diode or a selecting transistor. The diode drives a current through the chalcogenide structure. The selecting transistor drives a current through the chalcogenide structure when enabled by a voltage at a gate terminal of the selecting transistor. The selecting transistor has a gate terminal, a source terminal, and a drain terminal; the gate terminal may be operatively coupled to a word line of a memory array, the source terminal may be operatively coupled to a drive line of the memory array, and the drain terminal may be operatively coupled to a bit line of the memory array.
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: July 24, 2007
    Assignee: Macronix International Co., Ltd.
    Inventors: Hsiang-Lan Lung, Yi-Chou Chen
  • Patent number: 7179675
    Abstract: A method for fabricating an image sensor includes forming a seed layer on a semiconductor substrate, forming a blocking layer on the seed layer, partially exposing a region for transistor in an active region of the semiconductor substrate by patterning the seed layer and the blocking layer, selectively forming a gate insulating material layer in a portion of the exposed region for transistor, filling a gate electrode material layer in the exposed region for transistor over the gate insulating material layer, forming a gate insulating layer pattern and a gate electrode pattern by selectively removing the blocking layer, the gate insulating material layer, the gate electrode material layer, and the seed layer, and forming source and drain diffusion layers and a photodiode on both sides of the gate insulating layer pattern and the gate electrode pattern by selectively doping impurity ions.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: February 20, 2007
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Hee Sung Shim
  • Patent number: 7179676
    Abstract: A technique for forming Charge-Coupled Devices (CCDs) in a conventional Complementary Metal Oxide Semiconductor (CMOS) process. A number of single-layer polysilicon gates are formed on an as-grown, native doped silicon substrate, with gaps between them. Masking is used to selectively dope the gates while preventing doping of the silicon in the gaps. Masking may likewise be used to selectively silicide the gates while preventing silicide formation in the gaps. Conventional source-drain processing produces input/output diffusions for the CCD.
    Type: Grant
    Filed: March 28, 2005
    Date of Patent: February 20, 2007
    Assignee: Kenet, Inc.
    Inventors: Gerhard Sollner, Lawrence J. Kushner, Michael P. Anthony, Edward Kohler, Wesley Grant
  • Patent number: 7153719
    Abstract: A method of fabricating a pixel cell having a shutter gate structure. First and second charge barriers are respectively created between a photodiode and a first charge storage region and between the first storage region and a floating diffusion region. A global shutter gate is formed to control the charge barrier and transfer charges from the photodiode to the first charge storage region by effectively lowering the first charge barrier. A transfer transistor acts to transfer charges from the first storage region to the floating diffusion region by reducing the second charge barrier.
    Type: Grant
    Filed: August 24, 2004
    Date of Patent: December 26, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Inna Patrick, Sungkwon C. Hong
  • Patent number: 7125740
    Abstract: A method of fabricating a solid-state image pickup device comprising forming mask patterns corresponding to patterns of first and third transfer electrodes, which are to be alternately arranged in each vertical transfer register formation region and which are to extend in parallel to each other between light receiving portions adjacent to each other in the vertical direction, on a first electrode material layer. The method also includes forming side walls on each of the mask patterns. The method further includes patterning the first electrode material layer via the mask patterns having the side walls, to form first and third transfer electrodes formed by the first layer.
    Type: Grant
    Filed: July 12, 2004
    Date of Patent: October 24, 2006
    Assignee: Sony Corporation
    Inventors: Junji Yamane, Kunihiko Hikichi