Capacitor Extending Under Transfer Transistor Area (epo) Patents (Class 257/E21.65)
  • Patent number: 11469230
    Abstract: Systems, methods and apparatus are provided for an array of vertically stacked memory cells. The vertically stacked memory cells have horizontally oriented access devices having a first source/drain region, a channel region, and a second source drain and storage nodes that are vertically separated from the access devices.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: October 11, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Kamal M. Karda, Haitao Liu, Litao Yang
  • Patent number: 11177004
    Abstract: A semiconductor memory device includes at least two transistors, each including a gate that traverses, in a first direction, an active region of a first substrate defined by an isolation layer, and junction regions disposed in the active region on opposite sides of the gate, and coupled to a memory cell array through a bit line; and a plurality of contacts, coupled respectively to the junction regions, that pass through a dielectric layer that covers the transistor. Among the plurality of contacts, a contact coupled to a junction region to which an erase voltage is loaded is disposed at a center portion of the active region in the first direction, and a contact coupled to a junction region to which the erase voltage is not loaded is disposed at an edge portion of the active region in the first direction.
    Type: Grant
    Filed: June 9, 2020
    Date of Patent: November 16, 2021
    Assignee: SK hynix Inc.
    Inventor: Sung Lae Oh
  • Patent number: 10304842
    Abstract: The semiconductor device according to the present invention includes a ferroelectric film and an electrode stacked on the ferroelectric film. The electrode has a multilayer structure of an electrode lower layer in contact with the ferroelectric film and an electrode upper layer stacked on the electrode lower layer. The electrode upper layer is made of a conductive material having an etching selection ratio with respect to the materials for the ferroelectric film and the electrode lower layer. The upper surface of the electrode upper layer is planarized.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: May 28, 2019
    Assignee: ROHM CO., LTD.
    Inventor: Yuichi Nakao
  • Patent number: 9853541
    Abstract: A switched-capacitor DC-to-DC converter includes a logic cell and a capacitor cell vertically overlapping with the logic cell. The logic cell has a plurality of active elements disposed over a first substrate. The capacitor cell has a capacitor over a second substrate. A first interlayer insulation layer disposed over the first substrate is bonded to a second interlayer insulation layer disposed over the second substrate. A first through via connected to any one of interconnection patterns of the logic cell and a second through via connected to a lower electrode pattern of the capacitor cell are connected to each other through a first external circuit pattern. A third through via connected to an upper electrode pattern of the capacitor cell and a fourth through via connected to another one of the interconnection patterns of the logic cell are connected to each other through a second external circuit pattern.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: December 26, 2017
    Assignee: SK Hynix Inc.
    Inventor: Jae Ho Hwang
  • Patent number: 9673708
    Abstract: A switched-capacitor DC-to-DC converter includes a logic cell and a capacitor cell vertically overlapping with the logic cell. The logic cell has a plurality of active elements disposed over a first substrate. The capacitor cell has a capacitor over a second substrate. A first interlayer insulation layer disposed over the first substrate is bonded to a second interlayer insulation layer disposed over the second substrate. A first through via connected to any one of interconnection patterns of the logic cell and a second through via connected to a lower electrode pattern of the capacitor cell are connected to each other through a first external circuit pattern. A third through via connected to an upper electrode pattern of the capacitor cell and a fourth through via connected to another one of the interconnection patterns of the logic cell are connected to each other through a second external circuit pattern.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: June 6, 2017
    Assignee: SK Hynix Inc.
    Inventor: Jae Ho Hwang
  • Patent number: 8637364
    Abstract: An amorphous carbon film and an interlayer insulation film are formed in a memory cell region and a peripheral circuit region, respectively. An insulating film is formed on the amorphous carbon film and the interlayer insulation film. A portion of the insulating film that corresponds to capacitors on the amorphous carbon film is removed so that lower electrodes of the capacitors are supported from opposite sides of the lower electrodes. An insulating film pattern continuously extends from the memory cell region to the peripheral circuit region wholly covered with the insulating film pattern. Subsequently, the amorphous carbon film is removed to leave the capacitors supported by the insulating film pattern on both sides of the lower electrodes.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: January 28, 2014
    Inventor: Yasuhiko Ueda
  • Patent number: 8410534
    Abstract: Disclosed are integrated circuit structures each having a silicon germanium film incorporated as a local interconnect and/or an electrical contact. These integrated circuit structures provide improved local interconnects between devices and/or increased capacitance to devices without significantly increasing structure surface area or power requirements. Specifically, disclosed are integrated circuit structures that incorporate a silicon germanium film as one or more of the following features: as a local interconnect between devices; as an electrical contact to a device (e.g., a deep trench capacitor, a source/drain region of a transistor, etc.); as both an electrical contact to a deep trench capacitor and a local interconnect between the deep trench capacitor and another device; and as both an electrical contact to a deep trench capacitor and as a local interconnect between the deep trench capacitor and other devices.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: April 2, 2013
    Assignee: International Business Machines Corporation
    Inventor: Steven H. Voldman
  • Patent number: 8294189
    Abstract: A memory device is disclosed, comprising a substrate, and a capacitor with a specific shape along an orientation parallel to a surface of the substrate, wherein the specific shape includes a curved outer edge, a curved inner edge having a positive curvature, a first line and a second line connecting the curved outer edge with the curved inner edge. A word line is coupled to the capacitor. In an embodiment of the invention, the capacitor is a deep trench capacitor with a vertical transistor. In another embodiment of the invention, the capacitor is a stacked capacitor.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: October 23, 2012
    Assignee: Inotera Memories, Inc.
    Inventors: Hou-Hong Chou, Chien-Sung Chu
  • Patent number: 8129772
    Abstract: Disclosed are integrated circuit structures each having a silicon germanium film incorporated as a local interconnect and/or an electrical contact. These integrated circuit structures provide improved local interconnects between devices and/or increased capacitance to devices without significantly increasing structure surface area or power requirements. Specifically, disclosed are integrated circuit structures that incorporate a silicon germanium film as one or more of the following features: as a local interconnect between devices; as an electrical contact to a device (e.g., a deep trench capacitor, a source/drain region of a transistor, etc.); as both an electrical contact to a deep trench capacitor and a local interconnect between the deep trench capacitor and another device; and as both an electrical contact to a deep trench capacitor and as a local interconnect between the deep trench capacitor and other devices.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: March 6, 2012
    Assignee: International Business Machines Corporation
    Inventor: Steven H. Voldman
  • Patent number: 7807517
    Abstract: Provided are methods for fabricating semiconductor devices incorporating a fin-FET structure that provides body-bias control, exhibits some characteristic advantages associated with SOI structures, provides increased operating current and/or reduced contact resistance. The methods for fabricating semiconductor devices include forming insulating spacers on the sidewalls of a protruding portion of a first insulation film; forming a second trench by removing exposed regions of the semiconductor substrate using the insulating spacers as an etch mask, and thus forming fins in contact with and supported by the first insulation film. After forming the fins, a third insulation film is formed to fill the second trench and support the fins. A portion of the first insulation film is then removed to open a space between the fins in which additional structures including gate dielectrics, gate electrodes and additional contact, insulating and storage node structures may be formed.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: October 5, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Suk-Pil Kim, Yoon-Dong Park, Won-Joo Kim, Dong-Gun Park, Eun-Suk Cho, Suk-Kang Sung, Byung-Yong Choi, Tae-Yong Kim, Choong-Ho Lee
  • Patent number: 7709878
    Abstract: A capacitor structure including a substrate, a butting conductive layer, a second dielectric layer, a plurality of openings, a bottom electrode layer, a capacitor dielectric layer, a top electrode layer, and a second metal interconnect layer is provided. The substrate has a first dielectric layer and a first metal interconnect layer located in the first dielectric layer in a non-capacitor region. The butting conductive layer is disposed over the first dielectric layer in a capacitor region. The second dielectric layer is disposed over the first dielectric layer and covers the butting conductive layer. The openings include a first opening exposing a portion of the butting conductive layer and a second opening exposing the first metal interconnect layer. The bottom electrode layer, the capacitor dielectric layer, and the top electrode layer are conformally stacked in the first opening sequentially. The second metal interconnect layer is disposed in the openings.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: May 4, 2010
    Assignee: United Microelectronics Corp.
    Inventor: Chung-Chih Chen
  • Patent number: 7642107
    Abstract: A pixel with a photosensor and a transfer transistor having a split transfer gate. A first section of the transfer gate is connectable to a first voltage source while a second section of the transfer gate is connectable to a second voltage source. Thus, during a charge integration period of a photosensor, the two sections of the transfer gate may be oppositely biased to decrease dark current while controlling blooming of electrons within and out of the pixel cell. During charge transfer the two gate sections may be commonly connected to a positive voltage sufficient to transfer charge from the photosensor to a floating diffusion region.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: January 5, 2010
    Assignee: Aptina Imaging Corporation
    Inventor: John Ladd
  • Patent number: 7563667
    Abstract: In a method for forming a semiconductor device, a device isolation layer is formed in a capacitor region of a silicon substrate, and a bottom electrode and a dielectric layer are formed on the device isolation layer. Insulation sidewalls are formed on both sides of the bottom electrode. A top electrode is formed on the dielectric layer, and simultaneously a gate electrode is formed in a transistor region of the silicon substrate. Source/drain impurity regions are formed in the silicon substrate at both sides of the gate electrode.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: July 21, 2009
    Assignee: Dongbu HiTek Co., Ltd.
    Inventors: Choul Joo Ko, Yong Jun Lee
  • Patent number: 7507629
    Abstract: A semiconductor device includes a semiconductor substrate including silicon and an oxide layer on the substrate. The oxide layer includes silicon. An interfacial dielectric layer is disposed on the oxide layer opposite the substrate. The interfacial dielectric layer includes HfO2, ZrO2, a zirconium silicate alloy, and/or a hafnium silicate alloy having a thickness between about 0.5 nm and 1.0 nm. A primary dielectric layer is disposed on the interfacial dielectric layer opposite the substrate. The primary dielectric layer includes AlO3; TiO2; a group IIIB or VB transition metal oxide; a trivalent lanthanide series rare earth oxide; a silicate alloy; an aluminate alloy; a complex binary oxide having two transition metal oxides and/or a complex binary oxide having a transition metal oxide and a lanthanide rare earth oxide. A thickness of the primary dielectric layer is at least about five times greater than the thickness of the interfacial dielectric layer.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: March 24, 2009
    Inventors: Gerald Lucovsky, Christopher L. Hinkle
  • Patent number: 7491604
    Abstract: A trench memory filled with a monolithic conducting material and methods for forming the same are disclosed. The trench memory includes a trench that has only a single, monolithic conducting material within the trench. The method includes forming a trench with a collar in the trench; forming a node dielectric on a sidewall of the trench; and filling the trench with a monolithic conducting material, such as polysilicon.
    Type: Grant
    Filed: March 7, 2006
    Date of Patent: February 17, 2009
    Assignee: International Business Machines Corporation
    Inventor: Kangguo Cheng