Containers; Seals (epo) Patents (Class 257/E23.18)
  • Patent number: 8569113
    Abstract: A method for producing a microfluid component includes: Producing a single polymer layer made of at least one plastic or a plastic composite and having a microfluid structure, fitting the polymer layer with at least one semiconductor element, and/or with at least one electronic component, and/or with an optical or optoelectronic component, sealing the microfluid structure.
    Type: Grant
    Filed: September 7, 2009
    Date of Patent: October 29, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Holger Reinecks, Johanna May
  • Patent number: 8558371
    Abstract: Provided is a wafer level packaging method and a semiconductor device fabricated using the same. In the method, a substrate comprising a plurality of chips is provided. An adhesive layer is formed on the substrate corresponding to boundaries of the plurality of chips. A cover plate covering an upper portion of the substrate and having at least one opening exposing the adhesive layer or the substrate at the boundaries among the plurality of chips is attached to the adhesive layer.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: October 15, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: JiSun Hong, Taeje Cho, Un-Byoung Kang, Hyuekjae Lee, Youngbok Kim, Hyung-sun Jang
  • Patent number: 8552559
    Abstract: A new interconnection scheme is described, comprising both coarse and fine line interconnection schemes in an IC chip. The coarse metal interconnection, typically formed by selective electroplating technology, is located on top of the fine line interconnection scheme. It is especially useful for long distance lines, clock, power and ground buses, and other applications such as high Q inductors and bypass lines. The fine line interconnections are more appropriate to be used for local interconnections. The combined structure of coarse and fine line interconnections forms a new interconnection scheme that not only enhances IC speed, but also lowers power consumption.
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: October 8, 2013
    Assignee: Megica Corporation
    Inventors: Mou-Shiung Lin, Chiu-Ming Chou, Chien-Kang Chou
  • Patent number: 8552544
    Abstract: A package structure includes first and second substrates, a sealant and a filler. The first substrate has a surface including an active region and a bonding region. The first substrate has a component in the active region and a pad in bonding region. The pad is electrically connected to the component. The sealant is disposed on the surface surrounding the active region. The sealant has a breach at a side of the active region. The second substrate is bonded to the first substrate via the sealant. The second substrate has a first opening corresponding to the pad, and a second opening corresponding to the breach. The filler fills the second opening, covers the breach such that the first substrate, the second substrate, the sealant and the filler together form a sealed space for accommodating the component.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: October 8, 2013
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventor: Ching-Hong Chuang
  • Patent number: 8541260
    Abstract: An exposed die overmolded flip chip package includes a substrate. A die is flip chip mounted to an upper surface of the substrate. The package further includes a mold cap filling a apace between an active surface of the die and the upper surface of the substrate. The mold cap includes a principal surface, sidewalls extending from the upper surface of the substrate to the principal surfaces, an annular surface coplanar with the inactive surface of the die and extending outward from a peripheral edge of the inactive surface of the die, and protruding surfaces extending between the principal surface and the annular surface. The mold cap does not cover the inactive surface of the die such that heat transfer from the die to the ambient environment is maximized and the package thickness is minimized.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: September 24, 2013
    Assignee: Amkor Technology, Inc.
    Inventors: Robert Francis Darveaux, Michael Barrow, Miguel Angel Jimarez, Jae Dong Kim, Dae Keun Park, Ki Wook Lee, Ju Hoon Yoon
  • Publication number: 20130241044
    Abstract: According to example embodiments, a semiconductor package includes a first semiconductor chip is on a first substrate, a protective layer directly on the first semiconductor chip, and an encapsulant covering an upper surface of the first substrate. The encapsulant may contact side surfaces of the first semiconductor chip and the protective layer.
    Type: Application
    Filed: November 5, 2012
    Publication date: September 19, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyun-Ki KIM, Jung-Do LEE, Yang-Hoon AHN, Sun-Hye LEE, Dae-Young CHOI
  • Patent number: 8492883
    Abstract: A semiconductor package and related methods are described. In one embodiment, the package includes a die pad, a plurality of leads, a chip, and a package body. The die pad includes: (1) a peripheral edge region defining, a cavity with a cavity bottom including a central portion; (2) an upper sloped portion; and (3) a lower sloped portion. Each lead includes an upper sloped portion and a lower sloped portion. The chip is disposed on the central portion of the cavity bottom and is coupled to the leads. The package body is formed over the chip and the leads, substantially fills the cavity, and substantially covers the upper sloped portions of the die pad and the leads. The lower sloped portions of the die pad and the leads at least partially extend outwardly from a lower surface of the package body.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: July 23, 2013
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Pao-Huei Chang Chien, Ping-Cheng Hu, Chien-Wen Chen, Hsu-Yang Lee
  • Patent number: 8487429
    Abstract: A multi-chip module (MCM) is described. This MCM includes two substrates, having facing surfaces, which are mechanically coupled. Disposed on a surface of a first of these substrates, there is a negative feature, which is recessed below this surface. A positive feature in the MCM, which includes an assembly material other than a bulk material in the substrates, at least in part mates with the negative feature. For example, the positive feature may be disposed on the surface of the other substrate. Alternatively, prior to assembly of the MCM, the positive feature may be a separate component from the substrates (such as a micro-sphere). Note that the assembly material has a bulk modulus that is less than a bulk modulus of the material in the substrates. Furthermore, at least a portion of the positive feature may have been sacrificed when the mechanical coupling was established.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: July 16, 2013
    Assignee: Oracle America, Inc.
    Inventors: Jing Shi, David C. Douglas
  • Patent number: 8476748
    Abstract: An exposed die overmolded flip chip package includes a substrate. A die is flip chip mounted to an upper surface of the substrate. The package further includes a mold cap filling a space between an active surface of the die and the upper surface of the substrate. The mold cap includes a principal surface, sidewalls extending from the upper surface of the substrate to the principal surface, an annular surface coplanar with the inactive surface of the die and extending outward from a peripheral edge of the inactive surface of the die, and protruding surfaces extending between the principal surface and the annular surface. The mold cap does not cover the inactive surface of the die such that heat transfer from the die to the ambient environment is maximized and the package thickness is minimized.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: July 2, 2013
    Assignee: Amkor Technology, Inc.
    Inventors: Robert Francis Darveaux, Michael Barrow, Miguel Angel Jimarez, Jae Dong Kim, Dae Keun Park, Ki Wook Lee, Ju Hoon Yoon
  • Patent number: 8466010
    Abstract: A backside illuminated imaging sensor with a seal ring support includes an epitaxial layer having an imaging array formed in a front side of the epitaxial layer. A metal stack is coupled to the front side of the epitaxial layer, wherein the metal stack includes a seal ring formed in an edge region of the imaging sensor. An opening is included that extends from the back side of the epitaxial layer to a metal pad of the seal ring to expose the metal pad. The seal ring support is disposed on the metal pad and within the opening to structurally support the seal ring.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: June 18, 2013
    Assignee: OmniVision Technologies, Inc.
    Inventors: Hsin-Chih Tai, Vincent Venezia, Yin Qian, Duli Mao, Keh-Chiang Ku
  • Patent number: 8410613
    Abstract: The semiconductor device has insulating films 40, 42 formed over a substrate 10; an interconnection 58 buried in at least a surface side of the insulating films 40, 42; insulating films 60, 62 formed on the insulating film 42 and including a hole-shaped via-hole 60 and a groove-shaped via-hole 66a having a pattern bent at a right angle; and buried conductors 70, 72a buried in the hole-shaped via-hole 60 and the groove-shaped via-hole 66a. A groove-shaped via-hole 66a is formed to have a width which is smaller than a width of the hole-shaped via-hole 66. Defective filling of the buried conductor and the cracking of the inter-layer insulating film can be prevented. Steps on the conductor plug can be reduced. Accordingly, defective contact with the upper interconnection layer and the problems taking place in forming films can be prevented.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: April 2, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kenichi Watanabe
  • Publication number: 20130069216
    Abstract: According to one embodiment, the base plate includes first and a second faces that are opposed to each other; the second face has a contoured rear surface, and the first area is set in the center of the plate. There is a second area with via holes in the peripheral areas of the center part. Also, the thickness of the second area is less than the thickness of the first area.
    Type: Application
    Filed: September 7, 2012
    Publication date: March 21, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Eitaro MIYAKE
  • Patent number: 8395268
    Abstract: A semiconductor memory device includes: a wiring board including an element mounting portion and connection pads; a first element group including a plurality of semiconductor elements each having electrode pads arranged along one of outer sides of the semiconductor element, the plurality of semiconductor elements being layered stepwise on the element mounting portion of the wiring board in a way that pad arrangement sides of the semiconductor elements face in the same direction, and that the electrode pads are exposed; a second element group including a plurality of semiconductor elements each having electrode pads arranged along one of outer sides of the semiconductor element, the plurality of semiconductor elements being layered stepwise on the first element group in a way that pad arrangement sides of the semiconductor elements face in the same direction as that of the first element group, and that the electrode pads are exposed, the second element group being disposed to be offset from the first element g
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: March 12, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Taku Nishiyama, Tetsuya Yamamoto, Naohisa Okumura
  • Patent number: 8394679
    Abstract: A structure and method for cold weld compression bonding using a metallic nano-structured gasket is provided. This structure and method allows a hermetic package to be formed at lower pressures and temperatures than are possible using bulk or conventional thin-film gasket materials.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: March 12, 2013
    Assignee: Stellarray, Inc.
    Inventors: Mark F Eaton, Curtis Nathan Potter, Andrew Miner
  • Patent number: 8395177
    Abstract: A package (1; 20) for protecting a device (2; 21) from ambient substances, the package comprising an enclosure surrounding the device (2; 21). The enclosure includes a multi-layer barrier (7; 24) and an internal substance binding member (14; 27) which is provided inside the enclosure to bind at least one of said ambient substances having penetrated the enclosure. The package (1; 20) further comprises an intermediate substance binding member (14; 29) which is provided between an inner (11a-b; 25) and an outer (16a-b; 28) barrier layer of the multi-layer barrier (7; 24) to bind a fraction of the substance having penetrated the outer barrier layer (16a-b; 28).
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: March 12, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Edward Willem Albert Young, Johannes Krijne
  • Patent number: 8368194
    Abstract: An exposed die overmolded flip chip package includes a substrate. A die is flip chip mounted to an upper surface of the substrate. The package further includes a mold cap filling a space between an active surface of the die and the upper surface of the substrate. The mold cap includes a principal surface, sidewalls extending from the upper surface of the substrate to the principal surface, an annular surface coplanar with the inactive surface of the die and extending outward from a peripheral edge of the inactive surface of the die, and protruding surfaces extending between the principal surface and the annular surface. The mold cap does not cover the inactive surface of the die such that heat transfer from the die to the ambient environment is maximized and the package thickness is minimized.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: February 5, 2013
    Assignee: Amkor Technology, Inc.
    Inventors: Robert Francis Darveaux, Michael Barrow, Miguel Angel Jimarez, Jae Dong Kim, Dae Keun Park, Ki Wook Lee, Ju Hoon Yoon
  • Patent number: 8349635
    Abstract: An encapsulated MEMS device and a method to form an encapsulated MEMS device are described. An apparatus includes a first substrate having a silicon-germanium seal ring disposed thereon and a second substrate having a metal seal ring disposed thereon. The metal seal ring is aligned with and bonded to the silicon-germanium seal ring to provide a sealed cavity. A MEMS device is housed in the sealed cavity. A method includes forming a silicon-germanium seal ring on a first substrate and forming a metal seal ring on a second substrate. The metal seal ring is bonded to the silicon-germanium seal ring to provide a sealed cavity that houses a MEMS device.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: January 8, 2013
    Assignee: Silicon Laboratories Inc.
    Inventors: Qing Gan, Emmanuel P. Quevy
  • Patent number: 8349634
    Abstract: A semiconductor device includes: a first substrate made of semiconductor and having first regions, which are insulated from each other and disposed in the first substrate; and a second substrate having electric conductivity and having second regions and insulation trenches. Each insulation trench penetrates the second substrate so that the second regions are insulated from each other. The first substrate provides a base substrate, and the second substrate provides a cap substrate. The second substrate is bonded to the first substrate so that a sealed space is provided between a predetermined surface region of the first substrate and the second substrate. The second regions include an extraction conductive region, which is coupled with a corresponding first region.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: January 8, 2013
    Assignee: DENSO CORPORATION
    Inventors: Tetsuo Fujii, Kazuhiko Sugiura
  • Publication number: 20120319261
    Abstract: Hermetically sealed semiconductor wafer packages that include a first bond ring on a first wafer facing a complementary surface of a second bond ring on a second wafer. The package includes first and second standoffs of a first material, having a first thickness, formed on a surface of the first bond ring. The package also includes a eutectic alloy (does not have to be eutectic, typically it will be an alloy not specific to the eutectic ratio of the elements) formed from a second material and the first material to create a hermetic seal between the first and second wafer, the eutectic alloy formed by heating the first and second wafers to a temperature above a reflow temperature of the second material and below a reflow temperature of the first material, wherein the eutectic alloy fills a volume between the first and second standoffs and the first and second bond rings, and wherein the standoffs maintain a prespecified distance between the first bond ring and the second bond ring.
    Type: Application
    Filed: June 20, 2011
    Publication date: December 20, 2012
    Applicant: RAYTHEON COMPANY
    Inventor: Cody B. Moody
  • Patent number: 8334589
    Abstract: A power block includes an insulating substrate, a conductive pattern formed on the insulating substrate, a power semiconductor chip bonded onto the conductive pattern by lead-free solder, a plurality of electrodes electrically connected to the power semiconductor chip and extending upwardly away from the insulating substrate, and a transfer molding resin covering the conductive pattern, the lead-free solder, the power semiconductor chip, and the plurality of electrodes, wherein surfaces of the plurality of electrodes are exposed at an outer surface of the transfer molding resin and lie in the same plane as the outer surface, the outer surface being located directly above the conductive pattern.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: December 18, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yoshihiro Yamaguchi, Seiji Oka, Osamu Usui, Takeshi Oi
  • Patent number: 8334582
    Abstract: A semiconductor chip includes a semiconductor substrate; a plurality of low-k dielectric layers over the semiconductor substrate; a first passivation layer over the plurality of low-k dielectric layers; and a second passivation layer over the first passivation layer. A first seal ring is adjacent to an edge of the semiconductor chip, wherein the first seal ring has an upper surface substantially level to a bottom surface of the first passivation layer. A second seal ring is adjacent to the first seal ring and on an inner side of the semiconductor chip than the first seal ring. The second seal ring includes a pad ring in the first passivation layer and the second passivation layer. A trench ring includes at least a portion directly over the first seal ring. The trench ring extends from a top surface of the second passivation layer down to at least an interface between the first passivation layer and the second passivation layer.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: December 18, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shin-Puu Jeng, Hsien-Wei Chen, Shang-Yun Hou, Hao-Yi Tsai, Anbiarshy N. F. Wu, Yu-Wen Liu
  • Patent number: 8304874
    Abstract: A stacked integrated circuit package-in-package system is provided including forming a first external interconnect; mounting a first integrated circuit die below the first external interconnect; stacking a second integrated circuit die over the first integrated circuit die in an offset configuration not over the first external interconnect; connecting the first integrated circuit die with the first external interconnect; and encapsulating the second integrated circuit die with the first external interconnect and the first integrated circuit die partially exposed.
    Type: Grant
    Filed: December 9, 2006
    Date of Patent: November 6, 2012
    Assignee: Stats Chippac Ltd.
    Inventors: Hun Teak Lee, Tae Keun Lee, Soo Jung Park
  • Publication number: 20120274868
    Abstract: A semiconductor package may include a substrate, a semiconductor chip disposed on the substrate, a communication terminal and a static electricity inducing terminal connected to a ground. The package may include a first sealant that comprises a voltage sensitive material and that covers the semiconductor chip and a static electricity blocking layer that provides a conductive pathway from the first sealant to only the static electric inducing terminal. The static electricity blocking layer may prevent the communication terminal from being electrically connected to the first sealant. If a buildup of charge is applied to the device, the first sealant may become polarized and/or conductive. The extra voltage may travel through the first sealant to the static electricity inducing terminal via an opening in the static electricity blocking layer. The semiconductor chip and the communication terminal may not be affected by the extra charge.
    Type: Application
    Filed: March 22, 2012
    Publication date: November 1, 2012
    Inventors: Kyong-soon Cho, Seung-kon Mok, Kwan-jai Lee, Jae-min Jung
  • Patent number: 8294257
    Abstract: A power block includes an insulating substrate, a conductive pattern formed on the insulating substrate, a power semiconductor chip bonded onto the conductive pattern by lead-free solder, a plurality of electrodes electrically connected to the power semiconductor chip and extending upwardly away from the insulating substrate, and a transfer molding resin covering the conductive pattern, the lead-free solder, the power semiconductor chip, and the plurality of electrodes, wherein surfaces of the plurality of electrodes are exposed at an outer surface of the transfer molding resin and lie in the same plane as the outer surface, the outer surface being located directly above the conductive pattern.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: October 23, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yoshihiro Yamaguchi, Seiji Oka, Osamu Usui, Takeshi Oi
  • Patent number: 8288851
    Abstract: A system for hermetically sealing devices includes a substrate, which includes a plurality of individual chips. Each of the chips includes a plurality of devices and each of the chips are arranged in a spatial manner as a first array. The system also includes a transparent member of a predetermined thickness, which includes a plurality of recessed regions arranged in a spatial manner as a second array and each of the recessed regions are bordered by a standoff region. The substrate and the transparent member are aligned in a manner to couple each of the plurality of recessed regions to a respective one of said plurality of chips. Each of the chips within one of the respective recessed regions is hermetically sealed by contacting the standoff region of the transparent member to the plurality of first street regions and second street regions using at least a bonding process to isolate each of the chips within one of the recessed regions.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: October 16, 2012
    Assignee: Miradia Inc.
    Inventors: Xiao Yang, Dongmin Chen
  • Publication number: 20120256307
    Abstract: A sensor module includes a support member having a first flat surface, a second flat surface orthogonally connected to the first flat surface, a third flat surface orthogonally connected to the first flat surface and the second flat surface, and a fourth flat surface opposed to the first flat surface as an attachment surface to an external member, the first flat surface having a support surface depressed from the first flat surface, IC chips having connection terminals on active surface sides with inactive surface sides along the active surfaces respectively attached to the respective surfaces of the support member, and vibration gyro elements having connection electrodes, and the vibration gyro elements are provided on the active surface sides of the IC chips and the connection electrodes are attached to the connection terminals of the IC chips so that principal surfaces are respectively along the respective surfaces of the support member.
    Type: Application
    Filed: April 5, 2012
    Publication date: October 11, 2012
    Applicant: SEIKO EPSON CORPORATION
    Inventor: Yugo KOYAMA
  • Patent number: 8217508
    Abstract: Disclosed is a method of packaging integrated circuit devices using a preformed carrier. In one illustrative embodiment, the method includes providing a carrier having a plurality of pockets formed therein, positioning an integrated circuit chip and a substrate in each of the plurality of pockets and conductively coupling the integrated circuit chip and the substrate in each of the plurality of pockets to one another. Also disclosed is a packaged integrated circuit device including a preformed body and an integrated circuit chip and a substrate positioned within the preformed body, the integrated chip and the substrate being conductively coupled to one another.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: July 10, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Tan Kwang Hong
  • Patent number: 8207022
    Abstract: An exposed die overmolded flip chip package includes a substrate. A die is flip chip mounted to an upper surface of the substrate. The package further includes a mold cap filling a space between an active surface of the die and the upper surface of the substrate. The mold cap includes a principal surface, sidewalls extending from the upper surface of the substrate to the principal surface, an annular surface coplanar with the inactive surface of the die and extending outward from a peripheral edge of the inactive surface of the die, and protruding surfaces extending between the principal surface and the annular surface. The mold cap does not cover the inactive surface of the die such that heat transfer from the die to the ambient environment is maximized and the package thickness is minimized.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: June 26, 2012
    Assignee: Amkor Technology, Inc.
    Inventors: Robert Francis Darveaux, Michael Barrow, Miguel Angel Jimarez, Jae Dong Kim, Dae Keun Park, Ki Wook Lee, Ju Hoon Yoon
  • Publication number: 20120153451
    Abstract: A semiconductor device of the present invention comprises a semiconductor element, a main electrode connected to the semiconductor element, and a case for sealing the semiconductor element. The main electrode is provided, extending outside of the case from the inside thereof, and an external thread or an internal thread to be fastened to an external terminal is provided integrally on an extended portion of the main electrode, which extends outside of the case.
    Type: Application
    Filed: July 8, 2011
    Publication date: June 21, 2012
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventor: Yukimasa HAYASHIDA
  • Publication number: 20120138968
    Abstract: Provided are a semiconductor package with a reduced lead pitch, and a display panel assembly having the semiconductor package. The semiconductor package includes a film having a hole formed therein, a plating pattern formed under the film and forming a wire; a semiconductor chip placed in the hole and electrically connected to the plating pattern; and a first passivation layer formed at a side opposite to the semiconductor chip about the plating pattern and protecting the plating pattern.
    Type: Application
    Filed: September 22, 2011
    Publication date: June 7, 2012
    Inventors: Na-Rae Shin, So-Young Lim, Chul-Woo Kim, Ye-Chung Chung
  • Publication number: 20120139097
    Abstract: Provided are a semiconductor package and a method of manufacturing the semiconductor package. The semiconductor package may include a circuit substrate, a semiconductor chip mounted on the circuit substrate, a chip package interaction disposed between the circuit substrate and the semiconductor chip, a first molding portion covering part of the semiconductor chip and part of the chip package interaction, a second molding portion formed on the first molding portion, and an adhesion portion adhering the first and second molding portions to each other, the adhesion portion being disposed between the first and second molding portions.
    Type: Application
    Filed: September 23, 2011
    Publication date: June 7, 2012
    Inventors: JEONGGI JIN, Yunhyeok Im, Chungsun Lee, Jung-Hwan Kim, Tae-Hong Min
  • Patent number: 8188596
    Abstract: A multi-chip module is disclosed. In one embodiment, the multichip module includes a first chip, a second chip and a common chip carrier is disclosed. The first chip and the second chip are mounted on the common chip carrier. The second chip is mounted on the chip carrier in a flip-chip orientation. The second chip is electrically connected to the first chip via the chip carrier.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: May 29, 2012
    Assignee: Infineon Technologies AG
    Inventor: Ralf Otremba
  • Publication number: 20120119346
    Abstract: Disclosed are a semiconductor package and a method of manufacturing the same. The semiconductor package comprises a package cap which is capable of radiating high temperatures and performs a shield function preventing transmission of electromagnetic waves into and/or out of the semiconductor package. The semiconductor package including the package cap prevents chip malfunctions and improves device reliability. The package cap is positioned to cover first and second semiconductor chips of a semiconductor package.
    Type: Application
    Filed: September 23, 2011
    Publication date: May 17, 2012
    Inventors: YUNHYEOK IM, Chungsun Lee, Taeje Cho
  • Publication number: 20120112335
    Abstract: A sealing and bonding material structure for joining semiconductor wafers having monolithically integrated components. The sealing and bonding material are provided in strips forming closed loops. There are provided at least two concentric sealing strips on one wafer. The strips are laid out so as to surround the component(s) on the wafers to be sealed off when wafers are bonded together. The material in the strips is a material bonding the semiconductor wafers together and sealing off the monolithically integrated components when subjected to force and optionally heating. A monolithically integrated electrical and/or mechanical and/or fluidic and/or optical device including a first substrate and a second substrate, bonded together with the sealing and bonding structure, and a method of providing a sealing and bonding material structure on at least one of two wafers and applying a force and optionally heat to the wafers to join them are described.
    Type: Application
    Filed: January 5, 2012
    Publication date: May 10, 2012
    Applicant: SILEX MICROSYSTEMS AB
    Inventors: Thorbjörn EBEFORS, Edward KÄLVESTEN, Niklas SVEDIN, Anders ERIKSSON
  • Patent number: 8169059
    Abstract: Structures of a system on chip and methods of forming a system on chip are disclosed. In one embodiment, the system on a chip includes an RF component disposed on a first part of a substrate, a semiconductor component disposed on a second part of the substrate, the semiconductor component and the RF component sharing a common boundary. The system on chip further includes through substrate conductors disposed in the substrate, the through substrate conductors coupled to a ground potential node, the through substrate conductors disposed around the RF component forming a fence around the RF circuit.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: May 1, 2012
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Barth, Jens Pohl, Gottfried Beer, Oliver Nagy
  • Publication number: 20120097979
    Abstract: A structurally robust power switching assembly, that has a first rigid structural unit, defining a first unit major surface that is patterned to define a plurality of mutually electrically isolated, electrically conductive paths. Also, a similar, second rigid structural unit is spaced apart from the first unit major surface. Finally, a transistor is interposed between and electrically connected to the first unit major surface and the second unit major surface.
    Type: Application
    Filed: January 3, 2012
    Publication date: April 26, 2012
    Inventors: Lawrence E. Rinehart, Guillermo L. Romero
  • Publication number: 20120068327
    Abstract: A microelectronic unit includes a semiconductor element consisting essentially of semiconductor material and having a front surface, a rear surface, a plurality of active semiconductor devices adjacent the front surface, a plurality of conductive pads exposed at the front surface, and an opening extending through the semiconductor element. At least one of the conductive pads can at least partially overlie the opening and can be electrically connected with at least one of the active semiconductor devices. The microelectronic unit can also include a first conductive element exposed at the rear surface for connection with an external component, the first conductive element extending through the opening and electrically connected with the at least one conductive pad, and a second conductive element extending through the opening and insulated from the first conductive element. The at least one conductive pad can overlie a peripheral edge of the second conductive element.
    Type: Application
    Filed: September 17, 2010
    Publication date: March 22, 2012
    Applicant: TESSERA RESEARCH LLC
    Inventors: Vage Oganesian, Belgacem Haba, Ilyas Mohammed, Craig Mitchell, Piyush Savalia
  • Patent number: 8138027
    Abstract: A semiconductor device is made by providing a semiconductor die having an optically active area, providing a leadframe or pre-molded laminated substrate having a plurality of contact pads and a light transmitting material disposed between the contact pads, attaching the semiconductor die to the leadframe so that the optically active area is aligned with the light transmitting material to provide a light transmission path to the optically active area, and disposing an underfill material between the semiconductor die and leadframe. The light transmitting material includes an elevated area to prevent the underfill material from blocking the light transmission path. The elevated area includes a dam surrounding the light transmission path, an adhesive ring, or the light transmission path itself can be the elevated area. An adhesive ring can be disposed on the dam. A filler material can be disposed between the light transmitting material and contact pads.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: March 20, 2012
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Zigmund R. Camacho, Henry D. Bathan, Lionel Chien Hui Tay, Arnel Senosa Trasporto
  • Patent number: 8129828
    Abstract: A wiring substrate assembly includes a resin wiring substrate and a reinforcement member. The resin wiring substrate does not have a core substrate, and includes a substrate main surface, a substrate back surface, a laminate structure comprised of resin insulation layers and conductive layers, and connection terminals disposed on the substrate main surface, to which a chip component is connectable. The reinforcement member is bonded to the substrate main surface and defines an opening portion extending through the reinforcement member so as to expose the main-surface-side connection terminals. The reinforcement member comprises a composite material including a resin material containing an inorganic material.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: March 6, 2012
    Assignee: NGK Spark Plug Co., Ltd.
    Inventor: Shinnosuke Maeda
  • Publication number: 20120038028
    Abstract: The present disclosure provides a method of fabricating a semiconductor device, the method including providing a substrate having a seal ring region and a circuit region, forming a first seal ring structure over the seal ring region, forming a second seal ring structure over the seal ring region and adjacent to the first seal ring structure, and forming a first passivation layer disposed over the first and second seal ring structures. A semiconductor device fabricated by such a method is also provided.
    Type: Application
    Filed: November 2, 2010
    Publication date: February 16, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Dun-Nian Yaung, Jen-Cheng Liu, Jeng-Shyan Lin, Wen-De Wang, Shu-Ting Tsai
  • Patent number: 8106495
    Abstract: A semiconductor apparatus includes a first wiring substrate, a second wiring substrate, a semiconductor chip, an adhesive layer and a molding resin. The second wiring substrate is stacked and connected on the first wiring substrate through a bump electrode. The semiconductor chip is mounted on the first wiring substrate by flip chip bonding and received between the first wiring substrate and the second wiring substrate. An upper surface of the semiconductor chip is subject to a mirror treatment. The adhesive layer is formed on the upper surface of the semiconductor chip. The molding resin is filled in a gap between the first wiring substrate and the second wiring substrate.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: January 31, 2012
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventor: Atsunori Kajiki
  • Patent number: 8102040
    Abstract: An integrated package system with die and package combination includes forming a leadframe having internal leads and external leads, encapsulating a first integrated circuit on the leadframe, and encapsulating a second integrated circuit over the first integrated circuit.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: January 24, 2012
    Assignee: Stats Chippac Ltd.
    Inventors: Seng Guan Chow, Ming Ying, Il Kwon Shim
  • Publication number: 20120007226
    Abstract: A system-in-a-package based flash memory card including an integrated circuit package occupying a small overall area within the card and cut to conform to the shape of a lid for the card. An integrated circuit may be cut from a panel into a shape that fits within and conforms to the shape of lids for a finished memory card, such as for example an SD Card. The integrated circuit package may be a system-in-a-package, a multi-chip module, or other arrangement where a complete electronic system is formed in a single package.
    Type: Application
    Filed: September 19, 2011
    Publication date: January 12, 2012
    Inventors: Hem Takiar, Robert C. Miller, Warren Middlekauff, Michael W. Patterson, Shrikar Bhagath
  • Patent number: 8084332
    Abstract: A method of bonding of germanium to aluminum between two substrates to create a robust electrical and mechanical contact is disclosed. An aluminum-germanium bond has the following unique combination of attributes: (1) it can form a hermetic seal; (2) it can be used to create an electrically conductive path between two substrates; (3) it can be patterned so that this conduction path is localized; (4) the bond can be made with the aluminum that is available as standard foundry CMOS process. This has the significant advantage of allowing for wafer-level bonding or packaging without the addition of any additional process layers to the CMOS wafer.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: December 27, 2011
    Assignee: Invensense, Inc.
    Inventors: Steven S. Nasiri, Anthony Francis Flannery, Jr.
  • Publication number: 20110309487
    Abstract: The semiconductor device is high in both heat dissipating property and connection reliability in mounting. The semiconductor device includes a semiconductor chip, a resin sealing member for sealing the semiconductor chip, a first conductive member connected to a first electrode formed on a first main surface of the semiconductor chip, and a second conductive member connected to a second electrode formed on a second main surface opposite to the first main surface of the semiconductor chip, the first conductive member being exposed from a first main surface of the resin sealing member, and the second conductive member being exposed from a second main surface opposite to the first main surface of the resin sealing member and also from side faces of the resin sealing member.
    Type: Application
    Filed: August 24, 2011
    Publication date: December 22, 2011
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Yukihiro Satou, Takeshi Otani, Hiroyuki Takahashi, Toshiyuki Hata, Ichio Shimizu
  • Publication number: 20110291255
    Abstract: A carrier for holding a plurality of chip packages and a carrier assembly are provided, wherein the chip package has a central area without solder balls and a peripheral area with solder balls formed thereon. The carrier includes a tray component and a plurality of supports disposed on the tray component, wherein each support holds the central area of a respective chip package. The carrier assembly is formed by stacking a plurality of the carriers through a plurality of peripheral projections disposed at a periphery of each tray component, wherein each peripheral projection has a pin formed thereon and a hole formed thereunder.
    Type: Application
    Filed: May 28, 2010
    Publication date: December 1, 2011
    Applicant: NANYA TECHNOLOGY CORPORATION
    Inventor: Pai-Sheng Shih
  • Publication number: 20110278713
    Abstract: An embedded electronic component semiconductor package structure and a packaging process thereof are provided. By providing two or more preformed building blocks, the electronic component can be assembled to the joined building blocks to obtain the embedded component semiconductor package structure.
    Type: Application
    Filed: May 17, 2010
    Publication date: November 17, 2011
    Applicant: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventor: Bernd Karl Appelt
  • Publication number: 20110272796
    Abstract: A structure and method for cold weld compression bonding using a metallic nano-structured gasket is provided. This structure and method allows a hermetic package to be formed at lower pressures and temperatures than are possible using bulk or conventional thin-film gasket materials.
    Type: Application
    Filed: September 1, 2010
    Publication date: November 10, 2011
    Inventors: Mark F. Eaton, Curtis Nathan Potter, Andrew Miner
  • Publication number: 20110266657
    Abstract: A semiconductor device wherein destruction of a sealing ring caused by cracking of an interlayer dielectric film is difficult to occur, as well as a method for manufacturing the semiconductor device, are provided. A first laminate comprises first interlayer dielectric films having a first mechanical strength. A second laminate comprises second interlayer dielectric films having a mechanical strength higher than the first mechanical strength. A first region includes first metallic layers and vias provided within the first laminate. A second region includes second metallic layers and vias provided within the second laminate. When seen in plan, the second region overlaps at least a part of the first region, is not coupled with the first region by vias, and sandwiches the second interlayer dielectric film between it and the first region.
    Type: Application
    Filed: July 11, 2011
    Publication date: November 3, 2011
    Applicant: Renesas Electronics Corporation
    Inventors: Hiroyuki Chibahara, Atsushi Ishii, Naoki Izumi, Masahiro Matsumoto
  • Publication number: 20110260315
    Abstract: A power block includes an insulating substrate, a conductive pattern formed on the insulating substrate, a power semiconductor chip bonded onto the conductive pattern by lead-free solder, a plurality of electrodes electrically connected to the power semiconductor chip and extending upwardly away from the insulating substrate, and a transfer molding resin covering the conductive pattern, the lead-free solder, the power semiconductor chip, and the plurality of electrodes, wherein surfaces of the plurality of electrodes are exposed at an outer surface of the transfer molding resin and lie in the same plane as the outer surface, the outer surface being located directly above the conductive pattern.
    Type: Application
    Filed: January 18, 2011
    Publication date: October 27, 2011
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yoshihiro YAMAGUCHI, Seiji Oka, Osamu Usui, Takeshi Oi