Channel Region Of Field-effect Devices (epo) Patents (Class 257/E29.049)
  • Patent number: 8928044
    Abstract: A this film transistor is provided. The thin film transistor includes a semiconductor layer including a source region, a drain region, and a channel region, wherein the channel region is provided between the source region and the drain region; and a gate electrode overlapping with the channel region, wherein the channel region includes at least a portion of a channel width that is configured to at least one of continuously decrease and continuously increase in a lengthwise direction.
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: January 6, 2015
    Assignee: Japan Display West Inc.
    Inventors: Yoshitaka Ozeki, Yasuhito Kuwahara, Shigetaka Toriyama, Hiroyuki Ikeda
  • Patent number: 8835994
    Abstract: A structural alternative to retro doping to reduce transistor leakage is provided by providing a liner in a trench, undercutting a conduction channel region in an active semiconductor layer, etching a side, corner and/or bottom of the conduction channel where the undercut exposes semiconductor material in the active layer and replacing the removed portion of the conduction channel with insulator. This shaping of the conduction channel increases the distance to adjacent circuit elements which, if charged, could otherwise induce a voltage and cause a change in back-channel threshold in regions of the conduction channel and narrows and reduces cross-sectional area of the channel where the conduction in the channel is not well-controlled; both of which effects significantly reduce leakage of the transistor.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: September 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Joseph Ervin, Jeffrey B. Johnson, Paul C. Parries, Chengwen Pei, Geng Wang, Yanli Zhang
  • Patent number: 8618543
    Abstract: Provided are a thin film transistor (TFT) including a selectively crystallized channel layer, and a method of manufacturing the TFT. The TFT includes a gate, the channel layer, a source, and a drain. The channel layer is formed of an oxide semiconductor, and at least a portion of the channel layer contacting the source and the drain is crystallized. In the method of manufacturing the TFT, the channel layer is formed of an oxide semiconductor, and a metal component is injected into the channel layer so as to crystallize at least a portion of the channel layer contacting the source and the drain. The metal component can be injected into the channel layer by depositing and heat-treating a metal layer or by ion-implantation.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: December 31, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun-ha Lee, Dong-hun Kang, Jae-cheol Lee, Chang-jung Kim, Hyuck Lim
  • Patent number: 8569764
    Abstract: A thin film transistor includes: a substrate; a semiconductor layer disposed on the substrate, and including a channel region, source and drain regions, and edge regions having a first impurity formed at edges of the source and drain regions, and optionally, in the channel region; a gate insulating layer insulating the semiconductor layer; a gate electrode insulated from the semiconductor layer by the gate insulating layer; and source and drain electrodes electrically connected to the semiconductor layer.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: October 29, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Byoung-Keon Park, Tae-hoon Yang, Jin-Wook Seo, Sei-Hwan Jung, Ki-Yong Lee
  • Patent number: 8445320
    Abstract: Graphene-channel based devices and techniques for the fabrication thereof are provided. In one aspect, a semiconductor device includes a first wafer having at least one graphene channel formed on a first substrate, a first oxide layer surrounding the graphene channel and source and drain contacts to the graphene channel that extend through the first oxide layer; and a second wafer having a CMOS device layer formed in a second substrate, a second oxide layer surrounding the CMOS device layer and a plurality of contacts to the CMOS device layer that extend through the second oxide layer, the wafers being bonded together by way of an oxide-to-oxide bond between the oxide layers. One or more of the contacts to the CMOS device layer are in contact with the source and drain contacts. One or more other of the contacts to the CMOS device layer are gate contacts for the graphene channel.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: May 21, 2013
    Assignee: International Business Machines Corporation
    Inventors: Phaedon Avouris, Kuan-Neng Chen, Damon Farmer, Yu-Ming Lin
  • Patent number: 8293591
    Abstract: A field effect transistor for detecting an analyte having a thiol group includes a substrate, a source region and a drain region formed apart from each other on the substrate, the source region and the drain region being doped such that a polarity of the source and drain region is opposite to a polarity of the substrate, a channel region disposed between the source region and the drain region, an insulating layer formed of an electrically insulating material and disposed on the channel region, a gold layer disposed on the insulating layer and a reference electrode disposed apart from the gold layer.
    Type: Grant
    Filed: April 10, 2007
    Date of Patent: October 23, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeo-young Shim, Kyu-tae Yoo, Kyu-sang Lee, Won-seok Chung, Yeon-ja Cho, Chang-eun Yoo
  • Patent number: 8203172
    Abstract: A nitride semiconductor device includes: a first layer made of a first nitride semiconductor; a second layer provided on the first layer and made of a second nitride semiconductor having a larger band gap than the first nitride semiconductor; a first electrode electrically connected to the second layer; a second electrode provided on the second layer and juxtaposed to the first electrode in a first direction; and a floating electrode provided on the second layer, the floating electrode including: a portion sandwiched by the second electrode in a second direction orthogonal to the first direction; and a portion protruding from the second electrode toward the first electrode.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: June 19, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Wataru Saito, Yasunobu Saito, Takao Noda, Hidetoshi Fujimoto, Tetsuya Ohno
  • Patent number: 8148217
    Abstract: A method of manufacturing a semiconductor device includes forming a mask layer on a first-conductivity-type semiconductor substrate, etching the semiconductor substrate using the mask layer as a mask, thereby forming a projecting semiconductor layer, forming a first insulating layer on the semiconductor substrate to cover a lower portion of the projecting semiconductor layer, doping a first-conductivity-type impurity into the first insulating layer, thereby forming a high-impurity-concentration layer in the lower portion of the projecting semiconductor layer, forming gate insulating films on side surfaces of the projecting semiconductor layer which upwardly extend from an upper surface of the first insulating layer, and forming a gate electrode on the gate insulating films and on the first insulating film.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: April 3, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Izumida, Sanae Ito, Takahisa Kanemura
  • Patent number: 8120072
    Abstract: Devices and methods for providing JFET transistors with improved operating characteristics are provided. Specifically, one or more embodiments of the present invention relate to JFET transistors with a higher diode turn-on voltage. For example, one or more embodiments include a JFET with a doped silicon-carbide gate, while other embodiments include a JFET with a metal gate. One or more embodiments also relate to systems and devices in which the improved JFET may be employed, as well as methods of manufacturing the improved JFET.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: February 21, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Chandra Mouli
  • Patent number: 8101474
    Abstract: A novel buried-channel graphene device structure and method for manufacture. The new structure includes a two level channel layer comprised of a buried-channel graphene layer with an amorphous silicon top channel layer. The method for making such structure includes the steps of depositing a graphene layer on a substrate, depositing an amorphous silicon layer on the graphene layer, converting the upper layer of the amorphous silicon layer to a gate dielectric by nitridation, oxidation or oxynitridation, while keeping the lower layer of the amorphous silicon layer to serve as part of the channel to form the buried-channel graphene device.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: January 24, 2012
    Assignee: International Business Machines Corporation
    Inventor: Wenjuan Zhu
  • Patent number: 8043904
    Abstract: A method of manufacturing a semiconductor device includes forming a mask layer on a first-conductivity-type semiconductor substrate, etching the semiconductor substrate using the mask layer as a mask, thereby forming a projecting semiconductor layer, forming a first insulating layer on the semiconductor substrate to cover a lower portion of the projecting semiconductor layer, doping a first-conductivity-type impurity into the first insulating layer, thereby forming a high-impurity-concentration layer in the lower portion of the projecting semiconductor layer, forming gate insulating films on side surfaces of the projecting semiconductor layer which upwardly extend from an upper surface of the first insulating layer, and forming a gate electrode on the gate insulating films and on the first insulating film.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: October 25, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Izumida, Sanae Ito, Takahisa Kanemura
  • Patent number: 7994603
    Abstract: Disclosed herein is a semiconductor device, including: a first group of transistors formed on a semiconductor substrate; and a second group of transistors formed on the semiconductor substrate, each of which is lower in operating voltage than each of the transistors in the first group; wherein each of the transistors in the first group includes a first gate electrode formed on the semiconductor substrate through a first gate insulating film, and a silicide layer formed on the first gate electrode; each of the transistors in the second group includes a second gate electrode formed in a trench for gate formation, formed in an insulating film above the semiconductor substrate, through a second gate insulating film; and a protective film is formed so as to cover the silicide layer on each of the first gate electrodes of the first group of transistors.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: August 9, 2011
    Assignee: Sony Corporation
    Inventors: Junli Wang, Tomoyuki Hirano, Toyotaka Kataoka, Yoshiya Hagimoto
  • Patent number: 7755113
    Abstract: To achieve high performance of a semiconductor integrated circuit depending on not only a microfabrication technique but also another way. In addition, to achieve low power consumption of a semiconductor integrated circuit. A semiconductor device is provided in which crystal faces and/or crystal axes of single-crystalline semiconductor layers of a first conductive MISFET and a second conductive MISFET are different. The crystal faces and/or crystal axes are arranged so that mobility of carriers flowing in channel length directions in the respective MISFETs is increased. Such a structure can increase mobility of carriers flowing through channels of the MISFETs and high speed operation of a semiconductor integrated circuit can be achieved. Further, low voltage driving becomes possible, and low power consumption can be realized.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: July 13, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Hidekazu Miyairi
  • Patent number: 7692217
    Abstract: One embodiment of the invention relates to an integrated circuit. The integrated circuit includes a first matched transistor comprising: a first source region, a first drain region formed within a first drain well extension, and a first gate electrode having lateral edges about which the first source region and first drain region are laterally disposed. The integrated circuit also includes a second matched transistor comprising: a second source region, a second drain region formed within a second drain well extension, and a second gate electrode having lateral edges about which the second source region and second drain region are laterally disposed. Analog circuitry is associated with the first and second matched transistors, which analog circuitry utilizes a matching characteristic of the first and second matched transistors to facilitate analog functionality. Other devices, methods, and systems are also disclosed.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: April 6, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Henry Litzmann Edwards, Hisashi Shichijo, Tathagata Chatterjee, Shyh-Horng Yang, Lance Stanford Robertson
  • Patent number: 7662679
    Abstract: A method of manufacturing a semiconductor device includes forming a mask layer on a first-conductivity-type semiconductor substrate, etching the semiconductor substrate using the mask layer as a mask, thereby forming a projecting semiconductor layer, forming a first insulating layer on the semiconductor substrate to cover a lower portion of the projecting semiconductor layer, doping a first-conductivity-type impurity into the first insulating layer, thereby forming a high-impurity-concentration layer in the lower portion of the projecting semiconductor layer, forming gate insulating films on side surfaces of the projecting semiconductor layer which upwardly extend from an upper surface of the first insulating layer, and forming a gate electrode on the gate insulating films and on the first insulating film.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: February 16, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Izumida, Sanae Ito, Takahisa Kanemura
  • Patent number: 7632745
    Abstract: The present invention discloses a method of forming a gate dielectric film including: providing a channel region in a transistor, the channel region including multiple segments having different sizes, some of which belong to a first surface portion while others belong to a second surface portion wherein the first surface portion and the second surface portion are adjacent; forming a hybrid high-k gate dielectric film over the channel region including: forming a first dielectric material over the first surface portion, the first dielectric material having a sub-monolayer thickness; forming a second dielectric material over the second surface portion, the second dielectric material having a sub-monolayer thickness, and forming a third dielectric film over the first dielectric film and the second dielectric film wherein the third dielectric film is high-k.
    Type: Grant
    Filed: June 30, 2007
    Date of Patent: December 15, 2009
    Assignee: Intel Corporation
    Inventor: George Chen
  • Patent number: 7491612
    Abstract: A field effect transistor with a heterostructure includes a strained monocrystalline semiconductor layer formed on a carrier material, which has a relaxed monocrystalline semiconductor layer made of a first semiconductor material (Si) as the topmost layer. The strained monocrystalline semiconductor layer has a semiconductor alloy (GexSi1-x), where the proportion x of a second semiconductor material can be set freely. Furthermore, a gate insulation layer and a gate layer are formed on the strained semiconductor layer. To define an undoped channel region, drain/source regions are formed laterally with respect to the gate layer at least in the strained semiconductor layer. The possibility of freely setting the Ge proportion x enables a threshold voltage to be set as desired, whereby modern logic semiconductor components can be realized.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: February 17, 2009
    Assignee: Infineon Technologies AG
    Inventor: Klaus Schruefer
  • Patent number: 7423321
    Abstract: A method of fabricating a double gate MOSFET device is provided. The present invention overetches a silicon layer overlying a buried oxide layer using a hard mask of cap oxide on the silicon layer as an etching mask. As a result, source, drain and channel regions are formed extending from the buried oxide layer, and a pair of recesses are formed under the channel regions in the buried oxide layer. The channel is a fin structure with a top surface and two opposing parallelly sidewalls. The bottom recess is formed under each opposing sidewall of the fin structure. A conductive gate layer is formed straddling the fin structures. The topography of the conductive gate layer significantly deviates from the conventional plainer profile due to the bottom recess structures under the channel regions, and a more uniformly distributed doped conductive gate layer can be obtained.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: September 9, 2008
    Assignee: United Microelectronics Corp.
    Inventors: Wen-Shiang Liao, Wei-Tsun Shiau
  • Patent number: 7274051
    Abstract: In a field effect transistor (FET), and a method of fabricating the same, the FET includes a semiconductor substrate, source and drain regions formed on the semiconductor substrate, a plurality of wire channels electrically connecting the source and drain regions, the plurality of wire channels being arranged in two columns and at least two rows, and a gate dielectric layer surrounding each of the plurality of wire channels and a gate electrode surrounding the gate dielectric layer and each of the plurality of wire channels.
    Type: Grant
    Filed: March 9, 2005
    Date of Patent: September 25, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sungmin Kim, Ming Li, Eungjung Yoon
  • Publication number: 20060220112
    Abstract: Methods and structure formed for retarding diffusion of a dopant into a channel of a strained Siā€”SiGe CMOS device are disclosed. The methods form a diffusion retardant region in a substrate including at least one diffusion retardant species such as xenon (Xe), and then form a channel layer over the diffusion retardant region. Each step is conducted prior to formation of a gate on the substrate. As a result, if necessary, the diffusion retardant region can be annealed and cleaned or etched to remove defects in the substrate to reduce external resistance and leakage of devices. The diffusion retardant region positioned under the channel slows down the diffusion of a dopant, e.g., arsenic (As). The invention is also applicable to other substrates.
    Type: Application
    Filed: April 1, 2005
    Publication date: October 5, 2006
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Huilong Zhu, Kam-Leung Lee, Jinghong Li, Anda Mocuta