Vertical Transistor (epo) Patents (Class 257/E29.262)
  • Publication number: 20120241850
    Abstract: A semiconductor device includes a drain layer, a drift region provided from a surface inside of the drain layer, a base region provided from a surface inside of the drift region, a source region provided in a trench form from a surface inside of the base region, and a gate electrode provided via a gate insulating film in a first trench. The gate electrode is extended from a part of the source region to a part of the drift region in a direction approximately parallel to a rear face of the drain layer. The semiconductor device further includes a first resistive body layer provided via a first insulating film in at least one of second trenches provided from a surface inside of the drain layer.
    Type: Application
    Filed: September 21, 2011
    Publication date: September 27, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Yusuke KAWAGUCHI
  • Publication number: 20120241848
    Abstract: A semiconductor element includes a drain layer, a drift region selectively provided in the drain layer, a base region selectively provided in the drift region, a source region selectively provided in the base region, first and/or second metal layers selectively provided in at least one of the source region and the drain layer from the front surface to the inside of at least one of the source region and the drain layer, a gate electrode in a trench shape extending in a direction substantially parallel to the front surface of the drain layer from a part of the source region through the base region adjacent to at least the part of the source region to a part of the drift region, a source electrode connected to the first metal layer, and a drain electrode connected to the drain layer or the second metal layer.
    Type: Application
    Filed: September 15, 2011
    Publication date: September 27, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Takeshi UCHIHARA
  • Publication number: 20120241761
    Abstract: According to an embodiment, a semiconductor device includes a first semiconductor layer of a first conductive type, a first main electrode provided on a first major surface side of the first semiconductor layer, and a second main electrode provided on a second major surface side of the first semiconductor layer. A pair of first control electrodes is provided within a trench provided from the first major surface side to the second major surface in the first semiconductor layer; and the first control electrodes are provided separately from each other in a direction parallel to the first major surface. Each of the first control electrodes faces an inner face of the trench via a first insulating film. A second control electrode is provided between the first control electrodes and a bottom face of the trench, and faces the inner face of the trench via a second insulating film.
    Type: Application
    Filed: September 21, 2011
    Publication date: September 27, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Hidetoshi ASAHARA
  • Patent number: 8274106
    Abstract: DRAM cell arrays having a cell area of about 4F2 comprise an array of vertical transistors with buried bit lines and vertical double gate electrodes. The buried bit lines comprise a silicide material and are provided below a surface of the substrate. The word lines are optionally formed of a silicide material and form the gate electrode of the vertical transistors. The vertical transistor may comprise sequentially formed doped polysilicon layers or doped epitaxial layers. At least one of the buried bit lines is orthogonal to at least one of the vertical gate electrodes of the vertical transistors.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: September 25, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Todd R. Abbott, H. Montgomery Manning
  • Patent number: 8274113
    Abstract: A trench MOSFET having shielded gate in parallel with trench Schottky rectifier is formed on a single chip to further increase the efficiency of the trench MOSFET having shielded electrode. As the size of present device is getting smaller and smaller, the trench Schottky rectifier of this invention is able to be shrink and, at the same time, to achieve lower forward voltage drop and lower reverse leakage current.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: September 25, 2012
    Assignee: Force Mos Technology Co., Ltd.
    Inventor: Fu-Yuan Hsieh
  • Patent number: 8274110
    Abstract: A vertical semiconductor material mesa upstanding from a semiconductor base that forms a conductive channel between first and second doped regions. The first doped region is electrically coupled to one or more first silicide layers on the surface of the base. The second doped region is electrically coupled to one of a plurality of second silicide layers on the upper surface of the mesa. A gate conductor is provided on one or more sidewalls of the mesa.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: September 25, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej Sandhu, John K. Zahurak, Jay Parks
  • Patent number: 8274112
    Abstract: A semiconductor memory device includes first and second active pillar structures protruding at an upper part of a substrate, buried bit lines each extending in a first direction, and first gate patterns and second gate patterns each extending in a second direction. The first and second active pillar structures occupy odd-numbered and even-numbered rows, respectively. The first and the second active pillar structures also occupy even-numbered and odd-numbered columns, respectively. The columns of the second active pillar structures are offset in the second direction from the columns of the first active pillar structures. Each buried bit line is connected to lower portions of the first active pillar structures which occupy one of the even-numbered columns and to lower portions of the second active pillar structures which occupy an adjacent one of the odd-numbered columns.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: September 25, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hui-Jung Kim, Yong-Chul Oh, Hyun-Woo Chung, Hyun-Gi Kim, Kang-Uk Kim
  • Publication number: 20120235229
    Abstract: In one general aspect, an apparatus can include a shield dielectric disposed within a trench aligned along an axis within an epitaxial layer of a semiconductor, and a shield electrode disposed within the shield dielectric and aligned along the axis. The apparatus can include a first inter-poly dielectric having a portion intersecting a plane orthogonal to the axis where the plane intersects the shield electrode, and a second inter-poly dielectric having a portion intersecting the plane and disposed between the first inter-poly dielectric and the shield electrode. The apparatus can also include a gate dielectric having a portion disposed on the first inter-poly dielectric.
    Type: Application
    Filed: March 16, 2011
    Publication date: September 20, 2012
    Inventor: Dean E. Probst
  • Publication number: 20120235227
    Abstract: A semiconductor device includes a vertical power semiconductor chip including a semiconductor layer. A first terminal is at a first side of the semiconductor layer and a second terminal is at a second side of the semiconductor layer opposite the first side along a first direction. A drift zone is within the semiconductor layer between the first terminal and the second terminal. The drift zone has, in a central part, a compressive stress of at least 100 MPa along a second direction perpendicular to the first direction. The central part extends from 40% to 60% of an overall extension of the drift zone along the first direction and into a depth of the semiconductor layer of at least 10 ?m with respect to at least one of the first side and the second side of the semiconductor layer.
    Type: Application
    Filed: March 16, 2011
    Publication date: September 20, 2012
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Ralf Otremba, Josef Hoeglauer, Roveendra Paul
  • Publication number: 20120228699
    Abstract: A transistor and a method of fabricating a transistor, including a metal oxide deposited on an epitaxial layer, a photo resist deposited and patterned over the metal oxide and the metal oxide and epitaxial layer are etched to form at least one circular trench, wherein the trench surfaces are defined by the epitaxial layer. An oxide layer is grown on the trench surfaces of each trench, and a gate conductor is formed within the at least one trench.
    Type: Application
    Filed: March 10, 2011
    Publication date: September 13, 2012
    Applicant: O2MICRO, INC.
    Inventors: Hamilton Lu, Laszlo Lipcsei
  • Publication number: 20120228700
    Abstract: A semiconductor device includes: an N-type drift layer; a P-type anode layer on the N-type drift layer; a trench penetrating the P-type anode layer; a conductive substance embedded in the trench via an insulating film; and an N-type buffer layer between the N-type drift layer and the P-type anode layer and having impurity concentration which is higher than that of the N-type drift layer.
    Type: Application
    Filed: September 20, 2011
    Publication date: September 13, 2012
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Akito Nishii, Katsumi Nakamura
  • Publication number: 20120228697
    Abstract: A nonvolatile memory device having a vertical structure and a method of manufacturing the same, the nonvolatile memory device including a channel region that vertically extends from a substrate; gate electrodes on the substrate, the gate electrodes being disposed along an outer side wall of the channel region and spaced apart from one another; and a channel pad that extends from one side of the channel region to an outside of the channel region, the channel pad covering a top surface of the channel region.
    Type: Application
    Filed: February 24, 2012
    Publication date: September 13, 2012
    Inventors: Eun-sun YOUM, Sang-yong PARK, Jin-taek PARK, Yong-top KIM
  • Publication number: 20120228701
    Abstract: In accordance with an embodiment, a semiconductor device includes a semiconductor layer of a first conductivity type with a recess in the surface of the semiconductor layer, a pocket region of the first conductivity type in the semiconductor layer, a source region of a second conductivity type in the semiconductor layer, a drain region of the first conductivity type in the semiconductor layer, a gate insulating film over the surface of the recess, and a gate electrode. The second conductivity type is different from the first conductivity type. The pocket region includes a part under the surface of the recess. The source region is located adjacent to the pocket region. The drain region is located away from the source region and the pocket region. The gate electrode is configured to fill the recess via the gate insulating film.
    Type: Application
    Filed: February 1, 2012
    Publication date: September 13, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Hiroki SASAKI
  • Publication number: 20120228696
    Abstract: A stacked die power converter package includes a lead frame including a die pad and a plurality of package pins, a first die including a first power transistor switch (first power transistor) attached to the die pad, and a first metal clip attached to one side of the first die. The first metal clip is coupled to at least one package pin. A second die including a second power transistor switch (second power transistor) is attached to another side on the first metal clip. A controller is provided by a controller die attached to a second metal clip on one side of the second die, a controller die attached to the second die, or the controller is integrated on the second die. The controller is coupled to both a first control node of the first power transistor and a second control node of the second power transistor.
    Type: Application
    Filed: March 7, 2011
    Publication date: September 13, 2012
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: BRIAN ASHLEY CARPENTER, CHRISTOPHER J. SANZO, WILLIAM TODD HARRISON
  • Publication number: 20120228702
    Abstract: A semiconductor device includes a semiconductor substrate having a groove and an active region adjacent to the groove; a buried gate electrode in the groove; and a capacitive contact including a first portion and a second portion over the first portion. The first portion is greater in horizontal dimension than the second portion. The first portion has a bottom surface that is in contact with an upper surface of the active region.
    Type: Application
    Filed: March 8, 2012
    Publication date: September 13, 2012
    Applicant: ELPIDA MEMORY, INC.
    Inventor: Nan WU
  • Publication number: 20120228677
    Abstract: A method for producing a semiconductor device includes a step of forming a conductor layer and a first semiconductor layer containing a donor impurity or an acceptor impurity on a first semiconductor substrate; a step of forming a second insulating layer so as to cover the first semiconductor layer; a step of thinning the first semiconductor substrate to a predetermined thickness; a step of forming, from the first semiconductor substrate, a pillar-shaped semiconductor having a pillar-shaped structure on the first semiconductor layer; a step of forming a first semiconductor region in the pillar-shaped semiconductor by diffusing the impurity from the first semiconductor layer; and a step of forming a pixel of a solid-state imaging device with the pillar-shaped semiconductor into which the impurity has been diffused.
    Type: Application
    Filed: March 7, 2012
    Publication date: September 13, 2012
    Inventors: Fujio Masuoka, Nozomu Harada
  • Patent number: 8264034
    Abstract: A fin field effect transistor (fin FET) is formed using a bulk silicon substrate and sufficiently guarantees a top channel length formed under a gate, by forming a recess having a predetermined depth in a fin active region and then by forming the gate in an upper part of the recess. A device isolation film is formed to define a non-active region and a fin active region in a predetermined region of the substrate. In a portion of the device isolation film a first recess is formed, and in a portion of the fin active region a second recess having a depth shallower than the first recess is formed. A gate insulation layer is formed within the second recess, and a gate is formed in an upper part of the second recess. A source/drain region is formed in the fin active region of both sides of a gate electrode.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: September 11, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Keun-Nam Kim, Hung-Mo Yang, Choong-Ho Lee
  • Patent number: 8263440
    Abstract: A method for fabricating an etching barrier includes forming wall bodies with a trench in between the wall bodies in a semiconductor substrate. An etching barrier is formed by performing a deposition having a directionality in an oblique direction with respect to the surface of the semiconductor substrate, wherein one of two bottom edge portions of the trench is not covered by the deposition due to a shadow effect by upper portions of the wall bodies.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: September 11, 2012
    Assignee: SK Hynix Inc.
    Inventor: Jun Ki Kim
  • Publication number: 20120223382
    Abstract: A method for fabricating a non-volatile memory device includes forming a channel link layer and an isolation layer surrounding the channel link layer over a substrate, forming a stack structure having interlayer dielectric layers that are alternately stacked with gate electrode layers over the channel link layer and the isolation layer, and forming a pair of channels connected to the channel link layer through the stack structure, and a memory layer interposed between the channel and the stack structure.
    Type: Application
    Filed: September 21, 2011
    Publication date: September 6, 2012
    Inventors: Han-Soo Joo, Dong-Kee Lee, Sang-Hyun Oh
  • Publication number: 20120223339
    Abstract: A semiconductor device includes a first conduction type semiconductor substrate, a first conduction type semiconductor deposition layer, a trench, second conduction type wells, a JFET region, a first conduction type first source region, a first source region, a trench-type source electrode, a gate insulator film, a gate electrode, and a drain electrode. The trench is formed substantially perpendicularly to the semiconductor deposition layer so that the semiconductor deposition layer exposes to a bottom of the trench. The second conduction type second source region are formed in the first conduction type first source region. The trench-type source electrode is in contact with the first source region, the second source region, and the first conduction type semiconductor deposition layer to configure a Schottky junction.
    Type: Application
    Filed: March 7, 2012
    Publication date: September 6, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Makoto Mizukami
  • Publication number: 20120223380
    Abstract: There is provided a monolithic three dimensional array of charge storage devices which includes a plurality of device levels, wherein at least one surface between two successive device levels is planarized by chemical mechanical polishing.
    Type: Application
    Filed: May 10, 2012
    Publication date: September 6, 2012
    Applicant: SanDisk 3D LLC
    Inventors: Thomas H. Lee, Vivek Subramanian, James M. Cleeves, Andrew J. Walker, Christopher J. Petti, Igor G. Kouznetzov, Mark G. Johnson, Paul Michael Farmwald, Brad Herner
  • Patent number: 8258572
    Abstract: A static random access memory (SRAM) cell includes a straight fin and a bended fin physically disconnected from the straight fin. The bended fin has a first portion and a second portion parallel to the straight fin. The distance between the first portion of the bended fin and the straight fin is smaller than the distance between the second portion of the bended fin and the straight fin. The SRAM cell includes a pull-down transistor including a portion of a first gate strip, which forms a first and a second sub pull-down transistor with the straight fin and the first portion of the bended fin, respectively. The SRAM cell further includes a pass-gate transistor including a portion of a second gate strip, which forms a first sub pass-gate transistor with the straight fin. The pull-down transistor includes more fins than the pass-gate transistor.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: September 4, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Jhon-Jhy Liaw
  • Publication number: 20120220089
    Abstract: A gate electrode is formed so as to embed an electrode material in a recess for an electrode, which has been formed in a structure of stacked compound semiconductors, through a gate insulation film, and also a field plate electrode that comes in Schottky contact with the structure of the stacked compound semiconductors is formed by embedding an electrode material in a recess for an electrode, which has been formed in the structure of the stacked compound semiconductors so that the field plate electrode directly comes in contact with the structure of the stacked compound semiconductors at least on the bottom face of the recess for the electrode.
    Type: Application
    Filed: December 14, 2011
    Publication date: August 30, 2012
    Applicant: FUJITSU LIMITED
    Inventors: Tadahiro IMADA, Toshihide Kikkawa
  • Publication number: 20120217570
    Abstract: A semiconductor memory device includes: a lower pillar protruding from a substrate in a vertical direction and extending in a first direction by a trench formed in the first direction; an upper pillar protruding on the lower pillar in a second direction perpendicular to the first direction; a buried bit line junction region disposed on one sidewall of the lower pillar; a buried bit line contacting the buried bit line junction region and filling a portion of the trench; an etch stop film disposed on an exposed surface of the buried bit line; a first interlayer dielectric film recessed to expose a portion of an outer side of at least the upper pillar disposed on the etch stop film; a second interlayer dielectric film disposed on the first interlayer dielectric film; and a gate surrounding the exposed outer side of the upper pillar and crossing the buried bit line.
    Type: Application
    Filed: February 7, 2012
    Publication date: August 30, 2012
    Applicant: HYNIX SEMICONDUCTOR INC.
    Inventor: Tae Kyun KIM
  • Publication number: 20120217564
    Abstract: Methods of forming multi-tiered semiconductor devices are described, along with apparatus and systems that include them. In one such method, an opening is formed in a tier of semiconductor material and a tier of dielectric. A portion of the tier of semiconductor material exposed by the opening is processed so that the portion is doped differently than the remaining semiconductor material in the tier. At least substantially all of the remaining semiconductor material of the tier is removed, leaving the differently doped portion of the tier of semiconductor material as a charge storage structure. A tunneling dielectric is formed on a first surface of the charge storage structure and an an intergate dielectric is formed on a second surface of the charge storage structure. Additional embodiments are also described.
    Type: Application
    Filed: February 25, 2011
    Publication date: August 30, 2012
    Inventors: Sanh D. Tang, John K. Zahurak
  • Publication number: 20120217578
    Abstract: A method includes providing a semiconductor substrate having a gate trench and depositing a metal layer, using a physical vapor deposition (PVD) process, over the substrate to partially fill the trench. The metal layer includes a bottom portion and a sidewall portion that is thinner than the bottom portion. The method also includes forming a coating layer on the metal layer, etching back the coating layer such that a portion of the coating layer protects a portion of the metal layer within the trench, and removing the unprotected portion of the metal layer. A different aspect involves a semiconductor device that includes a gate that includes a trench having a top surface, and a metal layer formed over the trench, wherein the metal layer includes a sidewall portion and a bottom portion, and wherein the sidewall portion is thinner than the bottom portion.
    Type: Application
    Filed: May 8, 2012
    Publication date: August 30, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Peng-Soon Lim, Meng-Hsuan Chan, Kuang-Yuan Hsu
  • Publication number: 20120217575
    Abstract: According to one embodiment, a method is disclosed for manufacturing semiconductor device. The method can include preparing a semiconductor layer having a drain layer, and a drift region provided from a surface to an inside of the drain layer, the drift region having a first trench extending from a surface to an inside of the drift region. The method can include implanting impurities into the drift region through an opening of the first trench to form a source region for an exposed face of the drift region exposed on an inside wall of the first trench, and implanting impurities into the drift region through the opening of the first trench to form a base region between the source region and the drift region. The method can include forming gate electrode.
    Type: Application
    Filed: September 21, 2011
    Publication date: August 30, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Tetsuo Matsuda
  • Publication number: 20120217576
    Abstract: A semiconductor device and a method for forming the same are disclosed. According to the semiconductor device and the method for forming the same, a contact hole spacer is formed only over a contact hole sidewall such that a lower part of a contact plug is formed to have large critical dimension and therefore contact resistance is increased, and an upper spacer is not lost in a process of forming a contact hole sidewall spacer so as to prevent a Self Align Contact (SAC) failure from occurring. The semiconductor device includes a contact hole formed over a semiconductor substrate, a first conductive layer formed at a bottom region of the contact hole and a lower part of sidewalls of the contact hole, a spacer formed over the sidewalls of the contact hole, and a second conductive layer buried in the contact hole including the first conductive layer and the spacer.
    Type: Application
    Filed: September 22, 2011
    Publication date: August 30, 2012
    Applicant: Hynix Semiconductor Inc.
    Inventor: Tae Yeon YEO
  • Publication number: 20120217577
    Abstract: A trench-gate vertical-channel type power MOSFET has an advantage of a low on-state resistance. With increasing miniaturization, fluctuations in on-state resistance have posed a problem. In addition, a structural limitation in miniaturization also has posed a problem. These problems are not only those of a single power MOSFET but also are important ones in integrated circuit devices, such as IGBT using a similar structure, obtained by integrating CMOS and such a power active device on a single chip. The invention provides a semiconductor device having a trench-gate vertical-channel type power active device, such as trench-gate vertical-channel type power MOSFET, in which the width of the interlayer insulating film is made almost equal to that of the trench and a portion of the source region is comprised of a polysilicon member.
    Type: Application
    Filed: February 23, 2012
    Publication date: August 30, 2012
    Inventors: Takayuki HASHIMOTO, Masahiro Masunaga
  • Publication number: 20120211824
    Abstract: Raised structures comprising overlying silicon layers formed by controlled selective epitaxial growth, and methods for forming such raised-structure on a semiconductor substrate are provided. The structures are formed by selectively growing an initial epitaxial layer of mono crystalline silicon on the surface of a semi conductive substrate, and forming a thin film of insulative material over the epitaxial layer. A second epitaxial layer is selectively, grown on the exposed surface of the initial epitaxially grown crystal layer, and a thin insulative film is deposited over the second epitaxial layer. Additional epitaxial layers are added as desired to provide a vertical structure of a desired height comprising multiple layers of single silicon crystals, each epitaxial layer have insulated sidewalls, with the uppermost epitaxial layer also with an insulated top surface.
    Type: Application
    Filed: February 29, 2012
    Publication date: August 23, 2012
    Applicant: MOSAID TECHNOLOGIES INCORPORATED
    Inventors: Er-Xuan PING, Jeffrey A. McKee
  • Publication number: 20120211827
    Abstract: In one embodiment, a vertical power transistor is formed on a semiconductor substrate with other transistors. A portion of the semiconductor layer underlying the vertical power transistor is doped to provide a low on-resistance for the vertical power transistor.
    Type: Application
    Filed: April 27, 2012
    Publication date: August 23, 2012
    Inventors: Francine Y. Robb, Stephen P. Robb, Prasad Venkatraman, Zia Hossain
  • Publication number: 20120211829
    Abstract: A field-effect transistor has a gate, a source, and a drain. The gate has a via extending through a semiconductor chip substrate from one surface to an opposite surface of the semiconductor chip substrate. The source has a first toroid of ion dopants implanted in the semiconductor chip substrate surrounding one end of the via on the one surface of the semiconductor chip substrate. The drain has a second toroid of ion dopants implanted in the semiconductor chip substrate surrounding an opposite end of the via on the opposite surface of the semiconductor chip substrate.
    Type: Application
    Filed: February 17, 2011
    Publication date: August 23, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Gerald K. Bartley, Darryl J. Becker, Philip R. Germann, Andrew B. Maki, John E. Sheets, II
  • Publication number: 20120211825
    Abstract: According to an exemplary embodiment, a trench field-effect transistor (trench FET) includes a trench formed in a semiconductor substrate, the trench including a gate dielectric disposed therein. A source region is disposed adjacent the trench. The trench FET also has a gate electrode including a lower portion disposed in the trench and a proud portion extending laterally over the source region. A silicide source contact can extend vertically along a sidewall of the source region. Also, a portion of the gate dielectric can extend laterally over the semiconductor substrate. The trench FET can further include a silicide gate contact formed over the proud portion of the gate electrode.
    Type: Application
    Filed: February 21, 2011
    Publication date: August 23, 2012
    Applicant: INTERNATIONAL RECTIFIER CORPORATION
    Inventors: Timothy D. Henson, Ling Ma, Hugo Burke, David P. Jones, Martin Carroll
  • Publication number: 20120211826
    Abstract: A trench DMOS transistor with a very low on-state drain-to-source resistance and a high gate-to-drain charge includes one or more floating islands that lie between the gate and drain to reduce the charge coupling between the gate and drain, and effectively lower the gate-to-drain capacitance.
    Type: Application
    Filed: February 22, 2011
    Publication date: August 23, 2012
    Inventors: Yaojian Leng, Richard Wendell Foote, JR., Steven J. Adler
  • Publication number: 20120211828
    Abstract: In an embodiment in accordance with the present invention, a semiconductor device includes a vertical channel region, a gate at a first depth on a first side of the vertical channel region, a shield electrode at a second depth on the first side of the vertical channel region, and a hybrid gate at the first depth on a second side of the vertical channel region. The region below the hybrid gate on the second side of the vertical channel region is free of any electrodes.
    Type: Application
    Filed: April 30, 2012
    Publication date: August 23, 2012
    Applicant: VISHAY-SILICONIX
    Inventors: Madhur Bobde, Qufei Chen, Misbah Ul Azam, Kyle Terrill, Yang Gao, Sharon Shi
  • Patent number: 8247867
    Abstract: A semiconductor device includes a base layer that has a first conductivity type, a source layer that is formed on the base layer and has a second conductivity type, and an insulating film that is formed on the source layer. The semiconductor device further includes a plurality of gate structures that penetrate the base layer, and a plurality of conductive parts that penetrate the insulating film and the source layer and electrically connect the source layer and the base layer to each other. The gate structures are formed in a stripe shape in plan view. Parts in which the conductive portion is connected to the base layer are formed in a stripe shape in plan view, and are formed between the gate structures. Further, a dimension of the part in which the source layer and the base layer are in contact with each other between the gate structure and the conductive portion is 0.36 ?m or more.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: August 21, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kazunari Nakata, Atsushi Narazaki, Shigeto Honda, Kaoru Motonami
  • Publication number: 20120205736
    Abstract: Some embodiments include methods of forming electrical contacts. A row of semiconductor material projections may be formed, with the semiconductor material projections containing repeating components of an array, and with a terminal semiconductor projection of the row comprising a contact location. An electrically conductive line may be along said row, with the line wrapping around an end of said terminal semiconductor projection and bifurcating into two branches that are along opposing sides of the semiconductor material projections. Some of the semiconductor material of the terminal semiconductor projection may be replaced with dielectric material, and then an opening may be extended into the dielectric material. An electrical contact may be formed within the opening and directly against at least one of the branches. Some embodiments include memory arrays.
    Type: Application
    Filed: February 16, 2011
    Publication date: August 16, 2012
    Applicant: Micron Technology, Inc.
    Inventor: Richard T. Housley
  • Patent number: 8241978
    Abstract: A semiconductor device having integrated MOSFET and Schottky diode includes a substrate having a MOSFET region and a Schottky diode region defined thereon; a plurality of first trenches formed in the MOSFET region; and a plurality of second trenches formed in the Schottky diode region. The first trenches respectively including a first insulating layer formed over the sidewalls and bottom of the first trench and a first conductive layer filling the first trench serve as a trenched gate of the trench MOSFET. The second trenches respectively include a second insulating layer formed over the sidewalls and bottom of the second trench and a second conductive layer filling the second trench. A depth and a width of the second trenches are larger than that of the first trenches; and a thickness of the second insulating layer is larger than that of the first insulating layer.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: August 14, 2012
    Assignee: Anpec Electronics Corporation
    Inventors: Wei-Chieh Lin, Li-Cheng Lin, Hsin-Yu Hsu, Ho-Tai Chen, Jen-Hao Yeh, Guo-Liang Yang, Chia-Hui Chen, Shih-Chieh Hung
  • Patent number: 8242497
    Abstract: The present invention is related to a depletion or enhancement mode metal transistor in which the channel regions of a transistor device comprises a thin film metal or metal composite layer formed over an insulating substrate.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: August 14, 2012
    Inventor: Dean Z. Tsang
  • Publication number: 20120199899
    Abstract: According to one embodiment, in a semiconductor device, a first semiconductor layer of a first conductivity type has a first impurity concentration. A second semiconductor layer of the first conductivity type is formed on the first semiconductor layer and has a second impurity concentration lower than the first impurity concentration. A field plate electrode is formed in a lower portion of a trench formed in the second semiconductor layer through a first insulating film so as to bury the lower portion of the trench. A second insulating film is formed in the upper portion of the trench so as to be in contact with the top surface of the field plate electrode. A gate electrode is formed in the upper portion of the trench through a gate insulating film so as to bury the upper portion of the trench to sandwich the second insulating film.
    Type: Application
    Filed: September 15, 2011
    Publication date: August 9, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Hitoshi Kobayashi, Shigeki Tomita
  • Publication number: 20120199901
    Abstract: A semiconductor device includes an active region, a gate conductor and a source electrode. The active region includes a drain region, a channel region stacked on the drain region, and a source region stacked on the channel region. The active region is formed of a silicon semiconductor layer. The gate conductor is embedded within a trench, which is formed from the source region to the drain region penetrating through the channel region. The source electrode is formed to come in contact with the source region and includes an adhesion layer. The source electrode is formed of a metal layer having a film thickness of 150 ? or smaller. The interface between the source electrode and the source region is silicidized.
    Type: Application
    Filed: February 3, 2012
    Publication date: August 9, 2012
    Applicant: ROHM CO., LTD.
    Inventor: Masaki NAGATA
  • Patent number: 8237220
    Abstract: In a high speed vertical channel transistor, a pillar structure is formed over a substrate, a gate electrode surrounds an outer wall of a lower portion of the pillar structure; and a word line extends in a direction to partially contact an outer wall of the gate electrode. The word line shifts toward a side of the pillar structure resulting in increased transistor speed.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: August 7, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventors: Min-Gyu Sung, Heung-Jae Cho, Yong-Soo Kim, Kwan-Yong Lim, Se-Aug Jang
  • Publication number: 20120193678
    Abstract: Exemplary embodiments include a method for fabricating a heterojunction tunnel field-effect-transistor (FET), the method including forming a gate region on a silicon layer of a silicon-on-insulator (SOI) substrate, forming a drain region on the silicon layer adjacent the gate region and forming a vertical heterojunction source region adjacent the gate region, wherein the vertical heterojunction source region generates a tunnel path inline with a gate field associated with the gate region.
    Type: Application
    Filed: March 26, 2012
    Publication date: August 2, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Isaac Lauer, Amlan Majumdar, Paul M. Solomon, Steven J. Koester
  • Publication number: 20120193703
    Abstract: Methods of forming an array of memory cells and memory cells that have pillars. Individual pillars can have a semiconductor post formed of a bulk semiconductor material and a sacrificial cap on the semiconductor post. Source regions can be between columns of the pillars, and gate lines extend along a column of pillars and are spaced apart from corresponding source regions. Each gate line surrounds a portion of the semiconductor posts along a column of pillars. The sacrificial cap structure can be selectively removed to thereby form self-aligned openings that expose a top portion of corresponding semiconductor posts. Individual drain contacts formed in the self-aligned openings are electrically connected to corresponding semiconductor posts.
    Type: Application
    Filed: April 2, 2012
    Publication date: August 2, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: John Zahurak, Sanh D. Tang, Gurtej S. Sandhu
  • Publication number: 20120193705
    Abstract: A memory device includes a substrate having a cell array region defined therein. A dummy structure is disposed on or in the substrate near a boundary of the cell array region. The memory device also includes a vertical channel region disposed on the substrate in the cell array region. The memory device further includes a plurality of vertically stacked conductive gate lines with insulating layers interposed therebetween, the conductive gate lines and interposed insulating layers disposed laterally adjacent the vertical channel region and extending across the dummy structure, at least an uppermost one of the conductive gate lines and insulating layers having a surface variation at the crossing of the dummy structure configured to serve as a reference feature. The dummy structure may include a trench, and the surface variation may include an indentation overlying the trench.
    Type: Application
    Filed: October 31, 2011
    Publication date: August 2, 2012
    Inventors: Ju-young Lim, Woon-kyung Lee, Jae-joo Shim, Hui-chang Moon, Sung-min Hwang
  • Publication number: 20120193702
    Abstract: In a SiC-based MISFET and a manufacturing process thereof, after the introduction of an impurity, extremely-high-temperature activation annealing is required. Accordingly, it is difficult to frequently use a self-alignment process as performed in a silicon-based MISFET manufacturing process. This results in the problem that, to control the characteristics of a device, a high-accuracy alignment technique is indispensable. In accordance with the present invention, in a semiconductor device such as a SiC-based vertical power MISFET using a silicon-carbide-based semiconductor substrate and a manufacturing method thereof, a channel region, a source region, and a gate structure are formed in mutually self-aligned relation.
    Type: Application
    Filed: January 30, 2012
    Publication date: August 2, 2012
    Inventors: Nobuo Machida, Koichi Arai
  • Publication number: 20120193631
    Abstract: This invention discloses a semiconductor wafer for manufacturing electronic circuit thereon. The semiconductor substrate further includes an etch-back indicator that includes trenches of different sizes having polysilicon filled in the trenches and then completely removed from some of the trenches of greater planar trench dimensions and the polysilicon still remaining in a bottom portion in some of the trenches having smaller planar trench dimensions.
    Type: Application
    Filed: March 27, 2012
    Publication date: August 2, 2012
    Inventors: Yu Wang, Tiesheng Li, Sung-Shan Tai, Hong Chang
  • Patent number: 8232593
    Abstract: A power semiconductor device according to an embodiment of the present invention includes a first semiconductor layer of a first or second conductivity type, a second semiconductor layer of the first conductivity type formed on the first semiconductor layer, a third semiconductor layer of the second conductivity type selectively formed on a surface of the second semiconductor layer, at least one trench formed in a periphery of the third semiconductor layer on the surface of the second semiconductor layer, a depth of a bottom surface of the at least one trench being deeper than a bottom surface of the third semiconductor layer, and shallower than a top surface of the first semiconductor layer, and some or all of the at least one trench being in contact with a side surface of the third semiconductor layer, at least one insulator buried in the at least one trench, a first main electrode electrically connected to the first semiconductor layer, and a second main electrode electrically connected to the third semico
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: July 31, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Wataru Saito, Syotaro Ono, Hiroshi Ohta, Munehisa Yabuzaki, Nana Hatano, Miho Watanabe
  • Publication number: 20120187473
    Abstract: A MOSFET switch which has a low surface electric field at an edge termination area, and also has increased breakdown voltage. The MOSFET switch has a new edge termination structure employing an N-P-N sandwich structure. The MOSFET switch also has a polysilicon field plate configuration operative to enhance any spreading of any depletion layer located at an edge of a main PN junction of the N-P-N sandwich structure.
    Type: Application
    Filed: April 12, 2011
    Publication date: July 26, 2012
    Applicant: MAXPOWER SEMICONDUCTOR INC.
    Inventors: Jun Zeng, Mohamed N. Darwish, Shih-Tzung Su
  • Publication number: 20120187477
    Abstract: A super-junction trench MOSFET with split gate electrodes is disclosed for high voltage device by applying multiple trenched source-body contacts with narrow CDs in unit cell.
    Type: Application
    Filed: March 29, 2012
    Publication date: July 26, 2012
    Applicant: FORCE MOS TECHNOLOGIES CO., LTD.
    Inventor: Fu-Yuan HSIEH