Vertical Transistor (epo) Patents (Class 257/E29.262)
  • Publication number: 20130240955
    Abstract: Described herein are embodiments of a vertical power transistor having drain and gate terminals located on the same side of a semiconductor body and capable of withstanding high voltages in the off-state, in particular voltages of more than 100V.
    Type: Application
    Filed: March 14, 2012
    Publication date: September 19, 2013
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Franz Hirler, Andreas Meiser
  • Patent number: 8536645
    Abstract: According to an exemplary embodiment, a trench field-effect transistor (trench FET) includes a trench formed in a semiconductor substrate, the trench including a gate dielectric disposed therein. A source region is disposed adjacent the trench. The trench FET also has a gate electrode including a lower portion disposed in the trench and a proud portion extending laterally over the source region. A silicide source contact can extend vertically along a sidewall of the source region. Also, a portion of the gate dielectric can extend laterally over the semiconductor substrate. The trench FET can further include a silicide gate contact formed over the proud portion of the gate electrode.
    Type: Grant
    Filed: February 21, 2011
    Date of Patent: September 17, 2013
    Assignee: International Rectifier Corporation
    Inventors: Timothy D. Henson, Ling Ma, Hugo Burke, David P. Jones, Martin Carroll
  • Patent number: 8536647
    Abstract: A semiconductor device of the present invention has a first-conductivity-type substrate having second-conductivity-type base regions exposed to a first surface thereof; trench gates provided to a first surface of the substrate; first-conductivity-type source regions formed shallower than the base regions; a plurality of second-conductivity-type column regions located between two adjacent trench gates in a plan view, while being spaced from each other in a second direction normal to the first direction; the center of each column region and the center of each base contact region fall on the center line between two trench gates; and has no column region formed below the trench gates.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: September 17, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Yoshiya Kawashima
  • Publication number: 20130234241
    Abstract: A MOSFET device has a funnel-shaped trench etched in a semiconductor substrate. The funnel-shaped trench has flared rim extending from a wider cross section trench mouth at the surface of the semiconductor substrate to a narrower cross section trench body portion which terminates in an epilayer portion of the semiconductor substrate. A gate electrode is disposed in the trench on the flared rim. Source and gate regions of the device abut upper and lower portions of the flared rim, respectively. A drain region of the device, which abuts the narrower cross section trench body portion, is self-aligned with a lower edge of a gate electrode.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Inventor: Brian Bowers
  • Publication number: 20130234242
    Abstract: A semiconductor device includes trenches defined in a substrate, buried bit lines partially filling the trenches, a first source/drain layer filling remaining portions of the trenches on the buried bit lines, stack patterns having a channel layer and a second source/drain layer stacked therein and bonded to the first source/drain layer, wherein the channel layer contacts with the first source/drain layer, and word lines crossing with the buried bit lines and disposed adjacent to sidewalls of the channel layer.
    Type: Application
    Filed: July 20, 2012
    Publication date: September 12, 2013
    Inventor: Eui-Seong HWANG
  • Publication number: 20130234234
    Abstract: A method for fabricating a non-volatile memory device includes forming a stacked structure where a plurality of inter-layer dielectric layers and a plurality of second sacrificial layers are alternately stacked over a substrate, forming a channel layer that is coupled with a portion of the substrate by penetrating through the stacked structure, forming a slit that penetrates through the second sacrificial layers by selectively etching the stacked structure, removing the second sacrificial layers that are exposed through the slit, forming an epitaxial layer over the channel layer exposed as a result of the removal of the second sacrificial layers, and forming a gate electrode layer filling a space from which the second sacrificial layers are removed, and a memory layer interposed between the gate electrode layer and the epitaxial layer.
    Type: Application
    Filed: September 7, 2012
    Publication date: September 12, 2013
    Inventor: Hyun-Seung YOO
  • Patent number: 8530962
    Abstract: Provided are a transistor of a semiconductor device and a method for manufacturing the same. A gate induced drain leakage (GIDL) current is reduced by decreasing a work function at an upper portion of a gate electrode, and a threshold voltage of the transistor is maintained by maintaining a work function at a lower portion of the gate electrode at a high level, thereby reducing a leakage current of the transistor and reducing a read time and a write time of the semiconductor device. The transistor of the semiconductor device includes: a recess with a predetermined depth in a semiconductor substrate; a first gate electrode disposed within the recess; and a second gate electrode disposed on the first gate electrode into which ions of one or more of nitrogen (N), oxygen (O), arsenic (As), aluminum (Al), and hydrogen (H) are doped.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: September 10, 2013
    Assignee: Hynix Semiconductor Inc
    Inventor: Kyoung Chul Jang
  • Patent number: 8531010
    Abstract: A semiconductor structure may include, but is not limited to: a semiconductor substrate; a first semiconductor structure extending upwardly over the semiconductor substrate; and a second semiconductor structure extending upwardly over the semiconductor substrate, the first and second semiconductor structures being aligned in a first <100> direction.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: September 10, 2013
    Assignee: Elpida Memory, Inc.
    Inventors: Kiyonori Oyu, Kazuhiro Nojima
  • Publication number: 20130228857
    Abstract: A semiconductor device having a plurality of transistors includes a termination area that features a transistor with an asymmetric gate.
    Type: Application
    Filed: March 2, 2012
    Publication date: September 5, 2013
    Applicant: Alpha and Omega Semiconductor Incorporated
    Inventors: Yeeheng Lee, Yongping Ding, Xiaobin Wang
  • Patent number: 8525255
    Abstract: A power semiconductor power device having composite trench bottom oxide and multiple trench floating gates is disclosed. The gate charge is reduced by forming a pad oxide surrounding a HDP oxide on trench bottom. The multiple trenched floating gates are applied in termination for saving body mask.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: September 3, 2013
    Assignee: Force Mos Technology Co., Ltd.
    Inventor: Fu-Yuan Hsieh
  • Publication number: 20130221429
    Abstract: In a general aspect, a semiconductor device can include a gate having a first trench portion disposed within a first trench of a junction field-effect transistor device, a second trench portion disposed within a second trench of the junction field-effect transistor device, and a top portion coupled to both the first trench portion and to the second trench portion. The semiconductor device can include a mesa region disposed between the first trench and the second trench, and including a single PN junction defined by an interface between a substrate dopant region having a first dopant type and a channel dopant region having a second dopant type.
    Type: Application
    Filed: February 29, 2012
    Publication date: August 29, 2013
    Inventor: Robert Kuo-Chang Yang
  • Publication number: 20130221427
    Abstract: A semiconductor device includes a first contact in low Ohmic contact with a source region of the device and a first portion of a body region of the device formed in an active area of the device, and a second contact in low Ohmic contact with a second portion of the body region formed in a peripheral area of the device. The minimum width of the second contact at a first surface of the device is larger than the minimum width of the first contact at the first surface so that maximum current density during commutating the semiconductor device is reduced and thus the risk of device damage during hard commutating is also reduced.
    Type: Application
    Filed: February 24, 2012
    Publication date: August 29, 2013
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Ralf Siemieniec, Oliver Blank, Anton Mauder, Franz Hirler
  • Publication number: 20130221428
    Abstract: An electronic device can include a transistor structure, including a patterned semiconductor layer overlying a substrate and having a primary surface, wherein the patterned semiconductor layer defines a first trench and a second trench that extend from the primary surface towards the substrate. The electronic device can further include a first conductive electrode and a gate electrode within the first trench. The electronic device can still further include a second conductive electrode within the second trench. The electronic device can include a source region within the patterned semiconductor layer and disposed between the first and second trenches. The electronic device can further include a body contact region within the patterned semiconductor layer and between the first and second trenches, wherein the body contact region is spaced apart from the primary surface. Processes of forming the electronic device can take advantage of forming all trenches during processing sequence.
    Type: Application
    Filed: February 24, 2012
    Publication date: August 29, 2013
    Inventors: Prasad Venkatraman, Balaji Padmanabhan
  • Publication number: 20130221435
    Abstract: A closed cell trenched power semiconductor structure is provided. The closed cell trenched power semiconductor structure has a substrate and cells. The cells are arranged on the substrate in an array. Every cell has a body and a trenched gate. The trenched gate surrounds the body. A side wall of the trenched gate facing body has a concave.
    Type: Application
    Filed: February 23, 2012
    Publication date: August 29, 2013
    Applicant: SUPER GROUP SEMICONDUCTOR CO., LTD.
    Inventors: YUAN-SHUN CHANG, KAO-WAY TU, YI-YUN TSAI
  • Publication number: 20130221426
    Abstract: A manufacturing method of an electric power semiconductor device includes following processes. A plurality of first second conductivity type impurity implantation layers are formed in a surface of a second semiconductor layer of a first conductivity type. A first trench is formed between a first non-implantation region and one of the plurality of first second conductivity type impurity implantation layers. An epitaxial layer of the first conductivity type is formed and covers the plurality of first second conductivity type impurity implantation layers. A plurality of second second conductivity type impurity implantation layers are formed in a surface of the epitaxial layer. A second trench is formed between a second non-implantation region and one of the plurality of second second conductivity type impurity implantation layers. A third semiconductor layer of the first conductivity type is formed and covers the plurality of second second conductivity type impurity implantation layers.
    Type: Application
    Filed: August 31, 2012
    Publication date: August 29, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Wataru Saito, Syotaro Ono, Toshiyuki Naka, Shunji Taniuchi, Hiroaki Yamashita
  • Patent number: 8519471
    Abstract: A method for fabricating a vertical channel type nonvolatile memory device includes forming alternately a plurality of interlayer dielectric layers and a plurality of conductive layers over a substrate, forming a trench having a plurality of recesses on a surface of the trench by etching the plurality of interlayer dielectric layers and a plurality of conductive layers, wherein the plurality of recesses are formed at a certain interval on the surface of the trench, forming a charge blocking layer over a plurality of surfaces of the plurality of recesses, forming a charge storage layer over the charge blocking layer for filling a plurality of the remaining recesses with a charge storage material, forming a tunnel dielectric layer to cover the charge storage layer, and forming a vertical channel layer by filling the remaining trench.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: August 27, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventors: Seoung-Woo Kuk, Kang-Jae Lee
  • Publication number: 20130215684
    Abstract: A nonvolatile memory device includes a substrate including a plurality of active regions which are constituted by a P-type semiconductor; first and second vertical strings disposed over each active region, wherein each of the first and second strings includes a channel vertically extending from the substrate, a plurality of memory cells, and a select transistor, wherein the plurality of memory cells and the select transistor are located along the channel; and a bottom gate being interposed between a lowermost memory cell and the substrate, contacting the channel with a first gate dielectric layer interposed therebetween, and controlling connection of the first vertical string with the second vertical string.
    Type: Application
    Filed: September 14, 2012
    Publication date: August 22, 2013
    Inventors: Seul-Ki OH, Jun-Hyuk Lee
  • Patent number: 8513077
    Abstract: A method of manufacturing a semiconductor device includes forming a silicon nitride film directly on a surface of a semiconductor substrate, forming a first silicon dioxide film on the silicon nitride film, and forming a trench from the surface of the substrate at an opening provided in the silicon nitride and first silicon dioxide films. The first silicon dioxide film is then removed, and a second silicon dioxide film as a gate oxide film is formed on a side surface of the trench. Thereafter, a gate electrode material is deposited directly on a surface of the silicon nitride film to fill the trench and the gate electrode material is removed from the surface of the silicon nitride film to form a gate electrode inside the trench. The method further includes removal of the nitride film and the formation of a source region at a periphery of the trench.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: August 20, 2013
    Assignee: Seiko Instruments Inc.
    Inventor: Naoto Kobayashi
  • Publication number: 20130207182
    Abstract: A semiconductor device includes vertical channel layers, a pipe channel layer coupling bottoms of the vertical channel layers, a pipe gate contacting a bottom surface and side surfaces of the pipe channel layer, and a dummy pipe gate formed of a non-conductive material and contacting a top surface of the pipe channel layer.
    Type: Application
    Filed: August 30, 2012
    Publication date: August 15, 2013
    Applicant: SK HYNIX INC.
    Inventors: Ki Hong LEE, Seung Ho PYI, Jin Ho BIN
  • Publication number: 20130207181
    Abstract: A semiconductor device including a vertical gate and a method for manufacturing the same are disclosed, which prevent a floating body phenomenon, thereby increasing a cell threshold voltage and reducing leakage current, resulting in improved refresh properties of the semiconductor device. The semiconductor device includes a plurality of pillar patterns, including first pillar patterns arranged along a first direction and second pillar patterns arranged along a second direction, formed over a semiconductor substrate; a gate extending in the first direction, arranged along sidewalls of the first pillar patterns, and configured to couple the first pillar patterns; a junction region formed in an upper portion of the pillar patterns; and a conductive line arranged along the sidewalls of the first pillar patterns and provided in a region disposed below the junction region and over the gate.
    Type: Application
    Filed: June 29, 2012
    Publication date: August 15, 2013
    Applicant: SK Hynix Inc.
    Inventor: Yu Jun LEE
  • Publication number: 20130207172
    Abstract: This invention discloses a trench MOSFET comprising a top side drain region in a wide trench in a termination area besides a BV sustaining area, wherein said top side drain comprises a top drain metal connected to an epitaxial layer and a substrate through a plurality of trenched drain contacts, wherein the wide trench is formed simultaneously when a plurality of gate trenches are formed in an active area, and the trenched drain contacts are formed simultaneously when a trenched source-body contact is formed in the active area.
    Type: Application
    Filed: February 13, 2012
    Publication date: August 15, 2013
    Applicant: FORCE MOS TECHNOLOGY CO. LTD.
    Inventor: Fu-Yuan HSIEH
  • Patent number: 8507345
    Abstract: An aspect of the present invention provides a semiconductor device that includes a first conductivity type semiconductor body, a source region in contact with the semiconductor body, whose bandgap is different from that of the semiconductor body, and which formed heterojunction with the semiconductor body, a gate insulating film in contact with a portion of junction between the source region and the semiconductor body, a gate electrode in contact with the gate insulating film, a source electrode, a low resistance region in contact with the source electrode and the source region, and connected ohmically with the source electrode, and a drain electrode connected ohmically with the semiconductor body.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: August 13, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Tetsuya Hayashi, Hideaki Tanaka, Masakatsu Hoshi, Saichirou Kaneko
  • Patent number: 8507977
    Abstract: Disclosed herein is a semiconductor device including: a first conductivity type semiconductor base body; a first conductivity type pillar region; second conductivity type pillar regions; element and termination regions provided in the first and second conductivity type pillar regions, transistors being formed in the element region, and no transistors being formed in the termination region; body regions; a gate insulating film; gate electrodes; source regions; and body potential extraction regions, wherein voids are formed in the second conductivity type pillar regions of the termination region.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: August 13, 2013
    Assignee: Sony Corporation
    Inventor: Yuji Sasaki
  • Patent number: 8507980
    Abstract: A semiconductor device has a bit line interconnection with a greater width and a reduced level on a bit line contact is provided, as are methods of fabricating such devices. These method includes forming a buried gate electrode to intersect an active region of a substrate. Source and drain regions are formed in the active region. A first conductive pattern is formed on the substrate. The first conductive pattern has a first conductive layer hole configured to expose the drain region. A second conductive pattern is formed in the first conductive layer hole to contact the drain region. A top surface of the second conductive pattern is at a lower level than a top surface of the first conductive pattern. A third conductive layer and a bit line capping layer are formed on the first conductive pattern and the second conductive pattern and patterned to form a third conductive pattern and a bit line capping pattern.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: August 13, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Dae-Ik Kim
  • Patent number: 8507986
    Abstract: In one embodiment, the invention comprises a MOSFET comprising individual MOSFET cells. Each cell comprises a U-shaped well (P type) and two parallel sources (N type) formed within the well. A Number of source rungs (doped N) connect sources at multiple locations. Regions between two rungs comprise a body (P type). These features are formed on an N-type epitaxial layer, which is formed on an N-type substrate. A contact extends across and contacts a number of source rungs and bodies. Gate oxide and a gate contact overlie a leg of a first well and a leg of a second adjacent well, inverting the conductivity responsive to a gate voltage. A MOSFET comprises a plurality of these cells to attain a desired low channel resistance. The cell regions are formed using self-alignment techniques at several states of the fabrication process.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: August 13, 2013
    Assignee: General Electric Company
    Inventors: Stephen Daley Arthur, Kevin Sean Matocha, Peter Micah Sandvik, Zachary Matthew Stum, Peter Almren Losee, James Jay McMahon
  • Publication number: 20130200451
    Abstract: A semiconductor power device may include a lightly doped layer formed on a heavily doped layer. One or more devices are formed in the lightly doped layer. Each device may include a body region, a source region, and one or more gate electrodes formed in corresponding trenches in the lightly doped region. Each of the trenches has a depth in a first dimension, a width in a second dimension and a length in a third dimension. The body region is of opposite conductivity type to the lightly and heavily doped layers. The source region is formed proximate the upper surface. One or more deep contacts are formed at one or more locations along the third dimension proximate one or more of the trenches. The contacts extend in the first direction from the upper surface into the lightly doped layer and are in electrical contact with the source region.
    Type: Application
    Filed: February 2, 2012
    Publication date: August 8, 2013
    Inventors: Hamza Yilmaz, Daniel Ng, Daniel Calafut, Madhur Bobde, Anup Bhalla, Ji Pan, Yeeheng Lee, Jongoh Kim
  • Patent number: 8502303
    Abstract: Provided is a semiconductor device which is capable of preventing an increase in power consumption of an SGT, i.e., a three-dimensional semiconductor transistor, due to an increase in off-leak current. The semiconductor device comprises: a first-conductive type first silicon pillar: a first dielectric surrounding a side surface of the first silicon pillar; a gate surrounding the dielectric; a second silicon pillar provided underneath the first silicon pillar; and a third silicon pillar provided on a top of the first silicon pillar. The second silicon pillar has a second-conductive type high-concentration impurity region formed in a surface thereof except at least a part of a contact surface region with the first silicon pillar, and a first-conductive type impurity region formed therein and surrounded by the second-conductive type high-concentration impurity region.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: August 6, 2013
    Assignee: Unisantis Electronics Singapore Pte Ltd.
    Inventors: Fujio Masuoka, Tomohiko Kudo
  • Patent number: 8502345
    Abstract: Reverse-conducting insulated gate bipolar transistor in which IGBT region and FWD region are integrated into a single body in a semiconductor substrate with a common active region is disclosed. MOS gate structure is on a first major surface side. Rear surface side structure is in a second major surface side of the semiconductor substrate and includes a plurality of recessed parts vertical to the second major surface, which are repeated periodically along the second major surface. A plurality of protruding parts are interposed between the recessed parts. Rear surface side structure includes p type collector region on a bottom surface of the recessed part, n type first field stop region at a position deeper than the collector region, n type cathode region on the top surface of the protruding part, and n type second field stop region in the protruding part at a position deeper than the cathode region.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: August 6, 2013
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Michio Nemoto, Souichi Yoshida
  • Patent number: 8502304
    Abstract: A semiconductor substrate capable of detecting operating current of a MOSFET and diode current in a miniaturized MOSFET such as a trench-gate type MOSFET is provided. A semiconductor substrate includes a main current region and a current sensing region in which current smaller than main current flowing in the main current region flows. The main current region has a source electrode disposed on a main surface, the source electrode being in contact with a p-type semiconductor region (body) and an n+-type semiconductor region (source), and the current sensing region has a MOSFET current detecting electrode and a diode current detecting electrode on a main surface, the MOSFET current detecting electrode being in contact with the p-type semiconductor region (body) and the n+-type semiconductor region (source), the diode current detecting electrode being in contact with the p-type semiconductor region (body).
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: August 6, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Takayuki Hashimoto
  • Publication number: 20130196477
    Abstract: Methods of fabricating a semiconductor device are provided. The method includes forming active lines in a semiconductor substrate, forming contact lines generally crossing over the active lines, forming line-shaped etch mask patterns generally crossing over the active lines and the contact lines, etching the contact lines exposed by the line-shaped etch mask patterns to form contact separation grooves and to form contact patterns generally remaining at intersections between the line-shaped etch mask patterns and the active lines, etching the active lines exposed by the contact separation grooves to form active separation grooves that generally divide each of the active lines into a plurality of active patterns, forming gates that substantially intersect the active patterns, and forming bit lines electrically connected to the contact patterns.
    Type: Application
    Filed: September 14, 2012
    Publication date: August 1, 2013
    Applicant: SK HYNIX INC.
    Inventor: Chun Soo KANG
  • Patent number: 8497555
    Abstract: A vertical memory device may include a substrate, a first selection line on the substrate, a plurality of word lines on the first selection line, a second selection line on the plurality of word lines, and a semiconductor channel. The first selection line may be between the plurality of word lines and the substrate, and the plurality of word lines may be between the first and second selection lines. Moreover, the first and second selection lines and the plurality of word lines may be spaced apart in a direction perpendicular with respect to a surface of the substrate. The semiconductor channel may extend away from the surface of the substrate adjacent sidewalls of the first and second selection lines and the plurality of word lines. In addition, portions of the semiconductor channel adjacent the second selection line may be doped with indium and/or gallium. Related methods are also discussed.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: July 30, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Gyun Kim, Ki-Hyun Hwang, Sung-Hae Lee, Ji-Hoon Choi
  • Patent number: 8497548
    Abstract: It is intended to provide a semiconductor device including a MOS transistor, comprising: a semiconductor pillar; a bottom doped region formed in contact with a lower part of the semiconductor pillar; a first gate formed around a sidewall of the semiconductor pillar through a first dielectric film therebetween; and a top doped region formed so as to at least partially overlap a top surface of the semiconductor pillar, wherein the top doped region has a top surface having an area greater than that of the top surface of the semiconductor pillar.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: July 30, 2013
    Assignee: Unisantis Electronics Singapore PTE Ltd.
    Inventors: Fujio Masuoka, Shintaro Arai
  • Publication number: 20130187222
    Abstract: A method of manufacturing a semiconductor device includes forming a target etch layer, forming a first mask pattern on the target etch layer, wherein the first mask pattern includes line patterns extended in parallel in a first direction, forming a second mask pattern configured to include openings at positions where the openings overlap with spaces between the line patterns, before or after forming the first mask pattern, wherein each of the openings has a hole form and a first interval between the adjacent openings in the first direction is shorter than a second interval between the adjacent openings in a second direction that crosses the first direction, and forming holes by etching the target etch layer using the first mask pattern and the second mask pattern as a barrier.
    Type: Application
    Filed: September 4, 2012
    Publication date: July 25, 2013
    Inventor: Dae Jin PARK
  • Publication number: 20130187220
    Abstract: Methods of forming vertical memory devices include forming first trenches, at least partially filling the first trenches with a polysilicon material, and forming second trenches generally perpendicular to the first trenches. The second trenches may be formed by removing one of silicon and oxide with a first material removal act and by removing the other of silicon and oxide in a different second material removal act. Methods of forming an apparatus include forming isolation trenches, at least partially filling the isolation trenches with a polysilicon material, and forming word line trenches generally perpendicular to the isolation trenches, the word line trenches having a depth in a word line end region about equal to or greater than a depth thereof in an array region. Word lines may be formed in the word line trenches. Semiconductor devices, vertical memory devices, and apparatuses are formed by such methods.
    Type: Application
    Filed: January 20, 2012
    Publication date: July 25, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Shyam Surthi
  • Publication number: 20130187221
    Abstract: A method of forming a semiconductor device includes performing a first pre-amorphous implantation process on a substrate, where the substrate has a gate stack. The method further includes forming a first stress film over the substrate. The method also includes performing a first annealing process on the substrate and the first stress film. The method further includes performing a second pre-amorphous implantation process on the annealed substrate, forming a second stress film over the substrate, and performing a second annealing process on the substrate and the second stress film.
    Type: Application
    Filed: January 23, 2012
    Publication date: July 25, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wei-Yuan Lu, Li-Ping Huang, Han-Ting Tsai, Wei-Ching Wang, Ming-Shuan Li, Hsueh-Jen Yang, Kuan-Chung Chen
  • Publication number: 20130181284
    Abstract: A method for producing a semiconductor component is described. The method includes providing a semiconductor body having a first surface and being comprised of a first semiconductor material extending to the first surface. At least one trench extends from the first surface into the semiconductor body and includes a gate electrode insulated from the semiconductor body and arranged below the first surface. The method further includes: forming a second insulation layer on the first surface with a recess that overlaps in projection onto the first surface with the conductive region; forming a mask region in the recess; etching the second insulation layer selectively to the mask region and the semiconductor body to expose the semiconductor body at the first surface; depositing a third insulation layer on the first surface; and etching the third insulation layer so that a semiconductor mesa of the semiconductor body arranged next to the a least one trench is exposed at the first surface.
    Type: Application
    Filed: January 16, 2012
    Publication date: July 18, 2013
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventor: Martin Poelzl
  • Publication number: 20130181281
    Abstract: Embodiments described herein relate to semiconductor transistors having trench contacts, in particular to semiconductor transistors having a field electrode below a gate electrode, and to related methods for producing semiconductor transistors having trench contacts.
    Type: Application
    Filed: January 16, 2012
    Publication date: July 18, 2013
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Martin Poelzl, Georg Ehrentraut
  • Patent number: 8486819
    Abstract: A semiconductor device includes a gate metal buried within a trench included in a semiconductor substrate including an active region defined by an isolation layer, a spacer pattern disposed on an upper portion of a sidewall of a gate metal, a first gate oxide layer disposed between the spacer pattern and the trench, a second gate oxide layer disposed below the first gate oxide layer and the gate metal, and a junction region disposed in the active region to overlap the first gate oxide layer.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: July 16, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventor: Wan Soo Kim
  • Patent number: 8486784
    Abstract: A vertical semiconductor device with improved junction profile and a method of manufacturing the same are provided. The vertical semiconductor device includes a pillar vertically extended from a surface of a semiconductor substrate, a silicon layer formed in a bit line contact region of one sidewall of the pillar, and a junction region formed within a portion of the pillar contacting with the silicon layer.
    Type: Grant
    Filed: December 27, 2010
    Date of Patent: July 16, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventor: Hyun Jung Kim
  • Patent number: 8487370
    Abstract: A semiconductor device includes a semiconductor body including a trench with first and second opposing sidewalls. A first electrode is arranged in a lower portion of the trench and a second electrode in an upper portion of the trench. A dielectric structure is arranged in the trench, including a first portion between the electrodes. The first portion includes, in sequence along a lateral direction from the first sidewall to the second sidewall, a first part including a first dielectric material, a second part including a second dielectric material selectively etchable to the first dielectric material, a third part including the first dielectric material, the first dielectric material of the third part being continuously arranged along a vertical direction from a top side of the first electrode to a bottom side of the second electrode, a fourth part including the second dielectric material and a fifth part including the first dielectric material.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: July 16, 2013
    Assignee: Infineon Technologies Austria AG
    Inventors: Oliver Blank, Ralf Siemieniec, Martin Poelzl, Maximilian Roesch
  • Patent number: 8487368
    Abstract: A trench type power MOSFET has a thin vertical gate oxide along its side walls and a thickened oxide with a rounded bottom at the bottom of the trench to provide a low RDSON and increased VDSMAX and VGSMAX and a reduced Miller capacitance. The walls of the trench are first lined with nitride to permit the growth of the thick bottom oxide to, for example 1000? to 1400? and the nitride is subsequently removed and a thin oxide, for example 320? is regrown on the side walls. In another embodiment, the trench bottom in amorphized and the trench walls are left as single crystal silicon so that oxide can be grown much faster and thicker on the trench bottom than on the trench walls during an oxide growth step. A reduced channel length of about 0.7 microns is used. The source diffusion is made deeper than the implant damage depth so that the full 0.7 micron channel is along undamaged silicon.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: July 16, 2013
    Assignee: International Rectifier Corporation
    Inventor: Narash Thaper
  • Publication number: 20130175610
    Abstract: A transistor device and methods for its fabrication are provided. In an embodiment, the transistor is fabricated within and on a surface of a semiconductor substrate. The method includes forming a gate structure with a dummy gate electrode material overlying the semiconductor substrate. Recesses are etched into the semiconductor substrate adjacent the gate structure to define a narrow region between the recesses at a selected depth under the surface. The recesses are filled with a stress-inducing material and the dummy gate electrode material is removed to expose the semiconductor substrate. The method further provides for etching the exposed semiconductor substrate to form a recessed gate surface and defining a channel under the recessed gate surface in the narrow region.
    Type: Application
    Filed: January 10, 2012
    Publication date: July 11, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Stefan Flachowsky, Frank Wirbeleit
  • Publication number: 20130175606
    Abstract: A structure has at least one field effect transistor having a gate stack disposed between raised source drain structures that are adjacent to the gate stack. The gate stack and raised source drain structures are disposed on a surface of a semiconductor material. The structure further includes a layer of field dielectric overlying the gate stack and raised source drain structures and first contact metal and second contact metal extending through the layer of field dielectric. The first contact metal terminates in a first trench formed through a top surface of a first raised source drain structure, and the second contact metal terminates in a second trench formed through a top surface of a second raised source drain structure. Each trench has silicide formed on sidewalls and a bottom surface of at least a portion of the trench. Methods to fabricate the structure are also disclosed.
    Type: Application
    Filed: January 6, 2012
    Publication date: July 11, 2013
    Inventors: Kangguo Cheng, Bruce B. DORIS, Ali KHAKIFIROOZ, Pranita KULKARNI, Christian LAVOIE
  • Publication number: 20130175538
    Abstract: According to example embodiments, a substrate structure may include a GaN-based third material layer, a GaN-based second material layer, a GaN-based first material layer, and a buffer layer on a non-GaN-based substrate. The GaN-based first material layer may be doped with a first conductive type impurity. The GaN-based second material layer may be doped with a second conductive type impurity at a density that is less than a density of the first conductive type impurity in the first GaN-based material layer. The GaN-based third material layer may be doped with a first conductive type impurity at a density that is less than the density of the first conductive type impurity of the GaN-based first material layer. After a second substrate is attached onto the substrate structure, the non-GaN-based substrate may be removed and a GaN-based vertical type semiconductor device may be fabricated on the second substrate.
    Type: Application
    Filed: July 17, 2012
    Publication date: July 11, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyuk-soon CHOI, Jong-seob KIM, Jai-kwang SHIN, Chang-yong UM, Jae-joon OH, Jong-bong HA, In-jun HWANG, Ki-ha HONG
  • Patent number: 8482047
    Abstract: DRAM cell arrays having a cell area of about 4F2 comprise an array of vertical transistors with buried bit lines and vertical double gate electrodes. The buried bit lines comprise a silicide material and are provided below a surface of the substrate. The word lines are optionally formed of a silicide material and form the gate electrode of the vertical transistors. The vertical transistor may comprise sequentially formed doped polysilicon layers or doped epitaxial layers. At least one of the buried bit lines is orthogonal to at least one of the vertical gate electrodes of the vertical transistors.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: July 9, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Todd R. Abbott, Homer M. Manning
  • Patent number: 8482041
    Abstract: In contrast to a conventional planar CMOS technique in design and fabrication for a field-effect transistor (FET), the present invention provides an SGT CMOS device formed on a conventional substrate using various crystal planes in association with a channel type and a pillar shape of an FET, without a need for a complicated device fabrication process. Further, differently from a design technique of changing a surface orientation in each planar FET, the present invention is designed to change a surface orientation in each SGT to achieve improvement in carrier mobility. Thus, a plurality of SGTs having various crystal planes can be formed on a common substrate to achieve a plurality of different carrier mobilities so as to obtain desired performance.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: July 9, 2013
    Assignee: Unisantis Electronics Singapore Pte Ltd.
    Inventors: Fujio Masuoka, Keon Jae Lee
  • Patent number: 8482061
    Abstract: A semiconductor device according to the invention includes p-type well region 3 and n+ source region 4, both formed selectively in the surface portion of n? drift region 2; trench 6 in contact with n+ source region 4 and extending through p-type well region 3 into n? drift region 2; field plate 8 formed in trench 6 with first insulator film 7 interposed between the trench 6 inner surface and field plate 8; gate electrode 10 formed in trench 6 with second insulator film 9 interposed between the trench 6 side wall and gate electrode 10, gate electrode 10 being formed above field plate 8; first insulator film 7 being thicker than second insulator film 9; and n?? lightly doped region 21 in n? drift region 2, n?? lightly doped region 21 crossing under the bottom surface of trench 6 from the corner portion thereof, n?? lightly doped region 21 covering the bottom surface of trench 6.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: July 9, 2013
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Takeyoshi Nishimura
  • Patent number: 8482028
    Abstract: According to one embodiment, a semiconductor device includes a first semiconductor layer of a first conductive type, and a periodic array structure having a second semiconductor layer of a first conductive type and a third semiconductor layer of a second conductive type periodically arrayed on the first semiconductor layer in a direction parallel with a major surface of the first semiconductor layer. The second semiconductor layer and the third semiconductor layer are disposed in dots on the first semiconductor layer. A periodic structure in the outermost peripheral portion of the periodic array structure is different from a periodic structure of the periodic array structure in a portion other than the outermost peripheral portion.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: July 9, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Wataru Saito, Syotaro Ono, Toshiyuki Naka, Shunji Taniuchi, Miho Watanabe, Hiroaki Yamashita
  • Publication number: 20130168760
    Abstract: A trench MOSFET with split gates and diffused drift region for on-resistance reduction is disclosed. Each of the split gates is symmetrically disposed in the middle of the source electrode and adjacent trench sidewall of a deep trench. The inventive structure can save a mask for definition of the location of the split gate electrodes. Furthermore, the fabrication method can be implemented more reliably with lower cost.
    Type: Application
    Filed: December 30, 2011
    Publication date: July 4, 2013
    Applicant: FORCE MOS TECHNOLOGY CO. LTD.
    Inventor: Fu-Yuan HSIEH
  • Publication number: 20130168758
    Abstract: A semiconductor device and a method for manufacturing the same are disclosed, in which a buried gate region is formed, a nitride film spacer is formed at sidewalls of the buried gate region, and the spacer is etched in an active region in such a manner that the spacer remains in a device isolation region. Thus, if a void occurs in the device isolation region, the spacer can prevent a short-circuit from occurring between the device isolation region and its neighboring gates.
    Type: Application
    Filed: October 12, 2012
    Publication date: July 4, 2013
    Applicant: SK HYNIX INC.
    Inventor: SK HYNIX INC.