With Multiple Gate Structure (epo) Patents (Class 257/E29.264)
  • Patent number: 8791028
    Abstract: According to one embodiment, a manufacturing method of a semiconductor device includes a step of forming a dummy-fin semiconductor on a semiconductor substrate; a step of forming an insulating layer, into which a lower part of the dummy-fin semiconductor is buried, on the semiconductor substrate; a step of forming a fin semiconductor, which is bonded to a side face at an upper part of the dummy-fin semiconductor, on the insulating layer; and a step of removing the dummy-fin semiconductor on the insulating layer with the fin semiconductor being left on the insulating layer.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: July 29, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kimitoshi Okano
  • Patent number: 8759919
    Abstract: A method for fabricating a semiconductor device includes forming a plurality of gate structures on a semiconductor substrate. The plurality of gate structures are arranged in a plurality of lines, wherein an end-to-end spacing between the lines is smaller than a line-to-line spacing between the lines. The method further includes forming an etch stop layer over the gate structures, forming an interlayer dielectric over the gate structures, and forming a dielectric film over the gate structures before the interlayer dielectric is formed. The dielectric film merges in end-to-end gaps formed in the end-to-end spacing between the gate structures.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: June 24, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Shiang-Bau Wang
  • Patent number: 8742508
    Abstract: A three dimensional FET device structure which includes a plurality of three dimensional FET devices. Each of the three dimensional FET devices include an insulating base, a three dimensional fin oriented perpendicular to the insulating base, a gate dielectric wrapped around the three dimensional fin and a gate wrapped around the gate dielectric and extending perpendicularly to the three dimensional fin, the three dimensional fin having a device width being defined as the circumference of the three dimensional fin in contact with the gate dielectric. At least a first of the three dimensional FET devices has a first device width while at least a second of the three dimensional FET devices has a second device width. The first device width is different than the second device width. Also included is a method of making the three dimensional FET device structure.
    Type: Grant
    Filed: July 16, 2011
    Date of Patent: June 3, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Pranita Kulkarni
  • Patent number: 8735990
    Abstract: The embodiments of the invention provide a structure and method for a rad-hard FinFET or mesa. More specifically, a semiconductor structure is provided having at least one fin or mesa comprising a channel region on an isolation region. A doped substrate region is also provided below the fin, wherein the doped substrate region has a first polarity opposite a second polarity of the channel region. The isolation region contacts the doped substrate region. The structure further includes a gate electrode covering the channel region and at least a portion of the isolation region. The gate electrode comprises a lower portion below the channel region of the fin, wherein the lower portion of the gate electrode comprises a height that is at least one-half of a thickness of the fin.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: May 27, 2014
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Robert H. Dennard, Mark C. Hakey, Edward J. Nowak
  • Patent number: 8729558
    Abstract: According to one embodiment, a nitride semiconductor device includes a semiconductor layer, a source electrode, a drain electrode, a first and a second gate electrode. The semiconductor layer includes a nitride semiconductor. The source electrode provided on a major surface of the layer forms ohmic contact with the layer. The drain electrode provided on the major surface forms ohmic contact with the layer and is separated from the source electrode. The first gate electrode is provided on the major surface between the source and drain electrodes. The second gate electrode is provided on the major surface between the source and first gate electrodes. When a potential difference between the source and first gate electrodes is 0 volts, a portion of the layer under the first gate electrode is conductive. The first gate electrode is configured to switch a constant current according to a voltage applied to the second gate electrode.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: May 20, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Masahiko Kuraguchi
  • Publication number: 20140110785
    Abstract: A field effect transistor device includes a fin including a semiconductor material arranged on an insulator layer, the fin including a channel region, a hardmask layer arranged partially over the channel region of the fin, a gate stack arranged over the hardmask layer and over the channel region of the fin, a metallic alloy layer arranged on a first portion of the hardmask layer, the metallic alloy layer arranged adjacent to the gate stack, and a first spacer arranged adjacent to the gate stack and over the metallic alloy layer.
    Type: Application
    Filed: November 9, 2012
    Publication date: April 24, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hemanth Jagannathan, Sanjay C. Mehta, Junli Wang, Chun-Chen Yeh, Stefan Schmitz
  • Patent number: 8679918
    Abstract: Disclosed is a multiple-gate transistor that includes a channel region and source and drain regions at ends of the channel region. A gate oxide is positioned between a logic gate and the channel region and a first insulator is formed between a floating gate and the channel region. The first insulator is thicker than the gate oxide. The floating gate is electrically insulated from other structures. Also, a second insulator is positioned between a programming gate and the floating gate. Voltage in the logic gate causes the transistor to switch on and off, while stored charge in the floating gate adjusts the threshold voltage of the transistor. The transistor can comprise a fin-type field effect transistor (FinFET), where the channel region comprises the middle portion of a fin structure and the source and drain regions comprise end portions of the fin structure.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: March 25, 2014
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Edward J. Nowak
  • Patent number: 8679906
    Abstract: In one embodiment, there is an asymmetric multi-gated transistor that has a semiconductor fin with a non-uniform doping profile. A first portion of the fin has a higher doping concentration while a second portion of the fin has a lower doping concentration. In another embodiment, there is an asymmetric multi-gated transistor with gate dielectrics formed on the semiconductor fin that vary in thickness. This asymmetric multi-gated transistor has a thin gate dielectric formed on a first side portion of the semiconductor fin and a thick gate dielectric formed on a second side portion of the fin.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: March 25, 2014
    Assignee: International Business Machines Corporation
    Inventor: Kangguo Cheng
  • Patent number: 8680588
    Abstract: A field effect transistor includes a buried gate pattern that is electrically isolated by being surrounded by a tunneling insulating film. The field effect transistor also includes a channel region that is floated by source and drain regions, a gate insulating film, and the tunneling insulating film. The buried gate pattern and the tunneling insulating film extend into the source and drain regions. Thus, the field effect transistor efficiently stores charge carriers in the buried gate pattern and the floating channel region.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: March 25, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ming Li, Dong-Uk Choi, Chang-Woo Oh, Dong-Won Kim, Min-Sang Kim, Sung-Hwan Kim, Kyoung-Hwan Yeo
  • Patent number: 8673712
    Abstract: Presented herein is a field effect transistor device, optionally a lateral power transistor, and a method for forming the same, comprising providing a substrate, creating a doped buried layer, and creating a primary well in the substrate on the buried layer. A drift drain may be created in the primary well and a counter implant region implanted in the primary well and between the drift drain and the buried layer. The primary well may comprise a first and second implant region with the second implant region at a depth less than the first. The counter implant may be at a depth between the first and second implant regions. The primary well and counter implant region may comprise dopants of the same conductivity type, or both p+-type dopants. A gate may be formed over a portion of a drift drain.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: March 18, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih-Kuang Hsiao, Chen-Liang Chu, Yi-Sheng Chen, Fei-Yuh Chen, Kong-Beng Thei
  • Publication number: 20140054709
    Abstract: A transistor device includes a pair of source/drain regions having a channel region there-between. A first gate is proximate the channel region. A gate dielectric is between the first gate and the channel region. A second gate is proximate the channel region. A programmable material is between the second gate and the channel region. The programmable material includes at least one of a) a multivalent metal oxide portion and an oxygen-containing dielectric portion, or b) a multivalent metal nitride portion and a nitrogen-containing dielectric portion. Memory cells and arrays of memory cells are disclosed.
    Type: Application
    Filed: August 27, 2012
    Publication date: February 27, 2014
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: D. V. Nirmal Ramaswamy, Gurtej S. Sandhu
  • Patent number: 8659114
    Abstract: According to one embodiment, a semiconductor device includes a semiconductor substrate, a trench formed in an element isolating area of the semiconductor substrate, and a silicon oxide film that is embedded in the trench and contains an alkali metal element or alkali earth metal element.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: February 25, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Keisuke Nakazawa
  • Patent number: 8659091
    Abstract: Multigate transistor devices and methods of their fabrication are disclosed. In accordance with one method, a fin and a gate structure that is disposed on a plurality of surfaces of the fin are formed. In addition, at least a portion of an extension of the fin is removed to form a recessed portion that is below the gate structure, is below a channel region of the fin, and includes at least one angled indentation. Further, a terminal extension is grown in the at least one angled indentation below the channel region and along a surface of the channel region such that the terminal extension provides a stress on the channel region to enhance charge carrier mobility in the channel region.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: February 25, 2014
    Assignee: International Business Machines Corporation
    Inventors: Ming Cai, Dechao Guo, Pranita Kulkarni, Chun-Chen Yeh
  • Patent number: 8652889
    Abstract: When forming sophisticated semiconductor devices, three-dimensional transistors in combination with planar transistors may be formed on the basis of a replacement gate approach and self-aligned contact elements by forming the semiconductor fins in an early manufacturing stage, i.e., upon forming shallow trench isolations, wherein the final electrically effective height of the semiconductor fins may be adjusted after the provision of self-aligned contact elements and during the replacement gate approach.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: February 18, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Andy Wei, Peter Baars, Richard Carter, Frank Ludwig
  • Publication number: 20140035066
    Abstract: The present invention provides a non-planar FET which includes a substrate, a fin structure, a sub spacer, a gate, a dielectric layer and a source/drain region. The fin structure is disposed on the substrate. The sub spacer is disposed only on a middle sidewall of the fin structure. The gate is disposed on the fin structure. The dielectric layer is disposed between the fin structure and the gate. The source/drain region is disposed in the fin structure. The present invention further provides a method of forming the same.
    Type: Application
    Filed: July 31, 2012
    Publication date: February 6, 2014
    Inventors: Shih-Hung Tsai, Ssu-I Fu, Ying-Tsung Chen, Chih-Wei Chen, Ying-Chih Lin, Chien-Ting Lin, Hsuan-Hsu Chen
  • Patent number: 8637935
    Abstract: A method for forming a semiconductor device comprises: forming at least one gate stack structure and an interlayer material layer between the gate stack structures on a semiconductor substrate; defining isolation regions and removing a portion of the interlayer material layer and a portion of the semiconductor substrate which has a certain height in the regions, so as to form trenches; removing portions of the semiconductor substrate which carry the gate stack structures, in the regions; and filling the trenches with an insulating material. A semiconductor device is also provided. The area of the isolation regions may be reduced.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: January 28, 2014
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huicai Zhong, Qingqing Liang, Haizhou Yin, Huilong Zhu
  • Patent number: 8633471
    Abstract: Embodiments of an apparatus and methods for providing three-dimensional complementary metal oxide semiconductor devices comprising modulation doped transistors are generally described herein. Other embodiments may be described and claimed, which may include a modulation doped heterostructure, wherein the modulation doped heterostructure may comprise an active portion having a first bandgap and a delta doped portion having a second bandgap.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: January 21, 2014
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Mantu Hudait, Marko Radosavljevic, Willy Rachmady, Gilbert Dewey, Jack Kavalieros
  • Patent number: 8629039
    Abstract: A device includes a number of fins. Some of the fins have greater heights than other fins. This allows the selection of different drive currents and/or transistor areas.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: January 14, 2014
    Assignee: Intel Corporation
    Inventors: Willy Rachmady, Justin S. Sandford, Michael K. Harper
  • Patent number: 8629512
    Abstract: The description relates to a gate stack of a fin field effect transistor (FinFET). An exemplary structure for a FinFET includes a substrate including a first surface and an insulation region covering a portion of the first surface, where a top of the insulation region defines a second surface. The FinFET further includes a fin disposed through an opening in the insulation region to a first height above the second surface, where a base of an upper portion of the fin is broader than a top of the upper portion, wherein the upper portion has first tapered sidewalls and a third surface. The FinFET further includes a gate dielectric covering the first tapered sidewalls and the third surface and a conductive gate strip traversing over the gate dielectric, where the conductive gate strip has second tapered sidewalls along a longitudinal direction of the fin.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: January 14, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Jhon Jhy Liaw
  • Patent number: 8629511
    Abstract: In a replacement gate scheme, after formation of a gate dielectric layer, a work function material layer completely fills a narrow gate trench, while not filling a wide gate trench. A dielectric material layer is deposited and planarized over the work function material layer, and is subsequently recessed to form a dielectric material portion overlying a horizontal portion of the work function material layer within the wide gate trench. The work function material layer is recessed employing the dielectric material portion as a part of an etch mask to form work function material portions. A conductive material is deposited and planarized to form gate conductor portions, and a dielectric material is deposited and planarized to form gate cap dielectrics.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: January 14, 2014
    Assignee: International Business Machines Corporation
    Inventors: Charles W. Koburger, III, Marc A. Bergendahl, David V. Horak, Shom Ponoth, Chih-Chao Yang
  • Patent number: 8629500
    Abstract: An explanation is given of, inter alia, tunnel field effect transistors having a thicker gate dielectric (GD1) in comparison with other transistors (T2) on the same integrated circuit arrangement (10). As an alternative or in addition, said tunnel field effect transistors have gate regions at mutually remote sides of a channel forming region or an interface between the connection regions (D1, S1) of the tunnel field effect transistor.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: January 14, 2014
    Assignee: Infineon Technologies AG
    Inventors: Juergen Holz, Ronald Kakoschke, Thomas Nirschl, Christian Pacha, Klaus Schruefer, Thomas Schulz, Doris Schmitt-Landsiedel
  • Publication number: 20140008733
    Abstract: Some aspects relate to a FinFET that includes a semiconductor fin disposed over a semiconductor substrate and extending laterally between a source region and a drain region. A shallow trench isolation (STI) region laterally surrounds a lower portion of the semiconductor fin, and an upper portion of the semiconductor fin remains above the STI region. A gate electrode traverses over the semiconductor fin to define a channel region in the semiconductor fin under the conductive gate electrode. A punch-through blocking region can extend between the source region and the channel region in the lower portion of the semiconductor fin. A drain extension region can extend between the drain region and the channel region in the lower portion of the semiconductor fin. Other devices and methods are also disclosed.
    Type: Application
    Filed: July 3, 2012
    Publication date: January 9, 2014
    Applicant: Intel Mobile Communications GmbH
    Inventors: Mayank Shrivastava, Harald Gossner
  • Patent number: 8623719
    Abstract: A method and semiconductor structure includes an insulator layer on a substrate, a plurality of parallel fins above the insulator layer. Each of the fins has a central semiconductor portion and conductive end portions. At least one conductive strap is positioned within the insulator layer below the fins. The conductive strap can be perpendicular to the fins and contact the fins. The conductive strap includes recessed portions disposed within the insulator layer, below the plurality of fins, and between each of the plurality of fins, and projected portions disposed above the insulator layer, collinear with each of the plurality of fins. The conductive strap is disposed in at least one of a source region and a drain region of the semiconductor structure. A gate insulator contacts and covers the central semiconductor portion of the fins, and a gate conductor covers and contacts the gate insulator.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: January 7, 2014
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Andres Bryant, Edward J. Nowak, Jed H. Rankin
  • Patent number: 8618609
    Abstract: Embodiments of an apparatus and methods for improving multi-gate device performance are generally described herein. Other embodiments may be described and claimed.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: December 31, 2013
    Assignee: Intel Corporation
    Inventors: Brian Doyle, Titash Rakshit, Jack Kavalieros
  • Publication number: 20130341720
    Abstract: A method and circuit for implementing field effect transistors (FETs) having a gate within a gate utilizing a replacement metal gate process (RMGP), and a design structure on which the subject circuit resides are provided. A field effect transistor utilizing a RMGP includes a sacrificial gate in a generally central metal gate region on a dielectric layer on a substrate, a source and drain formed in the substrate, a pair of dielectric spacers, a first metal gate and a second metal gate replacing the sacrificial gate inside the central metal gate region, and a second gate dielectric layer separating the first metal gate and the second metal gate. A respective electrical contact is formed on opposite sides of the central metal gate region for respectively electrically connecting the first metal gate and the second metal gate to a respective voltage.
    Type: Application
    Filed: June 26, 2012
    Publication date: December 26, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Karl R. Erickson, Phil C. Paone, David P. Paulsen, John E. Sheets, II, Gregory J. Uhlmann, Kelly L. Williams
  • Patent number: 8614487
    Abstract: A semiconductor device with at least two gate regions. The device includes a substrate region including a surface, a source region in the substrate region, and a drain region in the substrate region. The drain region and the source region are separate from each other. Additionally, the device includes a first gate region on the surface, a second gate region on the surface, and an insulation region on the surface and between the first gate region and the second gate region. The first gate region and the second gate region are separated by the insulation region. The first gate region is capable of forming a first channel in the substrate region. The first channel is from the source region to the drain region. The second gate region is capable of forming a second channel in the substrate region. The second channel is from the source region to the drain region.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: December 24, 2013
    Assignees: Semiconductor Manufacturing International (Shanghai) Corporation, Semiconductor Manufacturing International (Beijing) Corporation
    Inventors: Deyuan Xiao, Gary Chen, Tan Leong Seng, Roger Lee
  • Patent number: 8598641
    Abstract: A semiconductor device and a method of fabricating a semiconductor device, wherein the method includes forming, on a substrate, a plurality of planarized fin bodies to be used for customized fin field effect transistor (FinFET) device formation; forming a nitride spacer around each of the plurality of fin bodies; forming an isolation region in between each of the fin bodies; and coating the plurality of fin bodies, the nitride spacers, and the isolation regions with a protective film. The fabricated semiconductor device is adapted to be used in customized applications as a customized semiconductor device.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: December 3, 2013
    Assignee: International Business Machines Corporation
    Inventors: Howard H. Chen, Louis C. Hsu, Jack A. Mandelman, Chun-Yung Sung
  • Patent number: 8598653
    Abstract: Systems and methods are disclosed for manufacturing grounded gate cross-hair cells and standard cross-hair cells of fin field-effect transistors (finFETs). In one embodiment, a process may include forming gate trenches and gates on and parallel to row trenches in a substrate, wherein the gate trenches and gates are pitch-doubled such that four gate trenches are formed for every two row trenches. In another embodiment, a process may include forming gate trenches, gates, and grounded gates in a substrate, wherein the gate trenches and gates are formed such that three gate trenches are formed for every two row trenches.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: December 3, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 8592920
    Abstract: In a power MISFET having a trench gate structure with a dummy gate electrode, a technique is provided for improving the performance of the power MISFET, while preventing electrostatic breakdown of a gate insulating film therein. A power MISFET having a trench gate structure with a dummy gate electrode, and a protective diode are formed on the same semiconductor substrate. The protective diode is provided between a source electrode and a gate interconnection. In a manufacturing method of such a semiconductor device, a polycrystalline silicon film for the dummy gate electrode and a polycrystalline silicon film for the protective diode are formed simultaneously. A source region of the power MISFET and an n+-type semiconductor region of the protective diode are formed in the same step.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: November 26, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Yoshito Nakazawa, Yuji Yatsuda
  • Publication number: 20130307079
    Abstract: Semiconductor devices and methods of their fabrication are disclosed. One device includes a plurality of gates and a dielectric gap filling material with a pre-determined aspect ratio that is between the gates. The device further includes an etch resistant nitride layer that is configured to maintain the aspect ratio of the dielectric gap filling material during fabrication of the device and is disposed above the dielectric gap filling material and between the plurality of gates.
    Type: Application
    Filed: June 12, 2012
    Publication date: November 21, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: HEMANTH JAGANNATHAN, SANJAY MEHTA, CHUN-CHEN YEH
  • Patent number: 8587031
    Abstract: A dual-gate normally-off nitride transistor that includes a first gate structure formed between a source electrode and a drain electrode for controlling a normally-off channel region of the dual-gate normally-off nitride transistor. A second gate structure is formed between the first gate structure and the drain electrode for modulating a normally-on channel region underneath the second gate structure. The magnitude of the threshold voltage of the second gate structure is smaller than the drain breakdown of the first gate structure for proper operation of the dual-gate normally-off nitride transistor.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: November 19, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Bin Lu, Tomas Palacios
  • Patent number: 8580643
    Abstract: When forming sophisticated multiple gate transistors and planar transistors in a common manufacturing sequence, the threshold voltage characteristics of the multiple gate transistors may be intentionally “degraded” by selectively incorporating a dopant species into corner areas of the semiconductor fins, thereby obtaining a superior adaptation of the threshold voltage characteristics of multiple gate transistors and planar transistors. In advantageous embodiments, the incorporation of the dopant species may be accomplished by using the hard mask, which is also used for patterning the self-aligned semiconductor fins.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: November 12, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Tim Baldauf, Andy Wei, Tom Herrmann, Stefan Flachowsky, Ralf Illgen
  • Patent number: 8564069
    Abstract: Embodiments of the invention relate generally to semiconductor devices and, more particularly, to semiconductor devices having field effect transistors (FETs) with a low body resistance and, in some embodiments, a self-balanced body potential where multiple transistors share same body potential. In one embodiment, the invention includes a field effect transistor (FET) comprising a source within a substrate, a drain within the substrate, and an active gate atop the substrate and between the source and the drain, an inactive gate structure atop the substrate and adjacent the source or the drain, a body adjacent the inactive gate, and a discharge path within the substrate for releasing a charge from the FET, the discharge path lying between the active gate of the FET and the body, wherein the discharge path is substantially perpendicular to a width of the active gate.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: October 22, 2013
    Assignee: International Business Machines Corporation
    Inventors: Roger A. Booth, Jr., Kangguo Cheng, Joseph Ervin, Chengwen Pei, Ravi M. Todi, Geng Wang
  • Patent number: 8525234
    Abstract: Gate spacers are formed in FinFETS having a bottom portion of a first material extending to the height of the fins, and a top portion of a second material extending above the fins. An embodiment includes forming a fin structure on a substrate, the fin structure having a height and having a top surface and side surfaces, forming a gate substantially perpendicular to the fin structure over a portion of the top and side surfaces, for example over a center portion, forming a planarizing layer over the gate, the fin structure, and the substrate, removing the planarizing layer from the substrate, gate, and fin structure down to the height of the fin structure, and forming spacers on the fin structure and on the planarizing layer, adjacent the gate.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: September 3, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Douglas Bonser, Catherine B. Labelle
  • Publication number: 20130221407
    Abstract: A multi-gate transistor device includes a substrate, a fin structure extending along a first direction formed on the substrate, a gate structure extending along a second direction formed on the substrate, a drain region having a first conductivity type formed in the fin structure, a source region having a second conductivity type formed in the fin structure, and a first pocket doped region having the first conductivity type formed in and encompassed by the source region. The first conductivity type and the second conductivity type are complementary to each other.
    Type: Application
    Filed: February 29, 2012
    Publication date: August 29, 2013
    Inventors: Hsin-Ming Hou, Ji-Fu Kung
  • Patent number: 8513107
    Abstract: A structure and method for replacement metal gate technology is provided for use in conjunction with semiconductor fins or other devices. An opening is formed in a dielectric by removing a sacrificial gate material such as polysilicon. The surfaces of the semiconductor fin within which a transistor channel is formed, are exposed in the opening. A replacement metal gate is formed by forming a diffusion barrier layer within the opening and over a gate dielectric material, the diffusion barrier layer formation advantageously followed by an in-situ plasma treatment operation. The treatment operation utilizes at least one of argon and hydrogen and cures surface defects in the diffusion barrier layer enabling the diffusion barrier layer to be formed to a lesser thickness. The treatment operation decreases resistivity, densifies and alters the atomic ratio of the diffusion barrier layer, and is followed by metal deposition.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: August 20, 2013
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Bor-Wen Chan, Fang Wen Tsai
  • Patent number: 8513072
    Abstract: In order to form a plurality of semiconductor elements over an insulating surface, in one continuous semiconductor layer, an element region serving as a semiconductor element and an element isolation region having a function to electrically isolate element regions from each other by repetition of PN junctions. The element isolation region is formed by selective addition of an impurity element of at least one or more kinds of oxygen, nitrogen, and carbon and an impurity element that imparts an opposite conductivity type to that of the adjacent element region in order to electrically isolate elements from each other in one continuous semiconductor layer.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: August 20, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yasuyuki Arai, Ikuko Kawamata
  • Patent number: 8492230
    Abstract: To provide a technique capable of achieving improvement of the parasitic resistance in FINFETs. In the FINFET in the present invention, a sidewall is formed of a laminated film. Specifically, the sidewall is composed of a first silicon oxide film, a silicon nitride film formed over the first silicon oxide film, and a second silicon oxide film formed over the silicon nitride film. The sidewall is not formed on the side wall of a fin. Thus, in the present invention, the sidewall is formed on the side wall of a gate electrode and the sidewall is not formed on the side wall of the fin.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: July 23, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Kozo Ishikawa, Masaaki Shinohara, Toshiaki Iwamatsu
  • Patent number: 8492832
    Abstract: A semiconductor device includes a semiconductor substrate including an active region defined by a device isolation layer, a trench extending across the active region, a buried gate filling a part of the trench and including a base portion, a first extension portion, and a second extension portion extending along an inner wall of the trench, and having different heights at sides of the base portion, and a capping layer formed on the buried gate and filling the trench.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: July 23, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ji-young Kim, Gyo-young Jin, Hyeong-sun Hong, Yoo-sang Hwang, Sung-kwan Choi, Hyun-woo Chung
  • Patent number: 8492210
    Abstract: The invention relates to a transistor, a semiconductor device comprising the transistor and manufacturing methods for the transistor and the semiconductor device. The transistor according to the invention comprises: a substrate comprising at least a base layer, a first semiconductor layer, an insulating layer and a second semiconductor layer stacked sequentially; a gate stack formed on the second semiconductor layer; a source region and a drain region located on both sides of the gate stack respectively; a back gate comprising a back gate dielectric and a back gate electrode formed by the insulating layer and the first semiconductor layer, respectively; and a back gate contact formed on a portion of the back gate electrode. The back gate contact comprises an epitaxial part raised from the surface of the back gate electrode, and each of the source region and the drain region comprises an epitaxial part raised from the surface of the second semiconductor layer.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: July 23, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Qingqing Liang, Huilong Zhu, Huicai Zhong
  • Publication number: 20130181285
    Abstract: An LDMOS transistor with a dummy gate comprises an extended drift region formed over a substrate, a drain region formed in the extended drift region, a channel region formed in the extended drift region, a source region formed in the channel region and a dielectric layer formed over the extended drift region. The LDMOS transistor with a dummy gate further comprises an active gate formed over the channel region and a dummy gate formed over the extended drift region. The dummy gate helps to reduce the gate charge of the LDMOS transistor while maintaining the breakdown voltage of the LDMOS transistor.
    Type: Application
    Filed: January 17, 2012
    Publication date: July 18, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Wai Ng, Ruey-Hsin Liu, Jun Cai, Hsueh-Liang Chou, Chi-Chih Chen
  • Patent number: 8487363
    Abstract: The present invention relates to a method for manufacturing a semiconductor device, and provides to reduce a contact resistance of a landing plug by forming the landing plug in such a manner that a polysilicon layer is deposited only on the surface of a landing plug contact hole, and a metal layer is buried in the rest of the landing plug contact hole in the process of forming a storage node contact or a bit line contact.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: July 16, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventor: Sung Hyun Kim
  • Publication number: 20130168761
    Abstract: A improved termination structure for semiconductor power devices is disclosed, comprising a trenched field plate formed not only along trench sidewall but also on trench bottom of the wide termination trench by doing poly-silicon CMP so that body ion implantation is blocked by the trenched field plate on the trench bottom to prevent a body region formation underneath the trench bottom of the wide termination trench, degrading avalanche voltage.
    Type: Application
    Filed: December 30, 2011
    Publication date: July 4, 2013
    Applicant: FEEI CHERNG ENTERPRISE CO., LTD.
    Inventor: Fu-Yuan HSIEH
  • Publication number: 20130168746
    Abstract: A semiconductor device manufacturing method includes providing a mask on a semiconductor member. The method further includes providing a dummy element to cover a portion of the mask that overlaps a first portion of the semiconductor member and to cover a second portion of the semiconductor member. The method further includes removing a third portion of the semiconductor member, which has not been covered by the mask or the dummy element. The method further includes providing a silicon compound that contacts the first portion of the semiconductor member. The method further includes removing the dummy element to expose and to remove the second portion of the semiconductor member. The method further includes forming a gate structure that overlaps the first portion of the semiconductor member. The first portion of the semiconductor member is used as a channel region and is supported by the silicon compound.
    Type: Application
    Filed: September 14, 2012
    Publication date: July 4, 2013
    Applicants: SEMICONDUCTOR MANUFACTURING INTERNATIONAL CORP., SEMICONDUCTOR MANUFACTURING INTERNATIONAL CORP.
    Inventor: Fumitake Mieno
  • Publication number: 20130154001
    Abstract: Multigate transistor devices and methods of their fabrication are disclosed. In accordance with one method, a fin and a gate structure that is disposed on a plurality of surfaces of the fin are formed. In addition, at least a portion of an extension of the fin is removed to form a recessed portion that is below the gate structure, is below a channel region of the fin, and includes at least one angled indentation. Further, a terminal extension is grown in the at least one angled indentation below the channel region and along a surface of the channel region such that the terminal extension provides a stress on the channel region to enhance charge carrier mobility in the channel region.
    Type: Application
    Filed: December 14, 2011
    Publication date: June 20, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: MING CAI, DECHAO GUO, PRANITA KULKARNI, CHUN-CHEN YEH
  • Publication number: 20130154029
    Abstract: Multigate transistor devices and methods of their fabrication are disclosed. In accordance with one method, a fin and a gate structure that is disposed on a plurality of surfaces of the fin are formed. In addition, at least a portion of an extension of the fin is removed to form a recessed portion that is below the gate structure, is below a channel region of the fin, and includes at least one angled indentation. Further, a terminal extension is grown in the at least one angled indentation below the channel region and along a surface of the channel region such that the terminal extension provides a stress on the channel region to enhance charge carrier mobility in the channel region.
    Type: Application
    Filed: September 12, 2012
    Publication date: June 20, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ming Cai, Dechao Guo, Pranita Kulkarni, Chun-Chen Yeh
  • Patent number: 8450194
    Abstract: A method of modifying a shape of a cavity in a substrate. The method includes forming one or more cavities on a surface of the substrate between adjacent relief structures. The method also includes directing ions toward the substrate at a non-normal angle of incidence, wherein the ions strike an upper portion of a cavity sidewall, and wherein the ions do not strike a lower portion of the cavity sidewall. The method further includes etching the one or more cavities wherein the upper portion of a cavity sidewall etches more slowly than the lower portion of the sidewall cavity.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: May 28, 2013
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Andrew Waite, Younki Kim, Stanislav Todorov
  • Patent number: 8450813
    Abstract: There is provided a fin transistor structure and a method of fabricating the same. The fin transistor structure comprises a fin formed on a semiconductor substrate, wherein a bulk semiconductor material is formed between a portion of the fin serving as the channel region of the transistor structure and the substrate, and an insulation material is formed between remaining portions of the fin and the substrate. Thereby, it is possible to reduce the current leakage while maintaining the advantages of body-tied structures.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: May 28, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Zhijiong Luo, Haizhou Yin, Huilong Zhu
  • Patent number: 8445973
    Abstract: There is provided a fin transistor structure and a method of fabricating the same. The fin transistor structure comprises a fin formed on a semiconductor substrate, wherein an insulation material is formed between a portion of the fin serving as the channel region of the transistor structure and the substrate, and a bulk semiconductor material is formed between remaining portions of the fin and the substrate. Thereby, it is possible to reduce the current leakage while maintaining the advantages such as low cost and high heat transfer.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: May 21, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Zhijiong Luo, Huilong Zhu, Haizhou Yin
  • Patent number: 8441074
    Abstract: A device includes a number of fins. Some of the fins have greater heights than other fins. This allows the selection of different drive currents and/or transistor areas.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: May 14, 2013
    Assignee: Intel Corporation
    Inventors: Willy Rachmady, Justin S. Sandford, Michael K. Harper