Integrated With Device (e.g., Back Surface Reflector, Lens) (epo) Patents (Class 257/E33.068)
  • Patent number: 8137998
    Abstract: A light-emitting device comprises a lattice structure to minimize the horizontal waveguide effect by reducing light traveling distance in the light-absorption medium of the light-emitting devices, and to enhance light extraction from the light-emitting layer. The lattice structure includes sidewalls and/or rods embedded in the light-absorption medium and dividing the light-absorption medium into a plurality of area units. The area units are completely isolated or partially separated from each other by the sidewalls. Also provided is a method of fabricating a light-emitting device that comprises a lattice structure, which lattice structure includes sidewalls and/or rods embedded in the light-absorption medium and dividing the light-absorption medium into a plurality of area units.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: March 20, 2012
    Assignee: Invenlux Limited
    Inventors: Chunhui Yan, Jianping Zhang
  • Publication number: 20120061700
    Abstract: A method and a system for a reliable LED semiconductor device are provided. In one embodiment, the device comprises a carrier, a light emitting diode disposed on the carrier, an encapsulating material disposed over the light emitting diode and the carrier, at least one through connection formed in the encapsulating material, and a metallization layer disposed and structured over the at least one through connection.
    Type: Application
    Filed: September 9, 2010
    Publication date: March 15, 2012
    Inventors: Andreas EDER, Henrik EWE, Stefan LANDAU, Joachim MAHLER
  • Publication number: 20120061707
    Abstract: A solid-state light-emitting element includes a structure body having a property of transmitting visible light and an uneven structure on each of the top side and the bottom side thereof; a high refractive index material layer provided on one surface of the structure body; and a light-emitting body with a refractive index of greater than or equal to 1.6 provided over the high refractive index material layer. One surface of the high refractive index material layer is flatter than the other surface thereof which is in contact with the structure body. The refractive index of the high refractive index material layer is greater than or equal to 1.6. The refractive index of the structure body is greater than 1.0 and less than that of the high refractive index material layer.
    Type: Application
    Filed: September 13, 2011
    Publication date: March 15, 2012
    Inventors: Satoshi Seo, Hisao Ikeda, Takuya Kawata
  • Publication number: 20120056222
    Abstract: A semiconductor light emitting device includes a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type, a light emitting layer, a first electrode layer, and a second electrode layer. The light emitting layer is between the first semiconductor layer and the second semiconductor layer. The first electrode layer is on a side of the second semiconductor layer opposite to the first semiconductor layer. The first electrode layer includes a metal portion and a plurality of opening portions piercing the metal portion along a direction from the first semiconductor layer toward the second semiconductor layer. The metal portion contacts the second semiconductor layer. An equivalent circular diameter of a configuration of the opening portions as viewed along the direction is not less than 10 nanometers and not more than 5 micrometers.
    Type: Application
    Filed: March 1, 2011
    Publication date: March 8, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Ryota KITAGAWA, Akira FUJIMOTO, Koji ASAKAWA, Eishi TSUTSUMI, Takanobu KAMAKURA, Shinji NUNOTANI, Masaaki OGAWA
  • Patent number: 8129735
    Abstract: A light source that uses a light emitting diode with a wavelength converting element is configured to produce a non-uniform angular color distribution, e.g., ?u?v?>0.015 within an angular distribution from 0° to 90°, that can be used with specific light based device that translate the angular color distribution into a uniform color distribution. The ratio of height and width for the wavelength converting element is selected to produce the desired non-uniform angular color distribution. The use of a controlled angular color non-uniformity in the light source and using it in applications that translate the non-uniformity into a uniform color distribution, e.g., with a uniformity of ?u?v?<0.01, increases the efficiency of the system compared to conventional systems in which a uniform angular light emitting diode is used.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: March 6, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Serge J. Bierhuizen, Willem Sillevis Smitt
  • Patent number: 8129743
    Abstract: A light emitting device includes a light emitting element, an element mounting board including a wiring layer on an element mounting surface thereof, and a sealing portion that seals the light emitting element. The light emitting element includes a contact electrode including a transparent conductive film, a transparent dielectric layer formed on a surface of the contact electrode and including a refractive index lower than the contact electrode, and a pad electrode electrically connected to the contact electrode. The light emitting element is flip-chip mounted on the wiring layer. A part of the transparent dielectric layer is formed between the contact electrode and the pad electrode.
    Type: Grant
    Filed: August 4, 2008
    Date of Patent: March 6, 2012
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Yoshinobu Suehiro, Shigeo Takaya
  • Patent number: 8129209
    Abstract: A semiconductor component has a plurality of GaN-based layers, which are preferably used to generate radiation, produced in a fabrication process. In the process, the plurality of GaN-based layers are applied to a composite substrate that includes a substrate body and an interlayer. A coefficient of thermal expansion of the substrate body is similar to or preferably greater than the coefficient of thermal expansion of the GaN-based layers, and the GaN-based layers are deposited on the interlayer. The interlayer and the substrate body are preferably joined by a wafer bonding process.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: March 6, 2012
    Assignee: Osram AG
    Inventors: Stefan Bader, Dominik Eisert, Berthold Hahn, Volker Härle
  • Patent number: 8129736
    Abstract: The invention discloses a light-emitting diode which includes a substrate on which a first conducting-type semiconductor layer, an illuminating layer and a second conducting-type semiconductor layer are formed sequentially, a transparent insulating material, a first transparent conducting layer, and a second transparent conducting layer. The top surface of the first conducting-type semiconductor layer includes a first region and a second region surrounded by the first region. Plural pillar-like holes are formed at the first region and protrude into the first conducting-type semiconductor layer. The transparent insulating material fills up the holes. The first transparent conducting layer is formed on the second conducting-type semiconductor layer, and the second transparent conducting layer is formed on the top surface of the transparent insulating material and on the first region.
    Type: Grant
    Filed: April 20, 2009
    Date of Patent: March 6, 2012
    Assignee: Huga Optotech, Inc.
    Inventors: Lin-Chieh Kao, Shu-Ying Yang
  • Publication number: 20120049225
    Abstract: Provided is a method of manufacturing a light emitting device capable of maintaining high optical output power while suppressing discoloration of the reflective film. A method of manufacturing a light emitting device according to an embodiment includes steps in an order of, preparing an electrically conductive member provided with a reflective film, disposing a light emitting element on the reflective film, and forming a protective film on the reflective film by using an atomic layer deposition method.
    Type: Application
    Filed: August 24, 2011
    Publication date: March 1, 2012
    Inventor: Takayoshi WAKAKI
  • Publication number: 20120049216
    Abstract: The present invention provides an alternating current light-emitting diode (AC LED), which uses a light compensation layer disposed on the light-emitting surface of the AC LED. The materials of the light compensation layer can be phosphorescent or fluorescent materials. The light-emitting mechanism is mainly the light-emitting mechanism of electron-hole pairs in a triplet state. By absorbing light of the AC LED, the flashes occurred when the power of the AC LED alters from a positive half-cycle to a negative one can be compensated. Thereby, the AC LED can emit light full-timely.
    Type: Application
    Filed: October 6, 2010
    Publication date: March 1, 2012
    Applicant: FORMOSA EPITAXY INCORPORATION
    Inventors: YI-SHENG TING, WEI-KANG CHENG, SHYI-MING PAN
  • Patent number: 8124433
    Abstract: An electrode structure is disclosed for enhancing the brightness and/or efficiency of an LED. The electrode structure can have a metal electrode and an optically transmissive thick dielectric material formed intermediate the electrode and a light emitting semiconductor material. The electrode and the thick dielectric cooperate to reflect light from the semiconductor material back into the semiconductor so as to enhance the likelihood of the light ultimately being transmitted from the semiconductor material. Such LED can have enhanced utility and can be suitable for uses such as general illumination.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: February 28, 2012
    Assignee: Bridgelux, Inc.
    Inventors: Frank T. Shum, William W. So, Steven B. Lester
  • Patent number: 8124991
    Abstract: An (Al,Ga,In)N-based light emitting diode (LED), comprising a p-type surface of the LED bonded with a transparent submount material to increase light extraction at the p-type surface, wherein the LED is a substrateless membrane.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: February 28, 2012
    Assignee: The Regents of the University of California
    Inventors: Kenji Iso, Hirokuni Asamizu, Makoto Saito, Hitoshi Sato, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20120043550
    Abstract: According to one embodiment, a semiconductor light emitting device includes a stacked structural body, first and second electrodes, a high resistance layer and a transparent conductive layer. The stacked structural body includes first and second semiconductor layers and a light emitting layer. The first semiconductor layer is disposed between the first electrode and the second semiconductor layer. The second semiconductor layer is disposed between the second electrode and the first semiconductor layer. The second electrode has reflectivity with respect to luminescent light. The high resistance layer is in contact with the second semiconductor layer between the second semiconductor layer and the second electrode and includes a portion overlapping with the first electrode. The transparent conductive layer is in contact with the second semiconductor layer between the second semiconductor layer and the second electrode.
    Type: Application
    Filed: February 18, 2011
    Publication date: February 23, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Toshihide ITO, Toshiyuki Oka, Kotaro Zaima, Taisuke Sato, Shinya Nunoue
  • Publication number: 20120043564
    Abstract: A device is provided with at least one light emitting device (LED) die mounted on a submount with an optical element subsequently thermally bonded to the LED die. The LED die is electrically coupled to the submount through contact bumps that have a higher temperature melting point than is used to thermally bond the optical element to the LED die. In one implementation, a single optical element is bonded to a plurality of LED dice that are mounted to the submount and the submount and the optical element have approximately the same coefficients of thermal expansion. Alternatively, a number of optical elements may be used. The optical element or LED die may be covered with a coating of wavelength converting material. In one implementation, the device is tested to determine the wavelengths produced and additional layers of the wavelength converting material are added until the desired wavelengths are produced.
    Type: Application
    Filed: November 3, 2011
    Publication date: February 23, 2012
    Applicants: PHILIPS LUMILEDS LIGHTING COMPANY, LLC, KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: MICHAEL D. CAMRAS, WILLIAM R. IMLER, FRANKLIN J. WALL, JR., FRANK M. STERANKA, MICHAEL R. KRAMES, HELENA TICHA, LADISLAV TICHY, Robertus G. Alferink
  • Publication number: 20120045858
    Abstract: A semiconductor structure includes a light emitting layer disposed between an n-type region and a p-type region. A p-electrode is disposed on a portion of the p-type region. The p-electrode includes a reflective first material in direct contact with a first portion of the p-type region and a second material in direct contact with a second portion of the p-type region adjacent to the first portion. The first material and second material are formed in planar layers of substantially the same thickness.
    Type: Application
    Filed: November 3, 2011
    Publication date: February 23, 2012
    Applicants: PHILIPS LUMILEDS LIGHTING COMPANY, LLC, KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventor: John E. Epler
  • Patent number: 8120045
    Abstract: A metal-based photonic device package module that is capable of greatly improving heat releasing efficiency and implementing a thin package is provided. The metal-based photonic device package module includes a metal substrate that is formed the shape of a plate, a metal oxide layer that is formed on the metal substrate to have a mounting cavity, a photonic device that is mounted in the mounting cavity of the metal oxide layer, and a reflecting plane that is formed at an inner surface of the mounting cavity of the metal oxide layer.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: February 21, 2012
    Assignees: Wavenics Inc., Korea Advanced Institute of Science and Technology
    Inventors: Young-Se Kwon, Kyoung-Min Kim, Sung-Woo Hyun, Bo-In Son
  • Patent number: 8120050
    Abstract: A light-emitting element includes a semiconductor substrate, a light emitting layer portion including an active layer on the semiconductor substrate, a first reflective layer between the semiconductor substrate and the active layer for reflecting light emitted from the active layer; and a second reflective layer between the semiconductor substrate and the first reflective layer for reflecting light with a wavelength different from that of the light reflected by the first reflective layer. The second reflective layer reflects light with a wavelength longer than that of the light reflected by the first reflective layer.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: February 21, 2012
    Assignee: Hitachi Cable, Ltd.
    Inventors: Taichiroo Konno, Takehiko Tani
  • Patent number: 8120049
    Abstract: A light-generating semiconductor region is grown on a substrate of electroconductive silicon or like light-absorptive material. An anode is placed atop the light-generating semiconductor region, and a cathode under the substrate. The light-generating semiconductor region and the substrate are encapsulated in an epoxy envelope. In order to prevent the substrate from absorbing the light that has been radiated from the light-generating semiconductor region and reflected back from the envelope, the substrate has its side surfaces covered by a reflector layer. The reflector layer has its surfaces roughened, as a result of the roughening of the underlying substrate surfaces by dicing, for scattering the incident light.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: February 21, 2012
    Assignee: Sanken Electric Co., Ltd.
    Inventors: Tetsuji Matsuo, Shiro Takeda
  • Publication number: 20120038876
    Abstract: An exemplary embodiment of the present invention provides an organic electroluminescent device including a substrate, a first electrode, one or more organic material layers, and a second electrode in a sequentially deposited form, wherein a light scattering layer is provided between the substrate and the first electrode, and includes a cholesteric liquid crystal layer including a liquid crystal vertically aligned to the substrate, and a method for fabricating the same.
    Type: Application
    Filed: August 12, 2011
    Publication date: February 16, 2012
    Inventors: Yeon Keun Lee, Dae Hee Lee, Moon Soo Park, Yun Hye Hahm, Jung Bum Kim, Mun Kyu Joo
  • Publication number: 20120037928
    Abstract: A anti-reflection film includes a light phase delay film which changes a phase of incident light, a polarizing film on the light phase delay film and transmitting light with a polarization component in a particular direction, and a protective film on the polarizing film and protecting the polarizing film. All of the polarizing film, the light phase delay film, and the protective film include flexible materials.
    Type: Application
    Filed: April 21, 2011
    Publication date: February 16, 2012
    Applicants: SAMSUNG MOBILE DISPLAY CO., LTD,, SAMSUNG ELECTRONICS CO., LTD,
    Inventors: Hong-shik SHIM, In-seo KEE, Hyuk-jun KWON
  • Patent number: 8114690
    Abstract: Aspects concerning a method of making electrical contact to a region of semiconductor in which one or more LEDs are formed include that a dielectric region can be formed on a p region of the semiconductor, and that a metallic electrode can be formed on (at least partially on) the region of dielectric material. A transparent layer of a material such as Indium Tin Oxide can be used to make ohmic contact between the semiconductor and the metallic electrode, as the metallic electrode is separated from physical contact with the semiconductor by one or more of the dielectric material and the transparent ohmic contact layer (e.g., ITO layer). The dielectric material can enhance total internal reflection of light and reduce an amount of light that is absorbed by the metallic electrode.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: February 14, 2012
    Assignee: Bridgelux, Inc.
    Inventors: Frank T. Shum, William W. So, Steven D. Lester
  • Patent number: 8115226
    Abstract: An electrode structure is disclosed for enhancing the brightness and/or efficiency of an LED. The electrode structure can have a metal electrode and an dielectric material formed intermediate the electrode and a light emitting semiconductor material. Electrical continuity between the semiconductor material and the metal electrode is provided by an optically transmissive ohmic contact layer, such as a layer of Indium Tin Oxide. The metal electrode thus can be physically separated from the semiconductor material by one or more of the dielectric material and the ohmic contact layer. The dielectric layer can increase total internal reflection of light at the interface between the semiconductor and the dielectric layer, which can reduce absorption of light by the electrode. Such LED can have enhanced utility and can be suitable for uses such as general illumination.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: February 14, 2012
    Assignee: Bridgelux, Inc.
    Inventors: Frank T. Shum, William W. So, Steven D. Lester
  • Patent number: 8110842
    Abstract: A method for manufacturing a light-emitting diode (LED) module is provided. Plural LED package structures are formed on a substrate first. A space is located between two adjacent LED package structures. A Lens laminated plate is subsequently bonded onto the LED package structures. The lens laminated plate includes plural lenses, and each lens is located right above a LED of each LED package structure. Finally, plural LED modules are formed by cutting the substrate along the space. A LED module structure is also disclosed.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: February 7, 2012
    Assignee: Everlight Electronics Co., Ltd.
    Inventor: Ssu-Yuan Weng
  • Publication number: 20120025238
    Abstract: An LED package comprises a substrate, an LED die, and an encapsulating layer. The substrate has circuit formed thereon. The LED die is arranged on the substrate and electrically connected to the circuit of the substrate. The encapsulating layer covers the LED die and at least a part of the substrate. The encapsulating layer and the substrate are made of cycloaliphatic epoxide.
    Type: Application
    Filed: December 12, 2010
    Publication date: February 2, 2012
    Applicant: ADVANCED OPTOELECTRONIC TECHNOLOGY, INC.
    Inventor: SHEN-BO LIN
  • Patent number: 8106412
    Abstract: The high luminance semiconductor light emitting device comprises: a GaAs substrate structure including a GaAs layer (3), a first metal buffer layer (2) disposed on a surface of the GaAs layer, a first metal layer (1) disposed on the first metal buffer layer, and a second metal buffer layer (4) and a second metal layer (5) disposed at a back side of the GaAs layer; and a light emitting diode structure disposed on the GaAs substrate structure and including a third metal layer (12), a metal contact layer (11) disposed on the third metal layer, a p type cladding layer (10) disposed on the metal contact layer, a multi-quantum well layer (9) disposed on the p type cladding layer, an n type cladding layer (8) disposed on the multi-quantum well layer, and a window layer 7 disposed on the n type cladding layer, wherein the GaAs substrate structure and the light emitting diode structure are bonded by using the first metal layer (1) and the third metal layer (12).
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: January 31, 2012
    Assignee: Rohm Co., Ltd.
    Inventors: Masakazu Takao, Mitsuhiko Sakai, Kazuhiko Senda
  • Patent number: 8106415
    Abstract: Embodiments provide a semiconductor light emitting device which comprises a first conductive semiconductor layer, an active layer on the first conductive semiconductor layer, a second conductive semiconductor layer on the active layer, and a semiconductor layer on the second conductive semiconductor layer, and comprising a plurality of a semiconductor structures apart from each other and microfacets.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: January 31, 2012
    Assignee: LG Innotek Co., Ltd.
    Inventor: Hung Seob Cheong
  • Publication number: 20120012871
    Abstract: The present disclosure relates to methods for performing wafer-level measurement and wafer-level binning of LED devices. The present disclosure also relates to methods for reducing thermal resistance of LED devices. The methods include growing epitaxial layers consisting of an n-doped layer, an active layer, and a p-doped layer on a wafer of a growth substrate. The method further includes forming p-contact and n-contact to the p-doped layer and the n-doped layer, respectively. The method further includes performing a wafer-level measurement of the LED by supplying power to the LED through the n-contact and the p-contact. The method further includes dicing the wafer to generate diced LED dies, bonding the diced LED dies to a chip substrate, and removing the growth substrate from the diced LED dies.
    Type: Application
    Filed: July 15, 2010
    Publication date: January 19, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsing-Kuo Hsia, Hung-Wen Huang, Ching-Hua Chiu, Gordon Kuo
  • Patent number: 8093611
    Abstract: A semiconductor light emitting device and a method of manufacturing the same are provided. The semiconductor light emitting device comprises a first conductive semiconductor layer comprising a concave portion, an active layer on the first conductive semiconductor layer, and a second conductive semiconductor layer on the active layer.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: January 10, 2012
    Assignee: LG Innotek Co., Ltd.
    Inventor: Hyo Kun Son
  • Patent number: 8093078
    Abstract: A method for fabricating a photoelectric device initially provides a ceramic substrate comprising a thermal dissipation layer on a bottom layer of the ceramic substrate, an electrode layer on the top surface of the ceramic substrate, and a reflective structure in cavities of the ceramic substrate. Next, a plurality of photoelectric dies is disposed on the top surface of the ceramic substrate. Then, a first packaging layer is formed on the top surfaces of the photoelectric dies. Next, the ceramic substrate is placed between an upper mold and a lower mold. Finally, a plurality of lenses is formed on the top surface of the first packaging layer by using an injection molding technique or a transfer molding technique.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: January 10, 2012
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventors: Chester Kuo, Hung Chin Lin
  • Publication number: 20120001218
    Abstract: Provided are a light emitting device and a method of fabricating the same. The light emitting device includes a first conductive type semiconductor layer, a second conductive type semiconductor layer, and an active layer between the first conductive type semiconductor layer and the second conductive type semiconductor layer, the active layer being formed of a semiconductor material. Also, the light emitting device further includes a current spreading layer comprising a plurality of carbon nanotube bundles physically connected to each other on one of the first and second conductive type semiconductor layers.
    Type: Application
    Filed: July 1, 2011
    Publication date: January 5, 2012
    Applicant: LG INNOTEK CO., LTD.
    Inventors: Kwang Ki CHOI, Hwan Hee JEONG, Sang Youl LEE, June O. SONG, Ji hyung MOON, Se Yeon JUNG, Tae-Yeon SEONG
  • Patent number: 8089077
    Abstract: A light-emitting element array with the improvement of the light-emitting efficiency and the improvement of the uneven amount of light is provided. A light-emitting element array comprises a light-emitting portion array consisting of a plurality of light-emitting portions linearly arranged in a main scanning direction, and a micro-lens formed on each of the light-emitting portions, wherein the micro-lens has a shape of the length of a sub-scanning direction different from the length of the main scanning direction, and the length of the sub-scanning direction is longer than the length of the main scanning direction, and is 3.5 times or less of the length of the main scanning direction.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: January 3, 2012
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Kenjiro Hamanaka, Takahiro Hashimoto
  • Patent number: 8089081
    Abstract: A semiconductor light emitting device including: a substrate; an electrode layer; and a semiconductor multilayer film disposed between the substrate and the electrode layer, the semiconductor multilayer film including: an n-type semiconductor layer; a p-type semiconductor layer; and an active layer disposed between the n-type semiconductor layer and the p-type semiconductor layer, wherein the semiconductor multilayer film has a light extraction surface from which a light emitted in the semiconductor multilayer film is extracted, the light extraction surface being formed with a relief structure having nano-scaled convex portions, wherein the relief structure is formed to have variation in equivalent circular diameters of the convex portions, and wherein 90% or more of the convex portions in the relief structure are configured to have circularity coefficient of (4?×(area)/(circumferential length)2) being equal to or larger than 0.7.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: January 3, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ryota Kitagawa, Akira Fujimoto, Koji Asakawa, Takeyuki Suzuki
  • Patent number: 8089089
    Abstract: A side-emitting LED includes a substrate formed with a plurality of electrodes, an LED chip bonded onto the substrate and electrically connected to the electrodes, a transparent member encapsulating the LED chip and a casing fixed on the substrate. The transparent member has a flat bottom surface attached to the substrate, a vertically surface extending perpendicularly from a straight side edge of the flat bottom surface and a curved surface connected to curved edges of the flat bottom and vertical surfaces. The casing encapsulates the transparent member excepting the vertical surface of the transparent member. The curved surface of the transparent member is shaped as a part of an outer surface of an ellipsoid.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: January 3, 2012
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventors: Chester Kuo, Hsing-Fen Lo, Pin-Chuan Chen
  • Publication number: 20110316022
    Abstract: Packages for containing one or more light emitting devices, such as light emitting diodes (LEDs), are disclosed with an efficient, isolated thermal path. In one embodiment, LED package can include a thermal element and at least one electrical element embedded within a body. The thermal element and electrical element can have the same and/or substantially the same thickness and can extend directly from a bottom surface of the LED package such that they are substantially flush with or extend beyond the bottom surface of the LED package. The thermal and electrical element have exposed portions which can be substantially flush with lateral sides of the body such that the thermal and electrical element do not have a significant portion extending beyond an outermost edge of the lateral sides of the body.
    Type: Application
    Filed: August 10, 2010
    Publication date: December 29, 2011
    Inventor: Christopher P. Hussell
  • Patent number: 8080829
    Abstract: A light-emitting diode device includes: a substrate; a light-emitting layered structure formed on the substrate; a multi-functional layer having a first main portion and formed on the light-emitting layered structure for spreading current laterally and for reflecting light emitted from the light-emitting layered structure; and first and second electrodes electrically coupled to the light-emitting layered structure. The first electrode is formed on the light-emitting layered structure and has a first electrode main part. The first main portion of the multi-functional layer is aligned below and is provided with a size larger than that of the first electrode main part.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: December 20, 2011
    Assignee: Ubilux Optoelectronics Corporation
    Inventors: Chih-Sheng Lin, Che-Hsiung Wu
  • Patent number: 8080879
    Abstract: An electrode structure is disclosed for enhancing the brightness and/or efficiency of an LED. The electrode structure can have a metal electrode and an optically transmissive thick dielectric material formed intermediate the electrode and a light emitting semiconductor material. The electrode and the thick dielectric cooperate to reflect light from the semiconductor material back into the semiconductor so as to enhance the likelihood of the light ultimately being transmitted from the semiconductor material. Such LED can have enhanced utility and can be suitable for uses such as general illumination. The semiconductor material can have a cutout formed therein and a portion of the electrode can be formed outside of the cutout and a portion of the electrode can be formed inside of the cutout. The portion of the electrode outside the cutout can be electrically isolated from the semiconductor material by the dielectric material.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: December 20, 2011
    Assignee: Bridgelux, Inc.
    Inventor: Frank T. Shum
  • Publication number: 20110303935
    Abstract: The disclosure relates to a light source module comprising a substrate having circuits, at least one light emitting diode (LED) die positioned on the substrate, and at least one luminescence containing lens over the LED die with a light-converting portion having an inverted truncated pyramid-shaped structure with a spherical top. The light-converting portion scatters light generated by the LED die and converts the light into a different color. The light-converting portion has a small bottom end conformably located on the LED die and a large top end which is a portion of an outer contour of the lens.
    Type: Application
    Filed: June 10, 2010
    Publication date: December 15, 2011
    Applicant: FOXSEMICON INTEGRATED TECHNOLOGY, INC.
    Inventor: JYH-LONG CHERN
  • Publication number: 20110306155
    Abstract: A method for producing a semiconductor optical device includes the steps of forming a semiconductor layer; forming a non-silicon-containing resin layer; forming a first pattern in the non-silicon-containing resin layer; forming a silicon-containing resin layer; etching the silicon-containing resin layer to have a second pattern reverse to the first pattern; selectively etching the non-silicon-containing resin layer by a RIE method employing a gas mixture containing CF4 gas and O2 gas, the non-silicon-containing resin layer having the second pattern; and etching the semiconductor layer.
    Type: Application
    Filed: June 2, 2011
    Publication date: December 15, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Yukihiro TSUJI
  • Patent number: 8076690
    Abstract: A semiconductor light emitting apparatus for emitting a desired colored light by coating the top surface thereof with a wavelength conversion member prevents the color unevenness from occurring due to the unevenness of the coating thickness of the wavelength conversion member. The semiconductor light emitting apparatus can include a semiconductor layer having a light emitting layer with a light emitting surface having at least one corner area, a supporting substrate configured to support the semiconductor layer, and a wavelength conversion material layer formed on top of the semiconductor layer, the wavelength conversion layer having a thickness thinner from a center portion of the semiconductor layer to an outer peripheral portion. The at least one corner area can include a non-emitting portion where light cannot be projected. The non-emitting portion can be a light shielding portion, a non-light emission portion or a current confined portion.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: December 13, 2011
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Kazuhiko Ueno, Takashi Ebisutani
  • Patent number: 8076679
    Abstract: A plurality of semiconductor layers including a light-emitting layer (14) are formed on the main surface of a substrate (10) which is composed of a group III-V nitride semiconductor. A first n-type semiconductor layer (12) containing indium is formed between the light-emitting layer (14) and the substrate (10), thereby reducing the affect of damage in the substrate surface. By having such a structure, there is realized a semiconductor light-emitting device having uniform characteristics.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: December 13, 2011
    Assignee: Panasonic Corporation
    Inventors: Yoshitaka Kinoshita, Hidenori Kamei
  • Publication number: 20110297991
    Abstract: A wiring electrode is provided on a mount substrate. A light emitting element is provided on the wiring electrode to connect electrically with the wiring electrode and is configured to emit a blue to ultraviolet light. A reflective film is provided above the light emitting element to cover the light emitting element so that a space is interposed between the reflective film and the light emitting element. The reflective film is capable of transmitting the blue to ultraviolet light. A fluorescent material layer is provided above the light emitting element to cover the light emitting element so that the reflective film is located between the fluorescent material layer and the light emitting element. A light from the fluorescent material layer is reflected by the reflective film.
    Type: Application
    Filed: August 17, 2011
    Publication date: December 8, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Hideto FURUYAMA
  • Publication number: 20110297985
    Abstract: According to one embodiment, a semiconductor light emitting device includes a light emitting section, a light transmitting section, a wavelength conversion section, a first conductive section, a second conductive section and a sealing section. The light emitting section includes a first major surface, a second major surface opposite from the first major surface, and a first electrode section and a second electrode section formed on the second major surface. The light transmitting section is provided on a side of the first major surface. The wavelength conversion section is provided over the light transmitting section. The wavelength conversion section is formed from a resin mixed with a phosphor, and hardness of the cured resin is set to exceed 10 in Shore D hardness.
    Type: Application
    Filed: June 6, 2011
    Publication date: December 8, 2011
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Tomomichi NAKA
  • Publication number: 20110291145
    Abstract: An optoelectronic element includes an optoelectronic unit having a first top surface, a first bottom surface opposite to the first top surface, and a lateral surface between the first top surface and the first bottom surface; a first transparent structure covering the lateral surface and exposing the first top surface of the optoelectronic unit; a first insulating layer on the first top surface and the first transparent structure; a second insulating layer on the first insulating layer; a first opening through the first insulating layer and the second insulating layer; and a first conductive layer on the second insulating layer and electrically connecting to the optoelectronic unit via the first opening.
    Type: Application
    Filed: August 9, 2011
    Publication date: December 1, 2011
    Applicant: Epistar Corporation
    Inventors: Cheng-Nan Han, Tsung-Xian Lee, Min-Hsun Hsieh, Hung-Hsuan Chen, Hsin-Mao Liu, Hsing-Chao Chen, Ching-San Tao, Chih-Peng Ni, Tzer-Perng Chen, Jen-Chau Wu
  • Publication number: 20110291137
    Abstract: A light emitting device package is provided. The light emitting device package may include a housing including a cavity, a light emitting device disposed within the cavity, a filler filled in the cavity in order to seal the light emitting device, a fluorescent layer disposed on the filler, and an optical filter being disposed within the filler and transmitting light with a particular wavelength.
    Type: Application
    Filed: May 19, 2011
    Publication date: December 1, 2011
    Inventor: Nam Seok OH
  • Publication number: 20110291138
    Abstract: A light-emitting element package includes a package member for encapsulating a light-emitting element. A plurality of photonic crystal patterns is formed on the package member. A distribution density of the photonic crystal patterns corresponds to light distribution of the light-emitting element. Each photonic crystal pattern consists of a plurality of photonic crystals.
    Type: Application
    Filed: May 23, 2011
    Publication date: December 1, 2011
    Applicant: ADVANCED OPTOELECTRONIC TECHNOLOGY, INC.
    Inventors: MIN-TSUN HSIEH, WEN-LIANG TSENG, LUNG-HSIN CHEN, CHIH-YUNG LIN, CHING-LIEN YEH, CHI-WEI LIAO
  • Publication number: 20110291136
    Abstract: A light-emitting element includes a substrate, a light-emitting module and at least two electrodes. The light-emitting module is formed on the substrate. The at least two electrodes are formed on the light-emitting module. Exterior surfaces of the light-emitting module are separated into a first part and a second part. The first part is defined between the at least two electrodes and the light-emitting module. The second part includes exterior surfaces not contacting the at least two electrodes. The first part is smooth. At least a part of the second part is rough.
    Type: Application
    Filed: April 26, 2011
    Publication date: December 1, 2011
    Applicant: ADVANCED OPTOELECTRONIC TECHNOLOGY, INC.
    Inventors: TZU-CHIEN HUNG, CHIA-HUI SHEN
  • Publication number: 20110291140
    Abstract: Provided is a light emitting device. The light emitting device includes a light emitting structure layer including a first conductive type semiconductor layer, an active layer, and a second conductive type semiconductor layer, a gallium barrier layer on the light emitting structure layer, and a metal electrode layer on the gallium barrier layer.
    Type: Application
    Filed: May 26, 2011
    Publication date: December 1, 2011
    Inventors: Kwang Ki Choi, Ji hyung Moon, June O Song, Sang Youl Lee, Tae Yeon Seong, Se Yeon Jung, Joon Woo Jeon, Seong Han Park
  • Publication number: 20110291135
    Abstract: A light emitting diode package includes a silicon substrate having a first surface and a second surface opposite to the first surface, wherein the first surface includes a cavity, a light emitting diode chip fixed on a bottom of the cavity, and a glass lens secured to the silicon substrate and covering the light emitting diode chip.
    Type: Application
    Filed: March 2, 2011
    Publication date: December 1, 2011
    Applicant: ADVANCED OPTOELECTRONIC TECHNOLOGY, INC.
    Inventors: MIN-TSUN HSIEH, WEN-LIANG TSENG, LUNG-HSIN CHEN, CHIH-YUNG LIN
  • Patent number: 8067255
    Abstract: Provided are a nitride semiconductor light emitting device including a coat film formed at a light emitting portion and including an aluminum nitride crystal or an aluminum oxynitride crystal, and a method of manufacturing the nitride semiconductor light emitting device. Also provided is a nitride semiconductor transistor device including a nitride semiconductor layer and a gate insulating film which is in contact with the nitride semiconductor layer and includes an aluminium nitride crystal or an aluminum oxynitride crystal.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: November 29, 2011
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Takeshi Kamikawa, Yoshinobu Kawaguchi
  • Publication number: 20110284908
    Abstract: According to one embodiment, a semiconductor light emitting device includes a stacked structural body, a first electrode, a second electrode, a third electrode, and a fourth electrode. The stacked structural body includes a first semiconductor layer, a second semiconductor layer, and a light emitting layer provided between the first semiconductor layer and the second semiconductor layer. The first electrode is electrically connected to the first semiconductor layer. The second electrode forms an ohmic contact with the second semiconductor layer. The second electrode is translucent to light emitted from the light emitting layer. The third electrode penetrates through the second electrode and is electrically connected to the second electrode to form Shottky contact with the second semiconductor layer. The third electrode is disposed between the fourth electrode and the second semiconductor layer.
    Type: Application
    Filed: August 2, 2011
    Publication date: November 24, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Eiji MURAMOTO, Shinya NUNOUE, Toshiyuki OKA