Means For Light Extraction Or Guiding (epo) Patents (Class 257/E33.067)
  • Patent number: 10700239
    Abstract: A micro light-emitting diode is provided. The micro light-emitting diode includes a first type semiconductor layer and a second type semiconductor layer. The first type semiconductor layer includes at least one low resistance portion and a diffuse type high resistance portion. The low resistance portion extends between and reaches a first surface and a second surface of the first type semiconductor layer. The diffuse type high resistance portion extends between and reaches the first surface and the second surface. A thickness of the first type semiconductor layer is less than half of a lateral length of the low resistance portion on the first surface. The low resistance portion and the diffuse type high resistance portion form an interface therebetween on the first surface. A concentration of a guest material starts decreasing from the interface toward the low resistance portion.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: June 30, 2020
    Assignee: MIKRO MESA TECHNOLOGY CO., LTD.
    Inventor: Li-Yi Chen
  • Patent number: 10656510
    Abstract: The invention relates to a SLED device emitting light from a substrate side, configured to suppress lasing, and comprising a reflective element (55) on a front surface of a substrate (22) configured to redirect an optical beam (light) onto a back surface of the substrate (22). In one embodiment the device can be used for making a compact RGB (red-green-blue) projector.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: May 19, 2020
    Assignee: UNIVERSITY COLLEGE CORK, NUI, CORK
    Inventors: Pleun Maaskant, Brian Corbett
  • Patent number: 10636945
    Abstract: A light emitting device includes a substrate; a light emitting element mounted on an upper surface of the substrate; a light-reflecting member surrounding lateral surfaces of the light emitting element; and a sealing member disposed over an upper surface of the light emitting element and an upper surface of the light-reflecting member. An outer edge of the upper surface of the light-reflecting member coincides with an outer edge of a lower surface of the sealing member.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: April 28, 2020
    Assignee: NICHIA CORPORATION
    Inventor: Kazuhiro Kamada
  • Patent number: 10634310
    Abstract: A method is provided, wherein a lighting device (200, 300, 400, 500) comprising an at least partly light transmitting envelope (110) and a solid state light source (120) is manufactured. The method comprises arranging (710) an at least partly light transmitting plastic material (140) in a mold (130) having a surface structure (132) arranged on an inner surface portion of the mold and blow molding (720) the plastic material so as to form the envelope. During the blow molding, the surface structure is at least partly transferred to the at least partly light transmitting plastic material, thereby forming an optical structure (150) on a portion of an outer surface of the envelope. The envelope is then removed (730) from the mold and arranged (740) to at least partly enclose the solid state light source. The optical structure may be formed to generate a desired optical effect.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: April 28, 2020
    Assignee: SIGNIFY HOLDING B.V.
    Inventors: Eliav Itzhak Haskal, Hugo Johan Cornelissen, Maarten Van Lierop, Henricus Franciscus Bonekamp
  • Patent number: 10458614
    Abstract: Provided is a lamp for a vehicle capable of forming a beam pattern satisfying the performance requirements by using a micro lens optical system which includes a cylinder lens. The lamp includes a light source portion, a first lens portion which includes a plurality of micro incident lenses, and a second lens portion which includes a plurality of micro exit lenses disposed in front of the plurality of micro incident lenses. Particularly, the lamp forms a beam pattern using a combination of one or more micro incident/exit units. Each of the micro incident/exit units includes one cylinder lens and a plurality of corresponding lenses that correspond to the one cylinder lens, and any one of the micro incident lens or the micro exit lens is the cylinder lens and the other is the corresponding lens.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: October 29, 2019
    Assignee: SL Corporation
    Inventors: Jongwoon Kim, Nakjung Choi
  • Patent number: 10312422
    Abstract: Light emitting devices with improved light extraction efficiency are provided. The light emitting devices have a stack of layers including semiconductor layers comprising an active region. The stack is bonded to a transparent optical element.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: June 4, 2019
    Assignee: Lumileds LLC
    Inventors: Michael D. Camras, Michael R. Krames, Wayne L. Snyder, Frank M. Steranka, Robert C. Taber, John J. Uebbing, Douglas W. Pocius, Troy A. Trottier, Christopher H. Lowery, Gerd O. Mueller, Regina B. Mueller-Mach
  • Patent number: 10228531
    Abstract: A method of aligning a lens device includes: coupling an optical free-space beam that propagates along a first direction into an access port of an optoelectronic component, the first, a second, and a third direction being mutually perpendicular; positioning the lens device inside a free-space beam path, the lens device having an adjustment lens configured to focus radiation in only the second direction; moving the lens device along the second direction to align the adjustment lens with respect to the access port at an initial aligned position at which the optical free-space beam is one-dimensionally focused by the adjustment lens and at least a portion of a resulting one-dimensionally focused beam is input into the access port; and starting from the initial aligned position, moving the lens device in the second and/or third directions to position an optical element of the lens device in front of the access port.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: March 12, 2019
    Assignee: FINISAR GERMANY GMBH
    Inventors: Benjamin Voelker, Johannes Plumhof
  • Patent number: 9886118
    Abstract: One or more transparent transistor force sensitive structures can be included in an electronic device. The transistor force sensitive structures(s) is used to detect a force that is applied to the electronic device, to a component in the electronic device, and/or to an input region of the electronic device. As one example, the one or more transparent transistor force sensitive structures may be included in a display stack of a display in an electronic device.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: February 6, 2018
    Assignee: Apple Inc.
    Inventors: Michael Vosgueritchian, James E. Pedder, John Stephen Smith, Xiaonan Wen
  • Patent number: 9825201
    Abstract: Provided are a light emitting device including a transparent electrode having high transmittance with respect to light in a UV wavelength range as well as in a visible wavelength range and good ohmic contact characteristic with respect to a semiconductor layer and and a method of manufacturing the light emitting device. A transparent electrode of a light emitting device is formed by using a resistance change material which has high transmittance with respect to light in a UV wavelength range and of which resistance state is to be changed from a high resistance state into a low resistance state due to conducting filaments, which current can flow through, formed in the material if a voltage exceeding a threshold voltage inherent in a material applied to the material, so that it is possible to obtain high transmittance with respect to light in a UV wavelength range.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: November 21, 2017
    Assignee: KOREA UNIVERSITY RESEARCH AND BUSINESS FOUNDATION
    Inventors: Tae Geun Kim, Hee-Dong Kim
  • Patent number: 9818654
    Abstract: An apparatus includes: measurement flow passage portions as part of a respective plurality of supply paths of fluids to be supplied to a substrate, the measurement flow passage portions constituting measurement regions for measurement of foreign matter in the fluids, and being disposed so as to form a row with each other; a light irradiating unit configured to form an optical path in one of the flow passage portions, the light irradiating unit being shared by the plurality of flow passage portions; a moving mechanism configured to move the light irradiating unit relatively along a direction of arrangement of the flow passage portions to form the optical path within the flow passage portion selected among the plurality of flow passage portions; a light receiving unit including a light receiving element, the light receiving element receiving light transmitted by the flow passage portion; and a detecting unit configured to detect foreign matter in the fluid on a basis of a signal output from the light receiving
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: November 14, 2017
    Assignee: Tokyo Electron Limited
    Inventors: Masato Hayashi, Kohei Noguchi, Kenji Iizuka, Naruaki Iida
  • Patent number: 9705035
    Abstract: A light emitting device, includes a substrate; a plurality of light emitting stacked layers, comprising a first surface and a second surface; a mesa structure; a current blocking (CB) layer; a transparent conductive layer; a first pad electrode and a second pad electrode; and a passivation layer, wherein the second surface is electrically opposite to the first surface, the transparent conductive layer is disposed on or above the first surface, the first pad electrode is disposed on the transparent conductive layer and on the first surface, and the second pad electrode is disposed on the second surface and on the mesa structure, the CB layer is disposed on the first surface, surrounded by the transparent conductive layer, and at a lower region of the first pad electrode, a portion of the first pad electrode is filling a first opening of the transparent conductive layer and the CB layer.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: July 11, 2017
    Assignee: Epistar Corporation
    Inventors: Chien Cheng Huang, Kuo-Wei Yen, Yu-Wei Kuo, Yao-Wei Yang, Pei-Hsiang Tseng
  • Patent number: 9638950
    Abstract: A display may have a color filter layer and a thin-film transistor layer. A liquid crystal layer may be located between the color filter layer and the thin-film transistor layer. The display may have an active area surrounded by an inactive area. The opaque border layer may contain first and second opaque layers in the inactive area. The first opaque layer may have an opening in the inactive area that is overlapped by an isolation layer. The second opaque layer may be located in the inactive area and may overlap the opening in the first opaque layer to block light in the inactive area. The isolation layer may be interposed between the first and second opaque layers and may prevent static charge from an electrostatic discharge event along the edge of the display from migrating to the active area through the opaque border in the inactive area.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: May 2, 2017
    Assignee: Apple Inc.
    Inventors: Young Cheol Yang, Xinyu Zhu, Jin Yan, Cheng Chen, Po-Wen Chiu, Jun Qi, Victor H. Yin
  • Patent number: 9605999
    Abstract: A light source includes a semiconductor light emitter having an electrical drive input and operatively configured to emit a light beam; a first weakly polarizing beam splitter positioned to capture the light beam, reflecting one portion, and transmitting another portion with an output intensity P. The light source includes a second polarizing beam splitter positioned to capture the reflected portion of the light beam and split it into first and second detector light beams of orthogonal polarizations. The light source further includes first and second detectors capturing those detector light beams, and is configured to deliver corresponding first and second output signals from corresponding detector outputs. The light source includes an electronic circuit coupled to those electrical outputs and to the electrical drive input of the light emitter.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: March 28, 2017
    Inventors: Marko Bosiljevac, Dubravko Ivan Babic
  • Patent number: 9502464
    Abstract: A method of manufacturing an optical image stabilizer including providing a silicon-on-insulator (SOI) substrate that includes first and second silicon each provided on an upper surface and a lower surface of the substrate, having an insulator layer therebetween, forming a table, a cantilever arm connected to the table, an anchor connected to the cantilever arm, and an electrode opposite to the cantilever arm by etching the first silicon, allowing the table and the cantilever arm to levitate from the second silicon by removing an insulator layer disposed under the table and the cantilever arm, and mounting an image sensor on the table.
    Type: Grant
    Filed: May 9, 2014
    Date of Patent: November 22, 2016
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventor: Seung Seoup Lee
  • Patent number: 9246064
    Abstract: There is provided a method of manufacturing a light emitting device including preparing a light source including a wavelength conversion unit and an optical member applied to the light source. Light is irradiated to the wavelength conversion unit to excite the wavelength conversion unit and positional information regarding the light source is obtained from light emitted from the wavelength conversion unit. A mounting position of the optical member is determined based on the obtained positional information regarding the light source. The method of manufacturing a light emitting device having excellent light characteristics can be obtained.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: January 26, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Young Sik Jeong, Seong Ki Moon, Sung Il Lee
  • Patent number: 9041035
    Abstract: In an aspect, an organic light-emitting display apparatus is provided, including: an insulating layer having a inclined structure; a first electrode disposed on the insulating layer; a selective wavelength transparent layer disposed on the first electrode; a pixel defined layer disposed on the insulating layer and the first electrode and defining an emissive region and a non-emissive region; an organic emissive layer disposed on the first electrode; and a second electrode disposed on the organic emissive layer.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: May 26, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jae-Ik Lim, Jae-Kyoung Kim
  • Patent number: 9040326
    Abstract: A III-nitride light emitting diode (LED) and method of fabricating the same, wherein at least one surface of a semipolar or nonpolar plane of a III-nitride layer of the LED is textured, thereby forming a textured surface in order to increase light extraction. The texturing may be performed by plasma assisted chemical etching, photolithography followed by etching, or nano-imprinting followed by etching.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: May 26, 2015
    Assignee: The Regents of the University of California
    Inventors: Hong Zhong, Anurag Tyagi, Kenneth J. Vampola, James S. Speck, Steven P. DenBaars, Shuji Nakamura
  • Patent number: 9041043
    Abstract: A light emitting device package is provided that comprises first and second light emitting devices including light emitting diodes, a body a body having a first cavity in which the first light emitting device is positioned and a second cavity in which the second light emitting device is positioned and a resin material formed in the cavity, wherein the resin material includes, a first resin material formed in the first cavity, a second resin material formed in the second cavity, and a third resin material formed an upper surface of the first and second resin materials, wherein at least one of the first resin material and the second resin material includes a light diffusing material.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: May 26, 2015
    Assignee: LG Innotek Co., Ltd.
    Inventors: HaeKyung Lee, ChoongYoul Kim, HyunGoo Kang, KiHo Hong
  • Patent number: 9029176
    Abstract: The present invention achieves an optical characteristic exhibiting excellent sensitivity or the like, by increasing the opening dimension of an optical waveguide without changing the interconnection layout, so that the optical waveguide can surely be filled with a film having high refractive index. Pixel portion A of a solid-state imaging device includes photodiode PD formed on a semiconductor substrate; a first insulating film including a concave portion above photodiode PD; and a second insulating film formed on the first insulating film such that the concave portion is filled with the second insulating film. Peripheral circuit portion B of the solid-state imaging device includes an internal interconnection formed in the first insulating film and a pad electrode formed on the internal interconnection to be electrically connected to the internal interconnection. The pad electrode is formed on the second insulating film.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: May 12, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventor: Hisashi Yano
  • Patent number: 9029890
    Abstract: A light-emitting device disclosed herein comprises a patterned substrate having a plurality of cones, wherein a space is between two adjacent cones. A light-emitting stack formed on the cones. Furthermore, the cones comprise an area ratio of a top area of the cone and a bottom area of the cone which is less than 0.0064.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: May 12, 2015
    Assignee: Epistar Corporation
    Inventors: Chung-Ying Chang, Dennis Wang, Jenq-Dar Tsay
  • Patent number: 9024350
    Abstract: A light emitting module is disclosed. The light emitting module includes a lead frame body, lead frame, a heat spreader, an intermediate heat sink, and at least one light emitting element (LED). The lead frame body defines a cavity which accurately registers the heat spreader and includes optical or reflective walls surrounding the light emitting elements soldered on metallized traces of the heat spreader. The lead frame body encases and supports portions of the lead frame. The lead frame extends from outside the body into the cavity to accurately align with solder pads of the heat spreader. All the pre-aligned mechanical, thermal and electrical contacts are then soldered by solder reflow process under tight environmental control to prevent damage to the light emitting element. A robust, healthy 3-dimensional optical-electro-mechanical assembly having a very low thermal resistance in a thermal path from its light emitting element to its intermediate heatsink is created.
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: May 5, 2015
    Inventor: Ban P Loh
  • Patent number: 9018643
    Abstract: Enlightening device and method for making the same are disclosed. Individual light emitting devices such as LEDs are separated to form individual dies by process in which a first narrow trench cuts the light emitting portion of the device and a second trench cuts the substrate to which the light emitting portion is attached. The first trench can be less than 10 ?m. Hence, a semiconductor area that would normally be devoted to dicing streets on the wafer is substantially reduced thereby increasing the yield of devices. The devices generated by this method can also include base members that are electrically conducting as well as heat conducting in which the base member is directly bonded to the light emitting layers thereby providing improved heat conduction.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: April 28, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Long Yang
  • Patent number: 9018081
    Abstract: A method is provided for fabricating a light emitting diode (LED) using three-dimensional gallium nitride (GaN) pillar structures with planar surfaces. The method forms a plurality of GaN pillar structures, each with an n-doped GaN (n-GaN) pillar and planar sidewalls perpendicular to the c-plane, formed in either an m-plane or a-plane family. A multiple quantum well (MQW) layer is formed overlying the n-GaN pillar sidewalls, and a layer of p-doped GaN (p-GaN) is formed overlying the MQW layer. The plurality of GaN pillar structures are deposited on a first substrate, with the n-doped GaN pillar sidewalls aligned parallel to a top surface of the first substrate. A first end of each GaN pillar structure is connected to a first metal layer. The second end of each GaN pillar structure is etched to expose the n-GaN pillar second end and connected to a second metal layer.
    Type: Grant
    Filed: November 23, 2013
    Date of Patent: April 28, 2015
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Mark Albert Crowder, Changqing Zhan, Paul J. Schuele
  • Patent number: 9012932
    Abstract: A white LED assembly includes a string of series-connected blue LED dice mounted on a substrate. The substrate has a plurality of substrate terminals. A first of the substrate terminals is coupled to be a part of first end node of the string. A second of the substrate terminals is coupled to be a part of an intermediate node of the string. A third of the substrate terminals is coupled to be a part of a second end node of the string. Other substrate terminals may be provided and coupled to be parts of corresponding other intermediate nodes of the string. A single contiguous amount of phosphor covers all the LED dice, but does not cover any of the substrate terminals. In one example, the amount of phosphor contacts the substrate and has a circular periphery. All the LEDs are mounted to the substrate within the circular periphery.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: April 21, 2015
    Assignee: Bridgelux, Inc.
    Inventors: Tao Xu, Michael Solomensky
  • Patent number: 9012936
    Abstract: The sapphire substrate has a principal surface for growing a nitride semiconductor to form a nitride semiconductor light emitting device and comprising a plurality of projections of the principal surface, wherein an outer periphery of a bottom surface of each of the projections has at least one depression. This depression is in the horizontal direction. The plurality of projections are arranged so that a straight line passes through the inside of at least any one of projections when the straight line is drawn at any position in any direction in a plane including the bottom surfaces of the plurality of projections.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: April 21, 2015
    Assignee: Nichia Corporation
    Inventors: Junya Narita, Takuya Okada, Yohei Wakai, Yoshiki Inoue, Naoya Sako, Katsuyoshi Kadan
  • Patent number: 9006763
    Abstract: A semiconductor light-emitting device according to the present invention is a semiconductor light-emitting device 10 including a solid-state light-emitting element 11 and a wavelength converter 12 that converts primary light emitted by the solid-state light-emitting element 11 into light having a longer wavelength, wherein the wavelength converter 12 includes a wavelength converting layer 12a made from a translucent inorganic formed body containing phosphors, and a binder layer 12b; the wavelength converter 12 is disposed on a main light extraction surface 11a of the solid-state light-emitting element 11; and the binder layer 12b is disposed along an emission direction of light emitted from the main light extraction surface 11a.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: April 14, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Yasuharu Ueno, Toshiaki Kurachi
  • Patent number: 9006007
    Abstract: A method for producing an optoelectronic assembly (12) is provided, in which an optoelectronic component (16) is arranged on a carrier (14). Electrical terminals of the optoelectronic component (16) are electrically coupled to electrical contacts of the carrier (14) corresponding thereto. A dummy body (20) is arranged on a first side of the optoelectronic component (16) facing away from the carrier (14). A potting material (22) is arranged on the carrier (14), which potting material at least partially encloses the optoelectronic component (16) and at least partially encloses the dummy body (20). The dummy body (20) is removed, after the potting material (22) is dimensionally stable, whereby a recess (23) results, which is at least partially enclosed by the dimensionally stable potting material (22). An optically functional material (24) is decanted into the recess (23).
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: April 14, 2015
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventor: Markus Schneider
  • Patent number: 9000414
    Abstract: An object of the present invention is to provide a light emitting diode having a heterogeneous material structure and a method of manufacturing thereof, in which efficiency of extracting light to outside is improved by forming depressions and prominences configured of heterogeneous materials different from each other before or in the middle of forming a semiconductor material on a substrate in order to improve the light extraction efficiency.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: April 7, 2015
    Assignee: Korea Photonics Technology Institute
    Inventors: Sang-Mook Kim, Jong-Hyeob Baek
  • Patent number: 8994047
    Abstract: An arrangement having at least one optoelectronic semiconductor component includes a carrier element suitable for carrying the at least one optoelectronic semiconductor component. The arrangement comprises a housing body formed from a light-absorbing plastic. The housing body is arranged at the carrier element The housing body comprises an elevated region and a recessed region. An oblique flank is formed between the elevated and recessed regions. The recessed region reaches as far as the optoelectronic semiconductor component in order to reduce reflections.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: March 31, 2015
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Georg Bogner, Stefan Gruber, Michael Zitzlsperger
  • Patent number: 8987761
    Abstract: A structure of a light-emitting device includes the following components: a substrate; an epitaxial structure on the substrate, the epitaxial structure including at least a first conductivity type semiconductor layer, a light-emitting active layer, and a second conductivity type semiconductor layer; a first electrode on the first conductivity type semiconductor layer; a transparent conductive layer between the first electrode and the first conductivity type semiconductor layer; and a three-dimensional distributed Bragg reflector (DBR) layer between the transparent conductive layer and the first conductivity type semiconductor layer.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: March 24, 2015
    Assignee: Huga Optotech Inc.
    Inventors: Yu-Min Huang, Kuo-Chen Wu, Jun-Sheng Li
  • Patent number: 8987772
    Abstract: Disclosed herein is an LED chip including electrode pads. The LED chip includes a semiconductor stack including a first conductive type semiconductor layer, a second conductive type semiconductor layer on the first conductive type semiconductor layer, and an active layer interposed between the first conductive type semiconductor layer and the second conductive type semiconductor layer; a first electrode pad located on the second conductive type semiconductor layer opposite to the first conductive type semiconductor layer; a first electrode extension extending from the first electrode pad and connected to the first conductive type semiconductor layer; a second electrode pad electrically connected to the second conductive type semiconductor layer; and an insulation layer interposed between the first electrode pad and the second conductive type semiconductor layer. The LED chip includes the first electrode pad on the second conductive type semiconductor layer, thereby increasing a light emitting area.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: March 24, 2015
    Assignee: Seoul Viosys Co., Ltd.
    Inventors: Ye Seul Kim, Kyoung Wan Kim, Yeo Jin Yoon, Sang-Hyun Oh, Keum Ju Lee, Jin Woong Lee, Da Yeon Jeong, Sang Won Woo
  • Patent number: 8987766
    Abstract: An LED chip includes a substrate and an epitaxy structure formed on the substrate. The epitaxy structure includes a first semiconductor layer, a light emitting layer and a second semiconductor layer. A plurality of grooves are defined through the first semiconductor layer, the light emitting layer and the second semiconductor layer. The light emitting layer is exposed from the grooves. A transparent insulative layer is filled in the grooves. An electrode is further formed on the transparent insulative layer.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: March 24, 2015
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Chih-Chen Lai
  • Patent number: 8981400
    Abstract: A device having an FET structure for the emission of an optical radiation integrated on a substrate of a semiconductor material, includes a first mirror, a second mirror of a dielectric type and an active layer comprising a main zone designed to be excited to generate the radiation. The device also includes a first electrically conductive layer containing two doped regions constitutes a source well and a drain well between which a current flows, a second electrically conductive layer which constitutes a gate, and a dielectric region between the first and second layer, to space corresponding peripheral portions of the first and second layers so that the current is channeled in the main zone for generating excitation radiation. The first and second electrically conductive layers and the active layer define an optical cavity.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: March 17, 2015
    Assignee: STMicroelectronics S.R.L.
    Inventors: Maria Eloisa Castagna, Anna Muscara'
  • Patent number: 8975646
    Abstract: An optoelectronic semiconductor component comprising at least one radiation emitting semiconductor chip disposed in a recess of a housing base body, wherein the recess is bounded laterally by a wall surrounding the semiconductor chip and is at least partially filled with an encapsulant that covers the semiconductor chip and is well transparent to an electromagnetic radiation emitted by the semiconductor chip An inner side of the wall, bounding the recess, is configured such that, as viewed looking down on the front side of the semiconductor component, a subarea of the inner side is formed which extends ring-like all the way around the semiconductor chip and which is in shadow as viewed from the radiation emitting semiconductor chip and which is at least partially covered by encapsulant all the way around the semiconductor chip. A housing base body for such a semiconductor component is also specified.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: March 10, 2015
    Assignee: Osram Opto Semiconductors GmbH
    Inventor: Karlheinz Arndt
  • Patent number: 8969900
    Abstract: An optoelectronic semiconductor chip includes a semiconductor layer stack having an active layer that generates radiation, and a radiation emission side, and a conversion layer disposed on the radiation emission side of the semiconductor layer stack, wherein the conversion layer converts at least a portion of the radiation, which is emitted by the active layer, into radiation of a different wavelength, the radiation emission side of the semiconductor layer stack has a first nanostructuring, and the conversion layer is disposed in this first nanostructuring.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: March 3, 2015
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Matthias Sabathil, Alexander Linkov, Christopher Kölper, Martin Straβburg, Norwin von Malm
  • Patent number: 8963179
    Abstract: Disclosed are a light emitting device and a light emitting device package. The light emitting device includes a first electrode, a light emitting structure including a first semiconductor layer, an active layer, and a second semiconductor layer on the first electrode, a nano-tube layer including a plurality of carbon nano tubes on the light emitting structure, and a second electrode on the light emitting structure.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: February 24, 2015
    Assignee: LG Innotek Co., Ltd.
    Inventors: Kwang Ki Choi, Hwan Hee Jeong, Sang Youl Lee, June O Song, Ji Hyung Moon
  • Patent number: 8963269
    Abstract: A light-transmissive member has a first principal face, a second principal face, and side faces. The first principal face has a first portion including a center of the first principal face and a second portion between the first portion and the side face sides. The member includes a plurality of altered portions formed between the first principal face and the second principal face so that the plurality of altered portions do not appear on the first principal face, the second principal face, and the side faces. Orthogonal projections of the plurality of altered portions onto the first principal face are included in the second portion.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: February 24, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventor: Takashi Miyake
  • Patent number: 8963192
    Abstract: According to one embodiment, a semiconductor light emitting device having a base, a mounting material and a chip of a semiconductor light emitting element is provided. The mounting material is provided on the base. The chip of the semiconductor light emitting element is fixed onto the base via the mounting material. The chip of the semiconductor light emitting element is provided with a sapphire substrate, an active region, a light shielding portion and anode and cathode electrodes for supplying an electric power to the active region. The active region is provided on the sapphire substrate and has a light emitting layer for emitting light by supplying electric power. The light shielding portion is formed on the sapphire substrate on the side of the mounting material. The light shielding portion prevents the mounting material from being irradiated with the light produced in the light emitting layer.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: February 24, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tadaaki Hosokawa, Shuji Itonaga
  • Patent number: 8965153
    Abstract: A core of an optical waveguide and a core of a waveguide type optical device are adjacently disposed, and a layer is continuously formed at one end of the core of the waveguide type optical device, wherein an effective refractive index of the layer decreases toward a long axis direction of the optical waveguide stripe.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: February 24, 2015
    Assignee: Hitachi Ltd.
    Inventors: Makoto Takahashi, Hideo Arimoto, Kazuhiko Hosomi, Toshihiko Fukamachi, Shigeki Makino, Yasunobu Matsuoka, Toshiki Sugawara
  • Patent number: 8957440
    Abstract: A light emitting diode die that when encapsulated within an overmolded hemispherical lens has a packaging factor less than 1.2. The light emitting diode die may include a stacked structure including a metal overlay, a composite high reflectivity mirror on the metal overlay, a transparent conductive oxide layer on the composite high reflectivity mirror, and a diode structure on the transparent conductive oxide layer. The diode structure may include a roughened surface opposite the transparent conductive oxide layer, a submount connected to the composite high reflectivity mirror and a bond metal between the submount and the metal overlay. A conductive via may extend through the composite high reflectivity mirror and electrically connect the transparent conductive oxide and the bond metal.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: February 17, 2015
    Assignee: Cree, Inc.
    Inventors: James Ibbetson, David Todd Emerson
  • Patent number: 8956893
    Abstract: A method for manufacturing an LED (light emitting diode) with bat-wing emitting field lens is disclosed. Firstly, a substrate is provided. The substrate includes a plurality of depressions each corresponding to a pair of electrodes. A plurality of LED chips are fastened in the depressions and electrically connected to the pairs of electrodes. A plurality of unsolidified lenses are formed in the depressions to cover the LED chips. A pressing mold including a plurality of protrusions is provided. The pressing mold is moved towards the substrate to force the protrusions of the pressing mold to insert into the unsolidified lenses. The lenses are solidified and the pressing mold is removed and concavities are defined at the lenses. The substrate is cut to obtain a plurality of separated and finished LEDs.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: February 17, 2015
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventors: Lung-Hsin Chen, Wen-Liang Tseng
  • Patent number: 8952405
    Abstract: A light emitting diode (LED) device and packaging for same is disclosed. In some aspects, the LED is manufactured using a vertical configuration including a plurality of layers. Certain layers act to promote mechanical, electrical, thermal, or optical characteristics of the device. The device avoids design problems, including manufacturing complexities, costs and heat dissipation problems found in conventional LED devices. Some embodiments include a plurality of optically permissive layers, including an optically permissive cover substrate or wafer stacked over a semiconductor LED and positioned using one or more alignment markers.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: February 10, 2015
    Inventor: Mordehai Margalit
  • Patent number: 8946728
    Abstract: A semiconductor light emitting device includes: a light emission structure including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer; and a wavelength conversion layer formed on at least a portion of a light emission surface of the light emission structure, made of a light-transmissive material including phosphor particles, and having a void therein. A semiconductor light emitting device includes: a light emission structure including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer; and a wavelength conversion layer formed on at least a portion of a light emission surface of the light emission structure, made of a light-transmissive material including phosphor particles or quantum dots, and having a void therein.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: February 3, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Kyu Sang Kim
  • Patent number: 8941137
    Abstract: A light emitting diode (LED) device and packaging for same is disclosed. In some aspects, the LED is manufactured using a vertical configuration including a plurality of layers. Certain layers act to promote mechanical, electrical, thermal, or optical characteristics of the device. The device avoids design problems, including manufacturing complexities, costs and heat dissipation problems found in conventional LED devices. Some embodiments include a plurality of optically permissive layers, including an optically permissive cover substrate or wafer stacked over a semiconductor LED and positioned using one or more alignment markers.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: January 27, 2015
    Inventor: Mordehai Margalit
  • Patent number: 8933531
    Abstract: A semiconductor device including a base substrate; a semiconductor layer which is disposed on the base substrate and has a 2-Dimensional Electron Gas (2DEG) generated within the semiconductor layer; a plurality of first ohmic electrodes which are disposed on the central region of the semiconductor layer and have island-shaped cross sections; a second ohmic electrode which is disposed on edge regions of the semiconductor layer; and a Schottky electrode part has first bonding portions bonded to the first ohmic electrodes, and a second bonding portion bonded to the semiconductor layer. A depletion region is provided to be spaced apart from the 2DEG when the semiconductor device is driven at an on-voltage and is provided to be expanded to the 2DEG when the semiconductor device is driven at an off-voltage, the depletion region being generated within the semiconductor layer by bonding the semiconductor layer and the second bonding portion.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: January 13, 2015
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Woo Cul Jeon, Jung Hee Lee, Young Hwan Park, Ki Yeol Park
  • Patent number: 8928102
    Abstract: The present application disclosed various embodiments of improved performance optically coated semiconductor devices and the methods for the manufacture thereof and includes at least one semiconductor wafer having at least a first surface, a first layer of low density, low index of refraction optical material applied to at least the first surface of the semiconductor wafer, and a multi-layer optical coating applied to the first layer of low density, low index of refraction material, the multi-layer optical coating comprising alternating layers of low density, low index of refraction materials and high density, high index of refraction materials.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: January 6, 2015
    Assignee: Newport Corporation
    Inventor: Jamie Knapp
  • Patent number: 8928017
    Abstract: Example embodiments are directed to light-emitting devices (LEDs) and methods of manufacturing the same. The LED includes a first semiconductor layer; a second semiconductor layer; an active layer formed between the first and second semiconductor layers; and an emission pattern layer including a plurality of layers on the first semiconductor layer, the emission pattern including an emission pattern for externally emitting light generated from the active layer.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: January 6, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Su-hee Chae, Young-soo Park, Bok-ki Min, Jun-youn Kim, Hyun-gi Hong
  • Patent number: 8921877
    Abstract: A semiconductor light-emitting device and a method for manufacturing the same can include a wavelength converting layer located on at least one semiconductor light-emitting chip in order to emit various colored lights including white light. The semiconductor light-emitting device can include a base board, the chip mounted on the base board and a transparent plate disposed on the wavelength converting layer including a spacer and a phosphor having a high density. The wavelength converting layer can be formed in a thin uniform thickness between the transparent plate and a top surface of the chip using the spacer so as to extend toward the transparent plate. The semiconductor light-emitting device can be configured to improve light-emitting efficiency of the chip by using the thin wavelength converting layer including the phosphor having a high density, and therefore can emit a wavelength-converted light having a high light-emitting efficiency from a small light-emitting surface.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: December 30, 2014
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Kosaburo Ito, Toshihiro Seko, Kazuhiko Ueno, Naoto Suzuki
  • Patent number: 8916892
    Abstract: A light-scattering substrate which can be thinned and has improved thermal resistance, a method of manufacturing the same, an organic light-emitting display device including the same, and a method of manufacturing the organic light-emitting display device are disclosed. The light-scattering substrate includes a light-scattering layer composed of a plurality of metal nanoparticles which are attached to at least a surface of a substrate. The metal nanoparticles are formed by agglomeration of a metal on the substrate, and show a surface plasmon phenomenon.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: December 23, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Soo-Beom Jo, Dae-Woo Lee
  • Patent number: 8912564
    Abstract: A light-emitting device includes a plurality of physically separated light-emitting units formed on a single substrate: a contact layer formed on a first side of the light-emitting units ; a first electrode formed on a second side of the light-emitting units: a conductive post formed between the first electrode and the contact layer; an electrical connection structure electrically connecting a first one of the light-emitting units with another a second one of the light-emitting units; a reflective layer formed between the first one of light-emitting units and the first electrode; a first conductive layer comprising a plurality of contacts formed between the first one of the light-emitting units and the reflective layer; and a second conductive layer formed between the reflective layer and the first conductive layer.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: December 16, 2014
    Assignee: Epistar Corporation
    Inventors: Yi-Ming Chen, Min-Hsun Hsieh, Chia-Liang Hsu