Abstract: An optical information recording/reproducing system comprises (A) a recording medium including a recording-bit producing layer, which is comprised of a fluorescent substance, and a photoconductive layer, both layers being interposed between conductive layers, at least one of which is transparent; (B) means for selectively applying a voltage to both sides of the recording medium; (C) means for radiating an optical recording beam to a site on the recording medium while applying a voltage to the recording medium and, then, applying a high electric field to the recording-bit producing layer by way of the photoconductive layer, the resistance of the recording-bit producing layer being lowered at the site, thereby developing a dielectric breakdown and, hence, causing the fluorescent substance to lose the fluorescence, so that information is recorded; and (D) means for radiating an optical reproducing beam on the recording medium without applying any voltage to the recording medium and, then, reproducing information
Abstract: An optical data card having a pair of spaced apart information strips. One strip has pre-recorded programs or data and is always a non-erasable strip. This strip may be either a reflective direct-read-after-write non-erasable type or may be a read-only optical memory (ROOM) strip. Another strip serves as a temporary, scratchpad or cache memory and is either a reflective DRAW strip of the erasable type or a DRAW non-erasable strip which is at least partially blank, with sufficient space for temporary memory needs over an extended period of time.
Abstract: A system and method for making a data card involving prerecording information, such as reference position information or servo tracks, on a strip of high resolution, immediate read laser recording material, then adhering the strip to a card such that the strip is recordable in place. A protective transparent laminating material is bonded to the recording surface and then user information is recorded on the strip using a laser aimed at the strip through the laminating material.
Abstract: An optical data recording and information storage medium which uses an exposed and developed photosensitive medium with a transparent substrate to store prerecorded data spots. A reflective laser recording metal layer is vapor deposited on the processed photosensitive medium so as to create laser recordable areas adjacent to the prerecorded data. The entire assembly is mounted on a base which may be transparent. A laser is used to write data spots on the thin metal layer. Both the prerecorded data spots and the laser written data spots are read by observing optical contrast with respect to the surrounding field.
Abstract: A strip of optical contrast laser recording material is disposed on a wallet-size card, and has laser written micrographic characters recorded thereon. The characters are formed of a matrix of laser recorded character spots and are eye readable using twenty power magnification. The characters are recorded in situ on the card, after the strip is disposed in the card, by a laser having a beam focused on the strip. A light detector reads the reflected beam to confirm laser writing. Either raster-like or zig-zag scanning of the beam creates each character matrix. Each of the character spots may be made up of one laser spot or by a group of laser spots.
Abstract: A memory for carrying information comprises a multilayer film having a plurality of monomolecular layers, in which each layer is capable of carrying a charge. Charges are introduced into one side of the film in a time sequence which corresponds to the information to be carried. A voltage is applied between the faces of the film to cause the charge carried by any layer to be transferred to the adjacent layer. The sequence of charges carried by the film can be read out. The charges are introduced by electrodes adjacent opposite faces of the film which apply across the film voltage pulses of an amplitude greater than that required to cause tunnelling without thermal activation between the layers of the film and at least equal to that required to cause electrons to tunnel without thermal activation from one of the electrodes to the film layer adjacent thereto.
Abstract: There has been provided a monolithic three dimensional image optical receiver having contiguous detectors formed into a solid state lens for producing photogenerated electrons. A plurality of collectors, one each located in communication with the detectors, are disposed on a substrate and having spaced or interstices therebetween. An exponentially variable programmable gain control is located on the image or radiation receiving side of the detector.
Abstract: An erasable optical read/write data storage system is disclosed. The data storage system utilizes a temperature sensitive data storage disk which includes an optical tuning film and a film of thermochromic phase change material which will change from a first phase to a second phase at temperatures in excess of an upper temperature and back to the first phase at temperatures below a lower temperature. An environmentally controlled chamber is provided to maintain the data storage disk at a selected bias temperature between the lower and upper temperatures to ensure that no unintentional phase change will occur. A thermally controlled support member is utilized to temporarily lower the temperature of the disk to a point below the lower temperature, thereby initializing the disk. A modulated laser beam is then focused on the disk to temporarily heat particular portions of the disk to a temperature in excess of the upper temperature, causing a phase change.
Abstract: A memory comprises a multilayer Langmuir-Blodgett film (1) in which each layer (2) is capable of carrying a charge. A photo-injector layer (D) is located on one side of the film for introducing charges into the film in a time sequence which corresponds to the information to be carried. Voltage source (6) is provided for applying a voltage between the faces of the film to cause the charge carried by any layer to be transferred to the adjacent layer. The sequence of charges carried by the film may be read out by a photon-emitting electron arrival detector (F) on the opposite side of the film, or by a method of current differentiation. The film (1) is preferably formed of a polydiacetylene.
Abstract: Method and active media for controlled production of physical and refractive index inhomogenetics in a volume of a suspension medium by use of at least two intersecting beams of electromagnetic radiation matched to the excited state properties of molecules in the media. In addition, complex three-dimensional physical and chemical structures are produced by selective excitation of different types of molecules in the media and by employing transportive capabilities of liquid or gaseous support medium.
Abstract: An optical memory playback apparatus is constructed so that a single longitudinal mode of laser beam emitted from a self-coupling semiconductor laser element is projected through an optical system onto an information recording medium and the laser beam reflected by the information recording medium is returned through the same optical system back to the semiconductor laser element. In addition, the apparatus interposes a spatially uneven phase plate in the optical system, whereby the longitudinal mode of emission of the semiconductor laser element is converted into a random multi-mode at all times and, consequently, the reproduction of information from the information recording medium is effected by detecting the variation in the intensity of output or terminal voltage of the semiconductor laser element which occurs in conformity with the variation in the intensity of the reflected laser beam.
Type:
Grant
Filed:
February 3, 1982
Date of Patent:
July 17, 1984
Assignees:
Agency of Industrial Science & Technology, Ministry of International Trade & Industry
Abstract: A photoelectric device having at least a predetermined impurity region which is disposed in a semiconductor substrate, and a photoelectric conversion portion which is constructed by stacking an electrode layer lying in contact with at least a part of the impurity region, a photoconductive material layer overlying the electrode layer, and a transparent electrode overlying the photoconductive material layer, characterized in that the photoconductive material layer is made of an amorphous chalcogenide material which principally contains Se, is disclosed. It is very favorable that the photoelectric conversion material layer made of the amorphous material principally containing Se is partially doped with Te so as to enhance its sensitivity. The amorphous chalcogenide material is very useful in the following point.
Abstract: The invention relates to a method of optical storage of a numerical image and to methods of analog read-out and numerical processing of an image thus stored as well as to systems which make use of said method.All the digits of a given rank of the numbers constituting the numerical image are recorded on the same medium consisting of a film, for example, in the form of juxtaposed surface elements which, in a given example, are made conventionally opaque to light when the corresponding digit is either 1 or 0 and only in this case in order to constitute a sub-image. A surface element associated with one digit occupies a position within the sub-image which is similar to the position occupied by the number containing said digit in the numerical image.
Abstract: The invention relates to a reversible memory structure with thermo-optical inscription or writing and optical reading on a moving support.According to the invention, the memory structure deposited on a substrate (1) is constituted by a double layer (2 and 3). A second alloy layer (3) at ambient temperature in the martensitic phase is deposited on a first thermally deformable layer (2). A heat pulse creates a deformation in the first layer, which deforms the martensitic alloy layer. A more powerful heat pulse raises the alloy layer to a temperature above its transformation point from the martensitic phase to another crystallographic phase and erases the inscribed deformation.Particular application to optical disks.
Abstract: A conveying mechanism and flexible carrier for transporting a planar printing plate and flexible overlying mask from a flat loading station to a precisely-curved cylindrically-shaped scanning station, and back to the flat loading station, is disclosed. The vacuum carrier used is rigid in one axis and flexible in a second axis, and has a pair of reference strips which define a neutral bending axis for the plate and mask when the latter are wrapped around a pair of precisely machined cylindrical discs. By locating the flexible mask and printing plate outside the neutral axis of bending, both are placed in tension when wrapped around the discs. This maintains uniform contact between the plate and mask and prevents wrinkling of the mask as it overlies the plate.The carrier and discs support the plate and mask within a precise and uniform cylindrical plane for scanning with focussed beams of radiation.
Abstract: An optical information recording material comprising a thin film of a suboxide of a metal or semimetal of Group IIIB, IVB, VB or VIB, e.g. TeO.sub.x where x<2.0 or BiO.sub.x where x<1.5, added with up to 50 mole % of S and/or Se. When irradiated with light of relatively low energy density, the thin film exhibits such changes in optical density that information can be optically recorded on this material with high contrast ratio. Recorded information can be reproduced by either transmitted light or reflected light and, when desired, can be erased by light irradiation of adequate energy density.
Type:
Grant
Filed:
August 8, 1979
Date of Patent:
July 14, 1981
Assignee:
Matsushita Electric Industrial Co., Ltd.
Abstract: An EL display panel comprising an electroluminescent element made of, for example, a ZnS:Mn layer sandwiched between a pair of dielectric layers exhibits hysteresis properties within light intensity versus applied voltage characteristics. A front electrode is formed on one of the dielectric layers, and a rear electrode is formed on the other dielectric layer in order to apply a sustaining voltage signal across the electroluminescent element for maintaining the memoried display information. An electron beam is applied to a desired position on the EL display panel through the rear electrode at a time when the sustaining voltage signal bears the zero level in order to erase the memoried information. The memoried display information is electrically read out by detecting a polarization relaxation current which flows through a memoried display position when an electron beam is applied thereto.
Abstract: Amorphous silicon layers deposited on a suitable substrate in a glow discharge of silane or other silicon containing compounds are sensitive optical storage media.
Abstract: A data recording and read-out apparatus and method in which a ferroelectric eramic substrate is remanently polarized to store information. Upon being illuminated, the substrate produces a photovoltaic voltage, which is detected to effect read-out. A disk of ferroelectric ceramic material to which information is entered by spiral tracking, either in a single track or in multiple tracks. A self-scanning data record comprised of a plurality of ferroelectric ceramic cells which are remanently polarized, and which are read out by a register.
Type:
Grant
Filed:
August 15, 1977
Date of Patent:
February 13, 1979
Assignee:
The United States of America as represented by the Secretary of the Army